On a problem of M. Talagrand

Jinyoung Park

Institute for Advanced Study

Joint work with

Keith Frankston (Center for Communications Research) and Jeff Kahn (Rutgers University)

June 2021

Definitions

- X: finite set; $2^X = \{ \text{subsets of } X \}; [n] := \{1, 2, ..., n \}$
- μ_p : *p*-biased product probability measure on 2^X

$$\mu_p(A) = p^{|A|}(1-p)^{|X \setminus A|} \quad A \subseteq X$$

• $X_p \sim \mu_p$ (e.g. $X = {[n] \choose 2} \rightarrow X_p = G_{n,p}$)
• $\mathcal{F} \subseteq 2^X$ is an increasing property if $B \supseteq A \in \mathcal{F} \Rightarrow B \in \mathcal{F}$
• graphic e.g.'s: $\mathcal{F} = \{\text{connected}\}; \mathcal{F} = \{\text{contain a triangle}\}$
• Assume $\mathcal{F} \neq \emptyset, 2^X$.

• Fact. Given \mathcal{F} , $\mu_p(\mathcal{F})(=\mathbb{P}(X_p\in\mathcal{F}))$ is strictly increasing in p

Definitions

• The threshold $p_c(\mathcal{F})$: $\mu_{p_c}(\mathcal{F}) = 1/2$ (unique)

Central question in probabilistic combinatorics :

Given \mathcal{F} , what's the threshold for \mathcal{F} ?

E.g. $G_{n,p}$: threshold for connectivity, Hamiltonicity, etc.

Getting a lower bound - expectation calculation

Example 1. $X = \binom{[n]}{2} (X_p = G_{n,p}), \ \mathcal{F}: \text{ contain } K$ Q. $p_c(\mathcal{F})$ (the threshold for $G_{n,p}$ to contain K)?

$q(\mathcal{F})$: the expectation threshold

• Given
$$\mathcal{G} \subseteq 2^X$$
, $\langle \mathcal{G} \rangle := \{T : \exists S \in \mathcal{G}, S \subseteq T\}$

Observation

We have $p \leq p_c(\mathcal{F})$ if $\exists \ \mathcal{G} \subseteq 2^X$ such that

(1) $\langle \mathcal{G} \rangle \supseteq \mathcal{F}$ (" \mathcal{G} covers \mathcal{F} ")

(2) $\sum_{S \in \mathcal{G}} p^{|S|} \le \frac{1}{2}$

• Ex 1.
$$\mathcal{F} = \{ \text{contain } K \}$$

• $\mathbb{E}(\#\text{K's}) \approx n^5 p^6 \rightarrow 0$ if $p \ll n^{-5/6}$

•
$$\mathbb{E}(\#\text{H's}) \approx n^4 p^5 \rightarrow 0$$
 if $p \ll n^{-4/5}$

• the expectation threshold $q(\mathcal{F}) := \max\{p : \exists \mathcal{G}\} \to q(\mathcal{F}) \le p_c(\mathcal{F})\}$

 $p_c(\mathcal{F}) \leq Kq(\mathcal{F}) \log |X|.$

$$q_f(\mathcal{F})$$
: the fractional exp thrObservationWe have $p \le p_c(\mathcal{F})$ if $\exists \mathcal{G} \subseteq 2^X$ such that(1) $\langle \mathcal{G} \rangle \supseteq \mathcal{F}$ (" \mathcal{G} covers \mathcal{F} ")(2) $\sum_{S \in \mathcal{G}} p^{|S|} \le \frac{1}{2}$ We have $p \le p_c(\mathcal{F})$ if $\exists \lambda : 2^X \to [0, \infty)$ such that(2) $\sum_{S \subseteq \mathcal{F}} \lambda(S) \ge 1$ $\forall \mathcal{F} \in \mathcal{F}$ (2) $\sum_{S \subseteq X} \lambda(S) p^{|S|} \le \frac{1}{2}$

- the fractional expectation threshold $q_f(\mathcal{F}) := \max\{p : \exists \lambda\}$
- Easy. $q(\mathcal{F}) \leq q_f(\mathcal{F}) \leq p_c(\mathcal{F})$

Theorem. (Frankston-Kahn-Narayanan-P. '19)

 \exists a universal K > 0 such that for any finite X and increasing $\mathcal{F} \subseteq 2^X$,

 $p_c(\mathcal{F}) \leq Kq_f(\mathcal{F}) \log |X|.$

Weaker than Kahn-Kalai Conjecture (but still very strong)

Talagrand's conjecture on $q(\mathcal{F})$ vs. $q_f(\mathcal{F})$

Conjecture (Talagrand '10)

There exists a universal constant L > 0 such that for any finite X and increasing $\mathcal{F} \subseteq 2^X$,

 $q_f(\mathcal{F}) \leq Lq(\mathcal{F})$

- Implies KK Conj (via FKNP Thm)
- Even simple instances of the conjecture are not easy to establish.
- True if λ is supported on singletons (Talagrand '10)
- Talagrand suggested two test cases:
 - X = (^[n]₂) = E(K_n) and (for some k) λ is the indicator of copies of K_k in K_n (DeMarco-Kahn '15)
 - λ is supported on 2-element sets (Frankston-Kahn-P. '21)

Conjecture (Talagrand '10)

 $\exists L > 0$ such that for any finite X and increasing $\mathcal{F} \subseteq 2^X$,

 $q_f(\mathcal{F}) \leq Lq(\mathcal{F})$

Two possible approaches: either give

- **1** Upper bound on $q_f(\mathcal{F})$; or
- **2** Lower bound on $q(\mathcal{F})$

Reformulation

 $\exists L>0$ such that for any finite X, $p\in [0,1]$, and $\lambda:2^X
ightarrow [0,\infty)$,

$$\mathcal{F} := \{ U \subseteq X : \sum_{S \subseteq U} \lambda_S \ge \sum_{S \subseteq X} \lambda_S (Lp)^{|S|} \}$$

admits $\mathcal{G} \subseteq 2^X$ that satisfies

- $\bigcirc \quad \langle \mathcal{G} \rangle \supseteq \mathcal{F}$

Open question

Conjecture (Talagrand, '10)

 $\exists L > 0$ such that for any finite X, $p \in [0, 1]$, and $\lambda : 2^X \to [0, \infty)$,

$$\mathcal{F} := \{ U \subseteq X : \sum_{S \subseteq U} \lambda_S \ge \sum_{S \subseteq X} \lambda_S (Lp)^{|S|} \}$$

admits $\mathcal{G}\subseteq 2^X$ that satisfies

 $\textcircled{0} \quad \langle \mathcal{G} \rangle \supseteq \mathcal{F}$

Thank you!