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Incipit - Evolution of a single particle

We want to describe the motion of some particles of clouds. We
model the clouds as a gas/fluid with given velocity v(x) for each
position x (direction and intensity).
A single particle is transported along an integral curve of v

d
dt γ(t) = v(γ(t)) for any t ∈ [0,∞).
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Incipit - Evolution of a distribution of particles

If the particles are many, we model them as a distribution, namely
with a measure µ0. µt evolves according to the PDE

∂tµt + v · ∇µt = 0.
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The flow of a vector field

Given a vector field b : [0,∞)× Rd → Rd , consider the flow X of b{
d
dt X(t, x) = bt(X(t, x)) ∀t ∈ [0,∞)
X(0, x) = x .

It can be seen
as a collection of trajectories X(·, x) labelled by x ∈ Rd ;
as a collection of diffeomorphisms X(t, ·) : Rd → Rd .
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Continuity/transport equation

Consider the related PDE, named continuity equation{
∂tµt + div (btµt) = 0 in (0,∞)× Rd

µ0 given.

When bt is sufficiently smooth and µt : Rd × [0,∞)→ R is a smooth
function, all derivatives can be computed.
Much less is needed to give a distributional sense to the PDE (e.g. bt
bounded and µt finite measures).
When

divbt ≡ 0,

the continuity equation is equivalent to the transport equation

∂tµt + b · ∇µt = 0.
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Connection between continuity equation and flows

Solutions of the CE flow along integral curves of b
Given b, its flow X an initial distribution of mass µ0 ∈P

(
Rd), a

solution of the CE is
µt := X(t, ·)#µ0.

Recall that the measure X(t, ·)#µ0 is defined by∫
Rd
ϕ(x) d [X(t, ·)#µ0](x) =

∫
Rd
ϕ(X(t, x)) dµ0(x) ∀ϕ : Rd → R.

Indeed, for any test function ϕ ∈ C∞c (Rd ) we have

d
dt

∫
Rd
ϕ dµt = d

dt

∫
Rd
ϕ(X(t, x)) dµ0(x) =

∫
Rd
∇ϕ(X) · ∂tX dµ0

=
∫
Rd
∇ϕ(X) · bt(X) dµ0 =

∫
Rd
∇ϕ · bt dµt .

This is the distributional formulation of the continuity equation.
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Regularity of b matters

Is the solution of the continuity equation starting from µ0 unique?

YES if ∇b is bounded
Given a solution νt to CE, set ν̃t = X(t, ·)−1# νt and compute

d
dt

∫
Rd
ϕ d ν̃t = 0,

so X(t, ·)−1# νt = ν̃t = ν0 = µ0 ⇒ νt := X(t, ·)#µ0.

Cauchy-Lipschitz Theorem
Let bt a vector field with ∇bt bounded. Then for every x ∈ Rd there
exists a unique solution X(·, x) : [0,∞)→ Rd of the ODE.

NO if b is less regular
As soon as uniqueness for the ODE fails.
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Why caring about less regular vector fields?

Less regular vector fields appear
in fluid dynamics, when a fluid or a gas develop a turbulent
behavior or a discontinuity/singularity (shear flows, shock
waves...). As an example, in the theory of turbulence, the
Onsager conjecture regards Holder continuous solutions to Euler;
some of the optimal regularity estimates for Navier-Stokes are
based on the understanding of its flow.
in meteorology, to build solutions of the semigeostrophic system
in 2d and 3d [Ambrosio, C., De Philippis, Figalli, ’12, ’14];
in kinetic equations, to give a lagrangian description of solutions
to the Vlasov-Poisson system [Ambrosio, C., Figalli, ’15, ’17];
studying the geometry of nonsmooth manifolds with curvature
bounds (in this direction, see also [C., Tione ’20]).
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Nonsmooth theory: lack of uniqueness

One-dimensional autonomous vector field with lack of uniqueness

b(x) = 2
√
|x |, x ∈ R

Given x0 = −c2 < 0, the 1-parameter family of curves that stop at the
origin for an arbitrary time T ≥ 0, solve the ODE.

0

x

x0 = −c2

c

x

c+ T

(t− c− T )2

−(t− c)2

t
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Nonsmooth theory: lack of uniqueness

x

t

Between all the possible integral curves, a “better selection” could be
made by the ones that do not stop in 0. In other words, we wish to
select a collection of integral curves that “do not concentrate”.
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Selection of a flow

Regular lagrangian flows
Given a vector field b : (0,T )× Rd → Rd , the map
X : [0,∞)× Rd → Rd is a regular Lagrangian flow of b if:
(i) for L d -a.e. x ∈ Rd , X(·, x) solves the ODE ẋ(t) = bt(x(t))

starting from x ;
(ii) X(t, ·)#L d ≤ CL d for every t ∈ [0,T ] and for some C > 0.

Theorem ([Di Perna-Lions ’89], [Ambrosio ’04])

Let us assume that |∇bt | ∈ L1loc(Rd ), div bt ∈ L∞(Rd ) and

|bt(x)|
1 + |x | ∈ L1(Rd ) + L∞(Rd ).

Then there exists a unique regular Lagrangian flow X of b.
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Remarks on the DiPerna-Lions theorem

The regularity assumption |∇bt | ∈ L1loc(Rd ) can be replaced by
∇bt is a matrix-valued finite measure , [Ambrosio 04];
singular integrals of L1 functions, [Bohun, - Bouschut, Crippa 13].

The assumption div bt ∈ L∞(Rd ) can be weakened to
div bt ∈ BMO(Rd ) [Mucha, 2010], [C., Crippa, Spirito 2016].

A different approach to this result was proposed by [Crippa, De Lellis,
08], considering a functionals of the type

Φδ(t) :=
∫

log
(
1 + |X1(t, x)− X2(t, x)|

δ

)
dx t ∈ [0,T ];

Question: a.e. uniqueness of integral curves
Does any divergence free b ∈ L1tW 1,p

x admit a unique integral curve
(namely, γ ∈W 1,1(0,T ) solution of the ODE γ̇(t) = b(t, γ)) for a.e.
initial datum x ∈ Rd?

Open since the pioneering works of DiPerna-Lions and Ambrosio.
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Main result

If p < d then the a.e. uniqueness for trajectories does not hold.

Theorem ([Brué-C.-DeLellis, ’20])
For every d ≥ 2, p < d and s <∞ there exist a divergence free
velocity field b ∈ Ct(W 1,p

x ∩ Ls
x ) and a set A ⊂ Td such that

L d (A) > 0;
for any x ∈ A there are at least two integral curves of b starting
at x.

[Sorella, Pitcho, ’21] and [Sorella, Giri, ’21] show that the set A can be
taken of full measure in the torus and that the theorem adapts to
hamiltonian structures.
What about the critical case p = d?
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Our strategy

Ingredients of proof:
Ambrosio’s superposition principle to connect the a.e. uniqueness
of trajectories to uniqueness results for positive solutions to (CE).

A new (asymmetric) Lusin-Lipschitz type inequality.

Non-uniqueness theorem for positive solutions to (CE) based on
convex integration type techniques borrowed from
[Modena-Székelyhidi ’18].
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Superposition solutions - informally

Take a vector field b with two different flows. Then we observed that
both

X1(t, ·)#µ0 and X2(t, ·)#µ0

solve the CE starting from µ0. By linearity,

λX1(t, ·)#µ0 + (1− λ)X2(t, ·)#µ0

is a solution as well. We can interpret this as "choosing X1 with
probability λ and X2 with probability 1− λ”.
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Ambrosio’s superposition principle

A measure valued solution µ ∈ L∞t (M+) to (CE) with velocity b is a
superposition solution if for µ0-a.e. x ∈ Td there exists
ηx ∈P(C([0,T ],Td )) such that

ηx is concentrated on integral curves of b starting at x ;
we have the representation formula µ = (et)#(µ0 ⊗ ηx ),∫

φ dµt =
∫ (∫

φ(γ(t)) dηx (γ)
)

dµ0(x).

Superposition solutions are averages of integral curves of u.

Theorem ( [Ambrosio ’04] )

Let b : [0,T ]× Td → Rd , µ ∈ L∞t (M+) solution of CE with∫ T

0

∫
|b(t, x)| dµt(x) dt <∞.

Then it is a superposition solution.
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Nonuniqueness by convex integration

If we produce an example of nonuniqueness of positive solutions of
the continuity equation in some range of exponents we have disproved
the a.e. uniqueness of integral curves.

Theorem ([Brué-C.-DeLellis, ’20] )

Let d ≥ 2, p ∈ (1,∞), r ∈ [1,∞], 1
r + 1

r ′ = 1 be such that

1
p + 1

r > 1 + 1
d .

Then there exist (b, u) solution of the CE with
a divergence-free vector field b ∈ Ct(W 1,p

x ∩ Lr ′

x ),
a positive, nonconstant u ∈ CtLr

x with u(0, ·) = 1
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Remarks

The main theorem follows: any velocity field obtained in the
previous theorem does not have the a.e. uniqueness for integral
curves. Indeed

Since div b = 0, the function ū ≡ 1 solves CE.
The u constructed in this theorem is a second distinct solution!
As seen before, a.e. uniqueness of integral curves implies
uniqueness of positive solutions to (CE).

The construction is based on convex integration scheme, as in the
groundbreaking works [DeLellis-Székelyhidi, ’09-’13], [Isett ’16] for
the Euler equation and [Buckmaster-Vicol ’17] for Navier-Stokes.
The first ill-posedness result for (CE) with Sobolev velocity field
has been proven in [Modena-Székelyhidi, ’18], [Modena-Sattig,
’19].
Main novelties: positive solutions, a simpler convex integration
scheme in any dimension.
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The convex integration scheme

We start from CE solved with an error{
∂tuq + div (bquq) = divRq

div bq = 0

Solutions are obtained through an inductive procedure as
u = limq→∞ uq, u = limq→∞ bq and limq→∞‖Rq‖L1 = 0.
We look for bq+1 = bq + aBq+1, uq+1 = uq + bUq+1, where Bq
and Uq are "highly oscillating" time-dependent versions of
Mikado-flows (Cf. [Daneri-Székelyhidi ’17]). a and b are "slow"
functions. They cancel the error when interact

|Rq − abBqUq| � 1.

We exploit the scaling invariances of the equation by making Bq
and Uq concentrated ([Buckmaster-Vicol, ’17]).
Heuristic idea: Ill-posedness happens when u "concentrates"
where b is far from being Lipschitz (i.e. ∇b is "big").
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The end

Thank you for your attention! ∗

∗ and thanks to D. Strütt, EPFL, for the first pictures and animation
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