On a construction of quaternionic and octonionic Riemann surfaces

(extract from [2]) by G. Gentili J. Prezelj and $\underline{F. VLACCI}$

Introduction

Let \mathbb{K} denote either the division algebra of quaternions \mathbb{H} or that of octonions \mathbb{O} , and let $\mathbb{S} \subset \mathbb{K}$ be the 2-sphere or, respectively, the 6-sphere of imaginary units, i.e. the sets of $I \in \mathbb{K}$ such that $I^2 = -1$. If $I \in \mathbb{K}$ we define the *slice* $\mathbb{C}_I := \mathbb{R} + I\mathbb{R}$ and say that a domain $\Omega \subset \mathbb{K}$ is a *slice domain* if $\Omega \cap \mathbb{R} \neq \emptyset$ and $\Omega_I := \Omega \cap \mathbb{C}_I$ is a domain in \mathbb{C}_I for any $I \in \mathbb{S}$.

Let $\Omega \subseteq \mathbb{K}$ be a slice domain and let $f : \Omega \to \mathbb{K}$ be a function. If, for an imaginary unit I of \mathbb{K} , the restriction $f_I := f_{|\Omega_I|}$ has continuous partial derivatives and

$$\bar{\partial}_I f(x+yI) := \frac{1}{2} \left(\frac{\partial}{\partial x} + I \frac{\partial}{\partial y} \right) f_I(x+yI) \equiv 0.$$
(1)

then f_I is called *holomorphic*. If f_I is holomorphic for all imaginary units of \mathbb{K} , then the function f is called *slice regular*.

We refer the interested reader to the monograph [1] for an introduction to the main properties of slice regular functions in the quaternionic setting.

Main results

As customary, a differentiable map will be called *an immersion* if its differential is injective at all points of the domain of definition.

Let n, N be natural numbers with $N \ge n$ and let Ω be domain in \mathbb{R}^n . An at least C^1 immersion $f : \Omega \to \mathbb{R}^N$ will be called a *conformal or isothermal map* if the matrix of the differential of f is conformal, i.e., if it satisfies

$${}^{t}df(p)df(p) = k(p)I_{n} \qquad (2)$$

for a (never vanishing and at least C^1) function $k: \Omega \to \mathbb{R}$

We specialize this definition for our purpouses.

Let Ω be a slice domain in $\mathbb{H} \cong \mathbb{R}^4$ and let $N \ge 4$ be a natural number. Let $f : \Omega \to \mathbb{R}^N$ be an at least C^1 immersion. If, for any $I \in \mathbb{S}$, $df_{|\mathbb{C}_I}$ and $df_{|\mathbb{C}_I^{\perp}}$ satisfy (2), then f will be called a *slice conformal or slice isothermal immersion*.

Notice that in general slice conformality does not imply conformality. If f is an injective slice conformal immersion, then it will be called slice conformal or slice isothermal parameterization and $f(\Omega)$ in \mathbb{R}^N will be called a (parameterized) Riemann 4-manifold of \mathbb{R}^N . In case $f : \Omega \to \mathbb{R}^N$ itself is a conformal map, then the parameterized 4-manifold $f(\Omega)$ in \mathbb{R}^N will be called a special (parameterized) Riemann 4-manifold of \mathbb{R}^N .

Let $\Omega \subseteq \mathbb{H}$ be a slice domain; consider $F : \Omega \to \mathbb{H}^2 \cong \mathbb{R}^8$ where F(q) = (f(q), g(q)) with f, g : $\Omega \to \mathbb{H}$ slice regular functions. If F is an immersion, then F will be called a slice regular curve (in \mathbb{H}^2). Furthermore, if F is injective, then $F(\Omega)$ is a parameterized Riemann 4-manifold in \mathbb{H}^2 .

If $f: \Omega \to \mathbb{H}$ is any slice regular function, the slice regular curve $F: \Omega \to \mathbb{H}^2$ F(q) := (q, f(q)) is a slice conformal parameterization and the graph of f, i.e. $\Gamma(f) = \{(q, f(q)) : q \in \Omega\} \subseteq \mathbb{H} \times \mathbb{H}$ is a parameterized Riemann 4-manifold.

The Riemann 4-sphere

Let
$$f: \mathbb{R}^4 \cong \mathbb{H} \to \mathbb{H} \times \mathbb{R} \cong \mathbb{R}^5$$
 be

$$f(x+Iy) = \left(\frac{2(x+Iy)}{1+x^2+y^2}, \frac{-1+x^2+y^2}{1+x^2+y^2}\right)$$

Then
$$df(x+Iy)|_{\mathbb{C}_I} =$$

The Helicoidal 4-manifold

Consider $g: \mathbb{R}^4 \cong \mathbb{H} \to \mathbb{H} \times \Im \mathbb{H} \cong \mathbb{R}^7$ with g(x + Iy) =

$$= (\sinh x \cos y + I \sinh x \sin y, Iy) =$$

$$= (sh(x)c(y) + Ish(x)s(y), Iy),$$

then

If $\mathbb{H}^+ = \{q \in \mathbb{H} : \Re q > 0\}$ put $\mathscr{E}^+ = g(\mathbb{H}^+)$, and E(x + Iy) := $(\exp(x + Iy), Iy) = (\exp x \cos y +$ $I \exp x \sin y, Iy)$ defines an immersion and a diffeomorphism between \mathbb{H} and \mathscr{E}^+ such that $\pi \circ E = \exp$; then $L : \mathscr{E}^+ \subset \mathbb{H} \times \Im(\mathbb{H}) \to \mathbb{H} L(q, p) =$ $\log |q| + p$ is the \mathscr{E}^+ -logarithm. Indeed, if $(q, p) \in \mathscr{E}^+$, then $q = |q| \exp p$ and so $E \circ L$ and $L \circ E$ are the identity.

Reference

[1] G. Gentili, C. Stoppato, D. C. Struppa, REGULAR FUNCTIONS OF A QUATERNIONIC VARIABLE, Springer Monographs in Mathematics, Springer, Berlin-Heidelberg, 2013

[2] G. Gentili, J. Prezelj, F. Vlacci, Slice conformality: Riemann manifolds and logarithm on quaternions and octonions in arXiv.org > math > math.CV