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Balanced metrics

Definition (Michelsohn)

A balanced metric on a n-dim complex manifold is an Hermitian
metric ω such that d(ωn−1) = 0.

• A metric is balanced if and only if ∆∂f = ∆∂f = 2∆d f for every
f ∈ C∞(M,C) (Gauduchon).

• A compact complex manifold M admits a balanced metric if and
only if M carries no positive currents of degree (1, 1) which are
components of a boundary (Michelsohn).

In particular, Calabi-Eckmann manifolds have no balanced metrics!
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Examples of balanced manifolds

• The twistor space of a 4-dim oriented anti-self-dual Riemannian
manifold always has a balanced metric (Michelsohn; Gauduchon).

• Every compact complex manifold bimeromorphic to a compact
Kähler manifold is balanced (Alessandrini, Bassanelli) ⇒
Moishezon manifolds and complex manifolds in the Fujiki class C
are balanced.

• A class of non-Kähler balanced manifolds costructed by using
conifold transictions which includes #k(S3 × S3), k ≥ 2 [Li, Fu,
Yau].

• Any left-invariant Hermitian metric on a unimodular complex Lie
group is balanced [Abbena, Grassi].

• A characterization of compact complex homogeneous spaces
with invariant volume admitting a balanced metric (in particular
c1 6= 0) [F, Grantcharov, Vezzoni].
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Classification results on Lie groups

• 6-dim balanced nilpotent Lie algebras [Ugarte].

• 6-dim balanced unimodular solvable Lie algebras admitting a
holomorphic (3, 0)-form [F, Otal, Ugarte].

Problem

Classify balanced almost abelian Lie algebras g (i.e. with abelian
ideal h of codimension one).

↪→ g = RnB h, with B ∈ End(h).

We can use the characterization of Hermitian almost abelian Lie
algebras [Lauret, Rodriguez-Valencia; Arroyo, Lafuente].
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Balanced almost abelian Lie groups

Let g = RnB h be a 2n-dim almost abelian Lie algebra.

If g admits a Hermitian structure (J, g), then ∃ a ON basis (ei ) s.t.

h = span < e1, . . . . , e2n−1 >, h
⊥ = span < e2n >,

h1 := h ∩ Jh = span < e2, . . . . , e2n−1 >,

Je1 = e2n, Jei = e2n+1−i , i = 1, . . . , n,

ade2n |h =

(
a 0
v A

)
, a ∈ R, v ∈ h1, A ∈ gl(h1), [A, J] = 0.

Proposition (F, Paradiso)

(J, g) is balanced ⇐⇒ v = 0, tr(A) = 0.

↪→ 9 isomorphism classes in dim 6.
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Interplay with other types of Hermitian metrics

A Hermitian metric which is balanced and puriclosed is Kähler
[Alexandrov, Ivanov; Popovici].

Conjecture

Every compact complex manifold admitting a balanced and a
pluriclosed metric is Kähler.

The conjecture is true for all the known examples of compact
balanced manifolds!

Theorem (F, Grantcharov, Vezzoni)

There exists a compact complex non-Kähler manifold admitting a
balanced and an astheno-Kähler metric.

↪→ negative answer to a question posed by Székeleyhidi, Tosatti,

Weinkove.
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Balanced flow

Let (M2n, J, ω0) be a complex manifold with a balanced metric ω0.

Definition (Bedulli, Vezzoni)

A parabolic flow preserving the balanced condition is given by:

∂tϕ(t) = i∂∂ ∗t (ρCω(t) ∧ ∗tϕ(t)) + ∆BCϕ(t), ϕ(0) = ∗0ω0,

where ρCω(t) is the Ricci form of the Chern connection and

∆BC = ∂∂∂
∗
∂∗ + ∂

∗
∂∗∂∂ + ∂

∗
∂∂∗∂ + ∂∗∂∂

∗
∂ + ∂

∗
∂ + ∂∗∂

is the Bott-Chern Laplacian.

Short-time existence and uniqueness for compact manifolds
[Bedulli, Vezzoni].
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Remark

If ω0 is Kähler, then the flow coincides with the Calabi flow:{
∂tω(t) = i∂∂sω(t), ω(t) ∈ {ω0 + i∂∂u > 0} ⊂ [ω0]
ω(0) = ω(0),

where sω(t) is the scalar curvature of ω(t).

Problem

Study the Balanced flow on almost abelian Lie groups (G , J, g).

We use the bracket flow introduced by Lauret, i.e. we evolve the
Lie bracket instead of the Hermitian metric g !
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Choose (J0, 〈·, ·〉) linear Hermitian structure on R2n.

Fix a basis (ei ) making (g, J, g0) ∼= (R2n, J0, 〈·, ·〉).

↪→ The Lie bracket µ(t) = µ(a(t), v(t),A(t)) ∈ Λ2(R2n)∗ ⊗ R2n

evolves as
a′ = p a, v ′ = 0, A′ = [A,P] + p A,

where p := p(a,A) and P := P(a,A) are fourth-order polynomials.

Theorem (F, Paradiso)

Let (G , J, ω0) be a 6-dim balanced almost abelian Lie group. Then

• the solution ω(t) to the balanced flow is defined for all positive
times (eternal solution);

• Cheeger-Gromov convergence to a Kähler almost abelian Lie
group.
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Hull-Strominger System

Remark

It describes the geometry of compactification of heterotic
superstrings with torsion to 4-dimensional Minkowski spacetime.

• M be a compact 3-dim complex manifold with a nowhere
vanishing holomorphic (3, 0)-form Ω.

• E be a complex vector bundle over M with a Hermitian metric H
along its fibers and let α′ ∈ R be a constant (slope parameter).

The Hull-Strominger system, for the Hermitian metric ω on M, is:

(1) F 2,0
H = F 0,2

H = 0, FH ∧ ω2 = 0 (Hermitian-Yang-Mills),

(2) d(‖Ω‖ω ω2) = 0 (ω is conformally balanced),

(3) i∂∂ω = α′

4 (Tr(R∇ ∧ R∇)− Tr(FH ∧ FH)) (Bianchi identity)

where FH ,R∇ are the curvatures of H and of a metric connection
∇ on TM.
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Link with balanced metrics

The 2nd equation d(‖Ω‖ωω2) = 0 says that ω is conformally
balanced.

Remark

It was originally written as d∗ω = i(∂ − ∂) ln(‖Ω‖ω)
(the equivalence was proved by Li and Yau).

The Hull-Strominger system can be interpreted as a notion of
“canonical metric” for conformally balanced manifolds.

Remark

F 2,0
H = F 0,2

H = 0, FH ∧ ω2 = 0 is the Hermitian-Yang-Mills
equation which is equivalent to E being a stable bundle.
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Remark

• Calabi-Yau manifolds can be viewed as special solutions (with
E = T 1,0M and H = ω) [Candelas, Horowitz, Strominger, Witten].

• Since ω may not be Kähler, there is a one-parameter line ∇τ of
natural unitary connections on T 1,0M defined by ω, passing
through the Chern connection ∇C and the Bismut connection ∇B .

For ∇ = ∇C the first Non-Kähler solutions have been found by Fu
and Yau on a class of toric fibrations over K3 surfaces, constructed
by Goldstein and Prokushkin.

Main Idea: reduce the Hull-Strominger system to a 2-dimensional
Monge-Ampère equation.
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The construction of Goldstein and Prokushkin

Let (S , ωS) be a K3 surface with Ricci flat Kähler metric ωS .

• To any pair ω1, ω2 of anti-self-dual (1,1)-forms on S such that
[ωi ] ∈ H2(S ,Z), Goldstein and Prokushkin associated a toric
fibration

π : M → S ,

with a nowhere vanishing holomorphic 3-form Ω = θ ∧ π∗(ΩS), for
a (1,0)-form θ = θ1 + iθ2, where θi are connection 1-forms on M
such that dθi = π∗ωi .

• The (1, 1)-form
ω0 = π∗(ωS) + iθ ∧ θ

is a balanced Hermitian metric on M, i.e. dω2
0 = 0.
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The Fu -Yau solution

Fu and Yau found a solution of the Hull-Strominger system with M
given by the Goldstein-Prokushkin construction, and the following
ansatz for the metric on M:

ωu = π∗(euωS) + iθ ∧ θ,

where u is a function on S . This reduces the Hull-Strominger
system to a 2-dim Monge-Ampère equation with gradient terms:

i∂∂(eu − fe−u) ∧ ω + α′i∂∂u ∧ i∂∂u + µ = 0,

under the ellipticity condition

(eu + fe−u)ω + 4α′i∂∂u > 0,

where f ≥ 0 is a known function, and µ is a (2, 2)-form with
average 0.
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New solutions to Hull-Strominger System

Using that the argument by Fu and Yau depends only on the
foliated structure of the 6-manifold, we show that the Fu-Yau
solution on torus bundles over K3 surfaces can be generalized to
torus bundles over K3 orbifolds ↪→

Theorem (F, Grantcharov, Vezzoni)

Let 13 ≤ k ≤ 22 and 14 ≤ r ≤ 22. Then on the smooth manifolds
S1 ×#k(S2 × S3) and #r (S2 × S4)#r+1(S3 × S3) there are
complex structures with trivial canonical bundle admitting a
balanced metric and a solution to the Hull-Strominger system via
the Fu-Yau ansatz.

The cases k = 22 and r = 22 correspond to Fu-Yau solutions.
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To construct the explicit examples we consider T 2-bundles over an
orbifold S which are given by the following sequence

S1 � � // M

��
S1 � � // M1

��
S

where M1 → S is a Seifert S1-bundle, M1 is smooth and M → M1

is a regular principal S1-bundle over M1.
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The Anomaly flow

The solutions of the Hull-Strominger system can be viewed as
stationary points of the following flow of positive (2, 2)-forms,
called the “Anomaly flow”

∂t(‖|Ω‖ω(t)ω(t)2) = i∂∂ω(t) + α′(Tr(Rt ∧ Rt)− Tr(Ft ∧ Ft))

H(t)−1∂tH(t) =
ω(t)2 ∧ Ft
ω(t)3

, ω(0) = ω0, F (0) = F0.

with ω0 (conformally balanced) [Phong, Picard, Zhang].

In the compact case:

• Short-time existence and uniqueness [Phong, Picard, Zhang].

• For t →∞ the limit solves the Hull-Strominger system ↪→
new proof of Fu-Yau non-Kähler solutions [Phong, Picard, Zhang].
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Flat case

Assume Ft = 0 for all t (i.e. E is flat){
∂t(‖|Ω‖ω(t)ω(t)2) = i∂∂ω(t) + α′(Tr(Rτt ∧ Rτt ))

ω(0) = ω0,
(∗)

where Rτ is the curvature of the Gauduchon connection ∇τ , τ ∈ R
(for τ = 1, ∇τ = ∇C ).

Theorem (F, Paradiso)

• An almost abelian Lie algebra (g(a, v ,A), J, g) is balanced with a
holomorphic (3, 0)-form ⇐⇒ a = 0, v = 0, tr(A) = tr(JA) = 0.

• The anomaly flow (∗) on almost abelian Lie groups preserves the
balanced condition for every τ, α′ ∈ R, in the left-invariant case.

• Left-invariant locally conformal Kähler metrics on almost abelian
Lie groups are fixed points of the anomaly flow (∗).
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