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A coupled gradient–type quasilinear elliptic system

Let us consider the coupled gradient–type quasilinear elliptic
system


−div(A(x , u)|∇u|p1−2∇u) + 1

p1
Au(x , u)|∇u|p1 = Gu(x , u, v) in Ω

−div(B(x , v)|∇v |p2−2∇v) + 1
p2
Bv (x , v)|∇v |p2 = Gv (x , u, v) in Ω

u = v = 0 on ∂Ω

where

Ω is an open bounded domain in RN , N ≥ 2,

A, B : Ω×R→ R are C1 Carathéodory functions, with partial
derivatives Au(x , u), respectively Bv (x , v);

p1, p2 > 1;

a C1 Carathéodory function G : Ω× R× R→ R exists with
partial derivatives Gu(x , u, v), Gv (x , u, v).
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a C1 Carathéodory function G : Ω× R× R→ R exists with
partial derivatives Gu(x , u, v), Gv (x , u, v).

A.M. Candela Quasilinear elliptic systems



Outline Quasilinear elliptic systems Variational setting Abstract setting Main results Other results

A coupled gradient–type quasilinear elliptic system

Let us consider the coupled gradient–type quasilinear elliptic
system
−div(A(x , u)|∇u|p1−2∇u) + 1

p1
Au(x , u)|∇u|p1 = Gu(x , u, v) in Ω

−div(B(x , v)|∇v |p2−2∇v) + 1
p2
Bv (x , v)|∇v |p2 = Gv (x , u, v) in Ω

u = v = 0 on ∂Ω

where

Ω is an open bounded domain in RN , N ≥ 2,
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Model systems

A special case is the classical (p1, p2)–Laplacian system:
−∆p1 u = Gu(x , u, v) in Ω
−∆p2 v = Gv (x , u, v) in Ω
u = v = 0 on ∂Ω

.

An example of the quasilinear system can be written if

A(x , u) = 1 + |u|s1p1 , B(x , v) = 1 + |v |s2p2 ,

with s1 ≥ 0, s2 ≥ 0.
A particular nonlinear term is

G (x , u, v) =
1

q1
|u|q1 +

1

q2
|v |q2 + c∗|u|γ1 |v |γ2 ,

with qi ≥ 0, γi ≥ 0 for each i ∈ {1, 2}, c∗ ≥ 0.
If c∗ = 0: uncoupled system.
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A general gradient–type quasilinear system

A more general gradient–type quasilinear system is

{
−div(ai (x , ui ,∇ui )) + Ai ,t(x , ui ,∇ui ) = Gi (x ,u) in Ω, 1 ≤ i ≤ m,
u = 0 on ∂Ω,

with m ≥ 2 and u = (u1, . . . , um), where
for each i ∈ {1, . . . ,m} a function Ai : Ω× R× RN → R exists
which “grows” as |ξ|pi (pi > 1) w.r.t. its last N–dimensional
variable ξ and is such that

Ai ,t(x , t, ξ) =
∂Ai

∂t
(x , t, ξ), ai (x , t, ξ) =

(
∂Ai

∂ξ1
(x , t, ξ), . . . ,

∂Ai

∂ξN
(x , t, ξ)

)
if 1 ≤ i ≤ m,

and G : Ω× Rm → R exists such that

Gi (x ,u) =
∂G

∂ui
(x ,u) if 1 ≤ i ≤ m.
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About an equation

Also investigating the existence of solutions for just a quasilinear
equation{
−div(A(x , u)|∇u|p−2∇u) + 1

p At(x , u)|∇u|p = g(x , u) in Ω,

u = 0 on ∂Ω,

requires suitable approaches such as:

nonsmooth techniques (A. Canino 1995, B. Pellacci and M.
Squassina 2004,. . . ),

null Gâteaux derivative only along “good” directions (D.
Arcoya and L. Boccardo 1996, D. Arcoya and L. Boccardo
1999, D. Arcoya, L. Boccardo and L. Orsina 2001,. . . )

a suitable variational setting (A.M.C. and G. Palmieri
2006,. . . )
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Why coupled systems?

Classical (p1, p2)–Laplacian systems, or their generalizations, allow
one to model various physical phenomena,

e.g., they describe problems related to the equilibrium of
anisotropic media which possibly are somewhere “perfect”
insulators or “perfect” conductors so that the couple (p1, p2)
represents the characteristic of the medium which involves

a pseudoplastic fluid if pi < 2,

a dilatant fluid if pi > 2,

a Newtonian fluid if pi = 2.
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Previous results

Several existence results of classical (p1, p2)–Laplacian systems are
obtained under hypotheses of sublinear, superlinear, and resonant
type on the nonlinearity G (x , u, v):

J. Vélin and F. de Thélin 1993,
C.O. Alves, D.C. de Morais Filho and M.A. Souto 2000,
L. Boccardo and D.G. de Figueiredo 2002,
P. Drábek, M.N. Stavrakakis and N.B. Zographopoulos
2003,. . .

Some existence results are known also for quasilinear systems:

via nonsmooth techniques (G. Arioli and F. Gazzola 2000,
M. Squassina 2006)
by means of an approximation approach (A. Bensoussan and
L. Boccardo 2002)
by using a cohomological local splitting (A.M.C., E.
Medeiros, G. Palmieri and K. Perera 2010)
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P. Drábek, M.N. Stavrakakis and N.B. Zographopoulos
2003,. . .

Some existence results are known also for quasilinear systems:

via nonsmooth techniques (G. Arioli and F. Gazzola 2000,
M. Squassina 2006)
by means of an approximation approach (A. Bensoussan and
L. Boccardo 2002)
by using a cohomological local splitting (A.M.C., E.
Medeiros, G. Palmieri and K. Perera 2010)

A.M. Candela Quasilinear elliptic systems



Outline Quasilinear elliptic systems Variational setting Abstract setting Main results Other results

Previous results

Several existence results of classical (p1, p2)–Laplacian systems are
obtained under hypotheses of sublinear, superlinear, and resonant
type on the nonlinearity G (x , u, v):
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P. Drábek, M.N. Stavrakakis and N.B. Zographopoulos
2003,. . .

Some existence results are known also for quasilinear systems:

via nonsmooth techniques (G. Arioli and F. Gazzola 2000,
M. Squassina 2006)
by means of an approximation approach (A. Bensoussan and
L. Boccardo 2002)

by using a cohomological local splitting (A.M.C., E.
Medeiros, G. Palmieri and K. Perera 2010)

A.M. Candela Quasilinear elliptic systems



Outline Quasilinear elliptic systems Variational setting Abstract setting Main results Other results

Previous results

Several existence results of classical (p1, p2)–Laplacian systems are
obtained under hypotheses of sublinear, superlinear, and resonant
type on the nonlinearity G (x , u, v):
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First hypotheses on A(x , u), B(x , u), G (x , u, v)

Assume that not only A(x , u), B(x , u), G (x , u, v) are C1

Carathéodory functions but also:

(h1) for any ρ > 0 we have that

sup
|u|≤ρ

|A (·, u) | ∈ L∞ (Ω) , sup
|v |≤ρ

|B (·, v) | ∈ L∞ (Ω) ,

sup
|u|≤ρ

|Au (·, u) | ∈ L∞ (Ω) , sup
|v |≤ρ

|Bv (·, v) | ∈ L∞ (Ω) ;

(g0) G (·, 0, 0) ∈ L∞(Ω),
Gu(x , 0, 0) = Gv (x , 0, 0) = 0 for a.e. x ∈ Ω;

(g1) a constant σ > 0 and some exponents qi ≥ 1, ti ≥ 0, if
i ∈ {1, 2}, exist such that

|Gu(x , u, v)| ≤ σ(1 + |u|q1−1 + |v |t1) for a.e. x ∈ Ω, ∀(u, v) ∈ R2,

|Gv (x , u, v)| ≤ σ(1 + |u|t2 + |v |q2−1) for a.e. x ∈ Ω, ∀(u, v) ∈ R2.
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Existence domain

The functional related to the coupled quasilinear system is

J (u, v) =
1

p1

∫
Ω
A(x , u)|∇u|p1dx +

1

p2

∫
Ω
B(x , v)|∇v |p2dx

−
∫

Ω
G (x , u, v)dx .

(h1), (g0)–(g1) =⇒ J is well defined in the Banach space

X = X1 × X2 = W ∩ L, ‖(u, v)‖X = ‖(u, v)‖W + ‖(u, v)‖L,

where

Xi = W 1,pi
0 (Ω) ∩ L∞(Ω), for i = 1, 2,

W = W 1,p1
0 (Ω)×W 1,p2

0 (Ω), ‖(u, v)‖W = |∇u|p1 + |∇v |p2 ,

L = L∞(Ω)× L∞(Ω), ‖(u, v)‖L = |u|∞ + |v |∞.
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Gâteaux derivative

Taking any (u, v), (w , z) ∈ X , the Gâteaux derivative of J in
(u, v) along the direction (w , z) is given by

dJ (u, v)[(w , z)] =

∫
Ω
A(x , u)|∇u|p1−2∇u · ∇w dx

+
1

p1

∫
Ω
Au(x , u)w |∇u|p1dx +

∫
Ω
B(x , v)|∇v |p2−2∇v · ∇z dx

+
1

p2

∫
Ω
Bv (x , v)z |∇v |p2dx −

∫
Ω
Gu(x , u, v)w dx −

∫
Ω
Gv (x , u, v)z dx .

For simplicity, we put

∂J
∂u

(u, v) : w ∈ X1 7→
∂J
∂u

(u, v)[w ] = dJ (u, v)[(w , 0)] ∈ R,

∂J
∂v

(u, v) : z ∈ X2 7→
∂J
∂v

(u, v)[z ] = dJ (u, v)[(0, z)] ∈ R.
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Regularity theorem and variational principle

Assume that (h1) and (g0)–(g1) hold.

Proposition (A.M.C., A. Salvatore, C. Sportelli 2021)

Let ((un, vn))n ⊂ X , (u, v) ∈ X and M > 0 be such that:

(un, vn)→ (u, v) in W and (un, vn)→ (u, v) a.e. in Ω,

|un|∞ ≤ M and |vn|∞ ≤ M for all n ∈ N.

Then,

J (un, vn)→ J (u, v) and ‖dJ (un, vn)− dJ (u, v)‖X ′ → 0.

Hence, J is a C1 functional on X .

(u, v) ∈ X is a weak bounded solution of the coupled system
⇐⇒ dJ (u, v) = 0.
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The Palais–Smale problem

Both p1 > N and p2 > N =⇒ W 1,pi
0 (Ω) ↪→ L∞(Ω) for both

i = 1 and i = 2 =⇒ X = W .

Then, the classical Ambrosetti–Rabinowitz Mountain Pass
Theorems may be applied.

Assume that either 1 < p1 ≤ N or 1 < p2 ≤ N.
As J is C1 in X 6= W , then the classical Palais–Smale condition,
or its Cerami’s variant, require the convergence of the
Palais–Smale sequences not only in ‖(·, ·)‖W but also in ‖(·, ·)‖L.
In general, Palais–Smale sequences may converge in ‖(·, ·)‖W but
not in ‖(·, ·)‖L (counterexamples exist).
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Weak Cerami–Palais–Smale condition

Let (X , ‖ · ‖X ) and (W , ‖ · ‖W ) be two Banach spaces such that
X ↪→W continuously and J ∈ C1(X ,R).

Taking β ∈ R, a sequence (un)n ⊂ X is a (CPS)β–sequence, if
lim

n→+∞
J(un) = β and lim

n→+∞
‖dJ(un)‖X ′(1 + ‖un‖X ) = 0.

Definition

The functional J satisfies a weak version of the Cerami’s variant
of Palais–Smale condition at level β (β ∈ R), briefly (wCPS)β
condition, if for any (CPS)β–sequence (un)n a point u ∈ X exists
such that

(i) lim
n→+∞

‖un − u‖W = 0 (up to subsequences),

(ii) J(u) = β, dJ(u) = 0.
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Deformation Lemma

Lemma (C-Palmieri 2009)

Let J ∈ C1(X ,R) and consider β ∈ R such that

J satisfies the (wCPS)β condition,

dJ(u) 6= 0 if u ∈ X , J(u) = β.

Then, fixing any ε̄ > 0, there exist a constant ε > 0 and a
homeomorphism ψ : X → X such that 2ε < ε̄ and

(i) ψ(u) = u if J(u) ≤ β − ε̄ or J(u) ≥ β + ε̄,

(ii) ψ(Jβ+ε) ⊂ Jβ−ε.

Moreover, if J is even then ψ can be chosen odd.
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Generalized Ambrosetti–Rabinowitz Mountain Pass
Theorem

Let (X , ‖ · ‖X ) and (W , ‖ · ‖W ) be two Banach spaces such that
X ↪→W continuously.

Theorem

Let J ∈ C1(X ,R) be such that J(0) = 0 and (wCPS) condition
holds in R+.
Moreover, assume that there exist a continuous map ` : X → R,
some constants r0, %0 > 0, and a point e ∈ X such that

(i) `(0) = 0 and `(u) ≥ ‖u‖W for all u ∈ X ;

(ii) u ∈ X , `(u) = r0 =⇒ J(u) ≥ %0;

(iii) ‖e‖W > r0 and J(e) < %0.

Then, J has a Mountain Pass critical point u0 ∈ X such that
J(u0) ≥ %0.
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Condition (H%)

Let (X , ‖ · ‖X ) and (W , ‖ · ‖W ) be two Banach spaces such that
X ↪→W continuously and J ∈ C1(X ,R).

Taking % > 0, we consider the following condition:

(H%) three closed subsets V%, Z% and M% of X and a constant
R% > 0 exist which satisfy the following conditions:

(i) V% and Z% are subspaces of X such that
V% + Z% = X , codimZ% < dimV% < +∞;

(ii) M% = ∂N , where N ⊂ X is a neighborhood of the origin
which is symmetric and bounded with respect to ‖ · ‖W ;

(iii) u ∈M% ∩ Z% =⇒ J(u) ≥ %;
(iv) u ∈ V%, ‖u‖X ≥ R% =⇒ J(u) ≤ 0.

Define
Γ% = {γ : X → X : γ odd homeomorphism,

γ(u) = u if u ∈ V% with ‖u‖X ≥ R%}.
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Generalized Ambrosetti–Rabinowitz Symmetric Mountain
Pass Theorem

Theorem

Let J ∈ C1(X ,R) be an even functional such that

J(0) = 0,

(wCPS) condition holds in R+,

% > 0 exists so that condition (H%) is satisfied.

Then, J possesses at least a pair of symmetric critical points in X
with corresponding critical level β% = inf

γ∈Γ%
sup
u∈V%

J(γ(u)), with

% ≤ β% ≤ %1, where %1 ≥ sup
u∈V%

J(u) > %.

Furthermore, if (H%) holds for all % > 0, then J possesses a
sequence of critical points (un)n ⊂ X such that J(un)↗ +∞.
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Back to the coupled gradient–type quasilinear system

Now, assume that (h1) and (g0)–(g1) hold and consider the
functional related to the coupled quasilinear system

J (u, v) =
1

p1

∫
Ω
A(x , u)|∇u|p1dx +

1

p2

∫
Ω
B(x , v)|∇v |p2dx

−
∫

Ω
G (x , u, v)dx

which is a C1 functional on X = W ∩ L.
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Some hypotheses

Assume that R ≥ 1 exists such that the following conditions hold:

(h2) there exists µ1 > 0 such that

A(x , u) +
1

p1
Au(x , u)u ≥ µ1A(x , u) a.e. in Ω if |u| ≥ R,

B(x , v) +
1

p2
Bv (x , v)v ≥ µ1B(x , v) a.e. in Ω if |v | ≥ R;

(h3) there exist θ1, θ2, µ2 > 0 such that θ1 < 1
p1

, θ2 < 1
p2

,

(1− p1θ1)A(x , u)− θ1Au(x , u)u ≥ µ2A(x , u) a.e. inΩ, ∀ u ∈ R,
(1− p2θ2)B(x , v)− θ2Bv (x , v)v ≥ µ2B(x , v) a.e. inΩ, ∀ v ∈ R;

(g2) 0 < G (x , u, v) ≤ θ1Gu(x , u, v)u + θ2Gv (x , u, v)v a.e. in Ω if
|(u, v)| ≥ R.
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Further hypotheses

(g3) lim sup
(u,v)→0

G (x , u, v)

|u|p1 + |v |p2
< µ0 min

{
λ1,1

p1
,
λ2,1

p2

}
uniformly a.e.

in Ω, with λi ,1 first eigenvalue of −∆pi in W 1,pi
0 (Ω) if

i ∈ {1, 2};

(h4) A(x , ·),B(x , ·) are even in R for a.e. x ∈ Ω;

(g4) lim inf
|(u,v)|→+∞

G (x , u, v)

|u|
1
θ1 + |v |

1
θ2

> 0 uniformly a.e. in Ω;

(g5) G (x , ·, ·) is even in R2 for a.e. x ∈ Ω.
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Subcritical case

Assume that (h1)–(h3), (g0)–(g2) are satisfied.

Theorem (A.M.C., C. Sportelli, A. Salvatore 2021)

Suppose that µ0 > 0 exists such that

A(x , u) ≥ µ0 and B(x , v) ≥ µ0 a.e. in Ω, for all u, v ∈ R;

1 ≤ q1 < p∗1 , 1 ≤ q2 < p∗2 ,

0 ≤ t1 <
p1

N

(
1− 1

p∗1

)
p∗2 , 0 ≤ t2 <

p2

N

(
1− 1

p∗2

)
p∗1 .

Thus,
(g3) =⇒ J possesses at least one nontrivial critical point in X ;
(h4), (g4)–(g5) =⇒ J possesses an unbounded sequence of
critical values in X .
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Supercritical case

Assume that (h1)–(h3), (g0)–(g2) are satisfied.

Theorem (A.M.C., C. Sportelli (submitted))

Suppose that either 1 < p1 ≤ N or 1 < p2 ≤ N, moreover µ0 > 0
and s1 ≥ 0, s2 ≥ 0 exist such that

A(x , u) ≥ µ0 (1 + |u|p1s1) a.e. in Ω, for all u ∈ R,
B(x , v) ≥ µ0 (1 + |v |p2s2) a.e. in Ω, for all v ∈ R;

1 ≤ q1 < p∗1(s1 + 1), 1 ≤ q2 < p∗2(s2 + 1),

0 ≤ ti <
pi
N

(
1− 1

p∗i (si + 1)

)
p∗j (sj + 1) if i 6= j .

Thus,
(g3) =⇒ J possesses at least one nontrivial critical point in X ;
(h4), (g4)–(g5) =⇒ J possesses an unbounded sequence of
critical values in X .
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Other results and open problems

Other results about systems

Ai (x , t, ξ), 1 ≤ i ≤ m, m ≥ 2: A.M.C., C. Sportelli
(Submitted)

Results about equations
Some papers with G. Fragnelli, D. Mugnai, G. Palmieri, K.
Perera, A. Salvatore, C. Sportelli (from 2006 to present) if:

the nonlinear term is p–superlinear but subcritical with or
without the Ambrosetti–Rabinowitz condition, supercritical,
asymptotically p–linear, p–sublinear,

there is a break of symmetry,

the domain is unbounded, in particular RN .

Open problems

Neumann boundary conditions

. . . . . . . . . . . .
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