Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results

Some results for coupled gradient-type quasilinear elliptic systems with supercritical growth

Anna Maria Candela

Dipartimento di Matematica Università degli Studi di Bari Aldo Moro Bari (Italy)

Joint works with Addolorata Salvatore and Caterina Sportelli

8th European Congress of Mathematics (8ECM) MS-ID 13 "Topological Methods in Differential Equations"

June 23, 2021

A.M. Candela

Quasilinear elliptic systems

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
•					

2 Variational setting

3 Abstract setting

4 Main results

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
	●00000				

Let us consider the coupled gradient-type quasilinear elliptic system

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
	●00000				

Let us consider the coupled gradient-type quasilinear elliptic system

$$\begin{cases} -\operatorname{div}(A(x,u)|\nabla u|^{p_1-2}\nabla u) + \frac{1}{p_1}A_u(x,u)|\nabla u|^{p_1} = G_u(x,u,v) & \text{in } \Omega\\ -\operatorname{div}(B(x,v)|\nabla v|^{p_2-2}\nabla v) + \frac{1}{p_2}B_v(x,v)|\nabla v|^{p_2} = G_v(x,u,v) & \text{in } \Omega\\ u = v = 0 & \text{on } \partial\Omega \end{cases}$$

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
	●00000				

Let us consider the coupled gradient-type quasilinear elliptic system

$$\begin{cases} -\operatorname{div}(A(x,u)|\nabla u|^{p_{1}-2}\nabla u) + \frac{1}{p_{1}}A_{u}(x,u)|\nabla u|^{p_{1}} = G_{u}(x,u,v) & \text{in } \Omega\\ -\operatorname{div}(B(x,v)|\nabla v|^{p_{2}-2}\nabla v) + \frac{1}{p_{2}}B_{v}(x,v)|\nabla v|^{p_{2}} = G_{v}(x,u,v) & \text{in } \Omega\\ u = v = 0 & \text{on } \partial\Omega \end{cases}$$

where

• Ω is an open bounded domain in \mathbb{R}^N , $N \geq 2$,

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
	00000				

Let us consider the coupled gradient-type quasilinear elliptic system

$$\begin{cases} -\operatorname{div}(A(x,u)|\nabla u|^{p_{1}-2}\nabla u) + \frac{1}{p_{1}}A_{u}(x,u)|\nabla u|^{p_{1}} = G_{u}(x,u,v) & \text{in } \Omega\\ -\operatorname{div}(B(x,v)|\nabla v|^{p_{2}-2}\nabla v) + \frac{1}{p_{2}}B_{v}(x,v)|\nabla v|^{p_{2}} = G_{v}(x,u,v) & \text{in } \Omega\\ u = v = 0 & \text{on } \partial\Omega \end{cases}$$

- Ω is an open bounded domain in \mathbb{R}^N , $N \ge 2$,
- A, B: Ω × ℝ → ℝ are C¹ Carathéodory functions, with partial derivatives A_u(x, u), respectively B_v(x, v);

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
	00000				

Let us consider the coupled gradient-type quasilinear elliptic system

$$\begin{cases} -\operatorname{div}(A(x,u)|\nabla u|^{p_{1}-2}\nabla u) + \frac{1}{p_{1}}A_{u}(x,u)|\nabla u|^{p_{1}} = G_{u}(x,u,v) & \text{in } \Omega\\ -\operatorname{div}(B(x,v)|\nabla v|^{p_{2}-2}\nabla v) + \frac{1}{p_{2}}B_{v}(x,v)|\nabla v|^{p_{2}} = G_{v}(x,u,v) & \text{in } \Omega\\ u = v = 0 & \text{on } \partial\Omega \end{cases}$$

- Ω is an open bounded domain in \mathbb{R}^N , $N \ge 2$,
- A, B: Ω × ℝ → ℝ are C¹ Carathéodory functions, with partial derivatives A_u(x, u), respectively B_v(x, v);
- p_1 , $p_2 > 1$;

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
	00000				

Let us consider the coupled gradient-type quasilinear elliptic system

$$\begin{cases} -\operatorname{div}(A(x,u)|\nabla u|^{p_1-2}\nabla u) + \frac{1}{p_1}A_u(x,u)|\nabla u|^{p_1} = G_u(x,u,v) & \text{in } \Omega\\ -\operatorname{div}(B(x,v)|\nabla v|^{p_2-2}\nabla v) + \frac{1}{p_2}B_v(x,v)|\nabla v|^{p_2} = G_v(x,u,v) & \text{in } \Omega\\ u = v = 0 & \text{on } \partial\Omega \end{cases}$$

- Ω is an open bounded domain in \mathbb{R}^N , $N \ge 2$,
- A, B: Ω × ℝ → ℝ are C¹ Carathéodory functions, with partial derivatives A_u(x, u), respectively B_v(x, v);
- p_1 , $p_2 > 1$;
- a C^1 Carathéodory function $G : \Omega \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ exists with partial derivatives $G_u(x, u, v)$, $G_v(x, u, v)$.

Outline O	Quasilinear elliptic systems ○●○○○○	Variational setting	Abstract setting	Main results	Other results O
Mada	l systems				

$$\begin{cases} -\Delta_{p_1} \ u = \ G_u(x, u, v) & \text{in } \Omega \\ -\Delta_{p_2} \ v = \ G_v(x, u, v) & \text{in } \Omega \\ u = v = 0 & \text{on } \partial \Omega \end{cases}.$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

E.

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O
Mode	el systems				

$$\begin{cases}
-\Delta_{p_1} u = G_u(x, u, v) & \text{in } \Omega \\
-\Delta_{p_2} v = G_v(x, u, v) & \text{in } \Omega \\
u = v = 0 & \text{on } \partial\Omega
\end{cases}$$

An example of the quasilinear system can be written if

 $A(x, u) = 1 + |u|^{s_1 p_1}, \quad B(x, v) = 1 + |v|^{s_2 p_2},$

with $s_1 \ge 0$, $s_2 \ge 0$.

通 とう ほとう きょう

크

Outline O	Quasilinear elliptic systems ○●○○○○	Variational setting	Abstract setting	Main results	Other results O
Mada	lsystems				

$$\begin{cases} -\Delta_{p_1} u = G_u(x, u, v) & \text{in } \Omega \\ -\Delta_{p_2} v = G_v(x, u, v) & \text{in } \Omega \\ u = v = 0 & \text{on } \partial \Omega \end{cases}.$$

An example of the quasilinear system can be written if

 $A(x, u) = 1 + |u|^{s_1 p_1}, \quad B(x, v) = 1 + |v|^{s_2 p_2},$

with $s_1 \ge 0$, $s_2 \ge 0$. A particular nonlinear term is

$$G(x, u, v) = rac{1}{q_1} |u|^{q_1} + rac{1}{q_2} |v|^{q_2} + c_* |u|^{\gamma_1} |v|^{\gamma_2},$$

with $q_i \geq 0$, $\gamma_i \geq 0$ for each $i \in \{1,2\}$, $c_* \geq 0$.

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O
Mode	al systems				

$$\begin{cases} -\Delta_{p_1} u = G_u(x, u, v) & \text{in } \Omega \\ -\Delta_{p_2} v = G_v(x, u, v) & \text{in } \Omega \\ u = v = 0 & \text{on } \partial \Omega \end{cases}.$$

An example of the quasilinear system can be written if

 $A(x, u) = 1 + |u|^{s_1 p_1}, \quad B(x, v) = 1 + |v|^{s_2 p_2},$

with $s_1 \ge 0$, $s_2 \ge 0$. A particular nonlinear term is

$$G(x, u, v) = \frac{1}{q_1} |u|^{q_1} + \frac{1}{q_2} |v|^{q_2} + c_* |u|^{\gamma_1} |v|^{\gamma_2},$$

with $q_i \ge 0$, $\gamma_i \ge 0$ for each $i \in \{1, 2\}$, $c_* \ge 0$. If $c_* = 0$: uncoupled system.

通 と く ヨ と く ヨ と

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
	000000				

A more general gradient-type quasilinear system is

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
	00000				

A more general gradient-type quasilinear system is

 $\begin{cases} -\operatorname{div}(a_i(x, u_i, \nabla u_i)) + A_{i,t}(x, u_i, \nabla u_i) = G_i(x, \mathbf{u}) & \text{in } \Omega, \ 1 \le i \le m, \\ \mathbf{u} = 0 & \text{on } \partial\Omega, \end{cases}$

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
	000000				

A more general gradient-type quasilinear system is

 $\begin{cases} -\operatorname{div}(a_i(x, u_i, \nabla u_i)) + A_{i,t}(x, u_i, \nabla u_i) = G_i(x, \mathbf{u}) & \text{in } \Omega, \ 1 \leq i \leq m, \\ \mathbf{u} = 0 & \text{on } \partial\Omega, \end{cases}$

with $m \geq 2$ and $\mathbf{u} = (u_1, \ldots, u_m)$, where

• • = • • = •

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
	000000				

A more general gradient-type quasilinear system is

 $\begin{cases} -\operatorname{div}(a_i(x, u_i, \nabla u_i)) + A_{i,t}(x, u_i, \nabla u_i) = G_i(x, \mathbf{u}) & \text{in } \Omega, \ 1 \leq i \leq m, \\ \mathbf{u} = 0 & \text{on } \partial\Omega, \end{cases}$

with $m \ge 2$ and $\mathbf{u} = (u_1, \ldots, u_m)$, where for each $i \in \{1, \ldots, m\}$ a function $A_i : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ exists which "grows" as $|\xi|^{p_i}$ $(p_i > 1)$ w.r.t. its last *N*-dimensional variable ξ and is such that

$$A_{i,t}(x,t,\xi) = \frac{\partial A_i}{\partial t}(x,t,\xi), \ a_i(x,t,\xi) = \left(\frac{\partial A_i}{\partial \xi_1}(x,t,\xi), \dots, \frac{\partial A_i}{\partial \xi_N}(x,t,\xi)\right)$$

ヨマ イヨマ イヨマ

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
	000000				

A more general gradient-type quasilinear system is

 $\begin{cases} -\operatorname{div}(a_i(x, u_i, \nabla u_i)) + A_{i,t}(x, u_i, \nabla u_i) = G_i(x, \mathbf{u}) & \text{in } \Omega, \ 1 \leq i \leq m, \\ \mathbf{u} = 0 & \text{on } \partial\Omega, \end{cases}$

with $m \ge 2$ and $\mathbf{u} = (u_1, \ldots, u_m)$, where for each $i \in \{1, \ldots, m\}$ a function $A_i : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ exists which "grows" as $|\xi|^{p_i} (p_i > 1)$ w.r.t. its last *N*-dimensional variable ξ and is such that

$$A_{i,t}(x,t,\xi) = \frac{\partial A_i}{\partial t}(x,t,\xi), \ a_i(x,t,\xi) = \left(\frac{\partial A_i}{\partial \xi_1}(x,t,\xi), \dots, \frac{\partial A_i}{\partial \xi_N}(x,t,\xi)\right)$$

and $G: \Omega \times \mathbb{R}^m \to \mathbb{R}$ exists such that

$$G_i(x,\mathbf{u}) = rac{\partial G}{\partial u_i}(x,\mathbf{u})$$
 if $1 \le i \le m$.

A.M. Candela Quasilinear elliptic systems

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O
Abou	t an equation				

$$\begin{cases} -\operatorname{div}(A(x,u)|\nabla u|^{p-2}\nabla u) + \frac{1}{p} A_t(x,u)|\nabla u|^p = g(x,u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

requires suitable approaches such as:

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O
Abou	t an equation				

$$\begin{cases} -\operatorname{div}(A(x,u)|\nabla u|^{p-2}\nabla u) + \frac{1}{p} A_t(x,u)|\nabla u|^p = g(x,u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

requires suitable approaches such as:

nonsmooth techniques (A. Canino 1995, B. Pellacci and M. Squassina 2004,...),

Outline 0	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O
Abou	t an equation				

$$\begin{cases} -\operatorname{div}(A(x,u)|\nabla u|^{p-2}\nabla u) + \frac{1}{p} A_t(x,u)|\nabla u|^p = g(x,u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

requires suitable approaches such as:

- nonsmooth techniques (A. Canino 1995, B. Pellacci and M. Squassina 2004,...),
- null Gâteaux derivative only along "good" directions (D.
 Arcoya and L. Boccardo 1996, D. Arcoya and L. Boccardo 1999, D. Arcoya, L. Boccardo and L. Orsina 2001,...)

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O
Abou	t an equation				

$$\begin{cases} -\operatorname{div}(A(x,u)|\nabla u|^{p-2}\nabla u) + \frac{1}{p} A_t(x,u)|\nabla u|^p = g(x,u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

requires suitable approaches such as:

- nonsmooth techniques (A. Canino 1995, B. Pellacci and M. Squassina 2004,...),
- null Gâteaux derivative only along "good" directions (D.
 Arcoya and L. Boccardo 1996, D. Arcoya and L. Boccardo 1999, D. Arcoya, L. Boccardo and L. Orsina 2001,...)
- a suitable variational setting (A.M.C. and G. Palmieri 2006,...)

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O
Why	coupled system	s?			

Classical (p_1, p_2) -Laplacian systems, or their generalizations, allow one to model various physical phenomena,

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O
Why	coupled system	s?			

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O
Why	coupled system	s?			

• a pseudoplastic fluid if $p_i < 2$,

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O
Why	coupled system	s?			

- a pseudoplastic fluid if $p_i < 2$,
- a dilatant fluid if $p_i > 2$,

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O
Why	coupled system	s?			

- a pseudoplastic fluid if $p_i < 2$,
- a dilatant fluid if $p_i > 2$,
- a Newtonian fluid if $p_i = 2$.

	Quasilinear elliptic systems ⊃0000●	Variational setting	Abstract setting	Main results	Other results O
Duration	is results				

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O
Previ	ous results				

- J. Vélin and F. de Thélin 1993,
- C.O. Alves, D.C. de Morais Filho and M.A. Souto 2000,
- L. Boccardo and D.G. de Figueiredo 2002,
- P. Drábek, M.N. Stavrakakis and N.B. Zographopoulos 2003,...

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O
Previ	ous results				

- J. Vélin and F. de Thélin 1993,
- C.O. Alves, D.C. de Morais Filho and M.A. Souto 2000,
- L. Boccardo and D.G. de Figueiredo 2002,
- P. Drábek, M.N. Stavrakakis and N.B. Zographopoulos 2003,...

Some existence results are known also for quasilinear systems:

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O
Previ	ous results				

- J. Vélin and F. de Thélin 1993,
- C.O. Alves, D.C. de Morais Filho and M.A. Souto 2000,
- L. Boccardo and D.G. de Figueiredo 2002,
- P. Drábek, M.N. Stavrakakis and N.B. Zographopoulos 2003,...

Some existence results are known also for quasilinear systems:

- via nonsmooth techniques (G. Arioli and F. Gazzola 2000,
 - M. Squassina 2006)

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O
Previ	ous results				

- J. Vélin and F. de Thélin 1993,
- C.O. Alves, D.C. de Morais Filho and M.A. Souto 2000,
- L. Boccardo and D.G. de Figueiredo 2002,
- P. Drábek, M.N. Stavrakakis and N.B. Zographopoulos 2003,...

Some existence results are known also for quasilinear systems:

- via nonsmooth techniques (G. Arioli and F. Gazzola 2000, M. Squassina 2006)
- by means of an approximation approach (A. Bensoussan and
 - L. Boccardo 2002)

同 とう モン うけい

Outline O	Quasilinear elliptic systems ○○○○○●	Variational setting	Abstract setting	Main results	Other results O
Previo	ous results				

- J. Vélin and F. de Thélin 1993,
- C.O. Alves, D.C. de Morais Filho and M.A. Souto 2000,
- L. Boccardo and D.G. de Figueiredo 2002,
- P. Drábek, M.N. Stavrakakis and N.B. Zographopoulos 2003,...

Some existence results are known also for quasilinear systems:

- via nonsmooth techniques (G. Arioli and F. Gazzola 2000, M. Squassina 2006)
- \bullet by means of an approximation approach (A. Bensoussan and
 - L. Boccardo 2002)
- by using a cohomological local splitting (A.M.C., E. Medeiros, G. Palmieri and K. Perera 2010)

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
		00000			

First hypotheses on A(x, u), B(x, u), G(x, u, v)

Assume that not only A(x, u), B(x, u), G(x, u, v) are C^1 Carathéodory functions but also:

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main result
		00000		

First hypotheses on A(x, u), B(x, u), G(x, u, v)

Assume that not only A(x, u), B(x, u), G(x, u, v) are C^1 Carathéodory functions but also: (h_1) for any $\rho > 0$ we have that $\sup_{|u| \le \rho} |A(\cdot, u)| \in L^{\infty}(\Omega), \quad \sup_{|v| \le \rho} |B(\cdot, v)| \in L^{\infty}(\Omega),$ $\sup_{|u| \le \rho} |A_u(\cdot, u)| \in L^{\infty}(\Omega), \quad \sup_{|v| \le \rho} |B_v(\cdot, v)| \in L^{\infty}(\Omega);$

Other results

ts

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results
		00000		

Other results

First hypotheses on A(x, u), B(x, u), G(x, u, v)

Assume that not only A(x, u), B(x, u), G(x, u, v) are C^1 Carathéodory functions but also: (h_1) for any $\rho > 0$ we have that $\sup_{\substack{|u| \le \rho}} |A(\cdot, u)| \in L^{\infty}(\Omega), \quad \sup_{\substack{|v| \le \rho}} |B(\cdot, v)| \in L^{\infty}(\Omega),$ $\sup_{\substack{|u| \le \rho}} |A_u(\cdot, u)| \in L^{\infty}(\Omega), \quad \sup_{\substack{|v| \le \rho}} |B_v(\cdot, v)| \in L^{\infty}(\Omega);$ (g_0) $G(\cdot, 0, 0) \in L^{\infty}(\Omega),$ $G_u(x, 0, 0) = G_v(x, 0, 0) = 0$ for a.e. $x \in \Omega;$

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results
		00000		

First hypotheses on A(x, u), B(x, u), G(x, u, v)

Assume that not only A(x, u), B(x, u), G(x, u, v) are C^1 Carathéodory functions but also: (h_1) for any $\rho > 0$ we have that

$$\begin{split} \sup_{\substack{|u| \leq \rho}} & |A(\cdot, u)| \in L^{\infty}\left(\Omega\right), \quad \sup_{\substack{|v| \leq \rho}} & |B(\cdot, v)| \in L^{\infty}\left(\Omega\right), \\ \sup_{|u| \leq \rho} & |A_u(\cdot, u)| \in L^{\infty}\left(\Omega\right), \quad \sup_{|v| \leq \rho} & |B_v(\cdot, v)| \in L^{\infty}\left(\Omega\right); \end{split}$$

Other results

 $\begin{array}{l} (g_0) \ \ G(\cdot,0,0) \in L^{\infty}(\Omega), \\ G_u(x,0,0) = G_v(x,0,0) = 0 \ \text{for a.e.} \ x \in \Omega; \\ (g_1) \ \text{a constant} \ \sigma > 0 \ \text{and some exponents} \ q_i \geq 1, \ t_i \geq 0, \ \text{if} \\ i \in \{1,2\}, \ \text{exist such that} \\ |G_u(x,u,v)| \leq \sigma(1+|u|^{q_1-1}+|v|^{t_1}) \ \text{for a.e.} \ x \in \Omega, \ \forall (u,v) \in \mathbb{R}^2, \\ |G_v(x,u,v)| \leq \sigma(1+|u|^{t_2}+|v|^{q_2-1}) \ \text{for a.e.} \ x \in \Omega, \ \forall (u,v) \in \mathbb{R}^2. \end{array}$

Outline O	Quasilinear elliptic systems	Variational setting ○●○○○	Abstract setting	Main results	Other results O
Exist	ence domain				

▲ 同 ▶ ▲ 臣

- < ≣ →

臣

Outline O	Quasilinear elliptic systems	Variational setting ○●○○○	Abstract setting	Main results	Other results O

Existence domain

The functional related to the coupled quasilinear system is

$$\mathcal{J}(u,v) = \frac{1}{p_1} \int_{\Omega} A(x,u) |\nabla u|^{p_1} dx + \frac{1}{p_2} \int_{\Omega} B(x,v) |\nabla v|^{p_2} dx$$
$$- \int_{\Omega} G(x,u,v) dx.$$

・日・ ・ ヨ・ ・ ヨ・

臣

Outline O	Quasilinear elliptic systems	Variational setting ○●○○○	Abstract setting	Main results	Other results O
Exist	ence domain				

$$\mathcal{J}(u,v) = \frac{1}{p_1} \int_{\Omega} A(x,u) |\nabla u|^{p_1} dx + \frac{1}{p_2} \int_{\Omega} B(x,v) |\nabla v|^{p_2} dx$$
$$- \int_{\Omega} G(x,u,v) dx.$$

 (h_1) , (g_0) – $(g_1) \implies \mathcal{J}$ is well defined in the Banach space

 $X = X_1 \times X_2 = W \cap L$, $||(u, v)||_X = ||(u, v)||_W + ||(u, v)||_L$,

where

回 とくほとくほとう ほう

Outline O	Quasilinear elliptic systems	Variational setting ○●○○○	Abstract setting	Main results	Other results O
Exist	ence domain				

$$\mathcal{J}(u,v) = \frac{1}{p_1} \int_{\Omega} A(x,u) |\nabla u|^{p_1} dx + \frac{1}{p_2} \int_{\Omega} B(x,v) |\nabla v|^{p_2} dx$$
$$- \int_{\Omega} G(x,u,v) dx.$$

(h_1), (g_0)–(g_1) \implies \mathcal{J} is well defined in the Banach space

 $X = X_1 \times X_2 = W \cap L,$ $||(u, v)||_X = ||(u, v)||_W + ||(u, v)||_L,$

where

•
$$X_i = W_0^{1,p_i}(\Omega) \cap L^{\infty}(\Omega)$$
, for $i = 1, 2,$

回 とくほとくほとう ほう

Outline O	Quasilinear elliptic systems	Variational setting ○●○○○	Abstract setting	Main results	Other results O
Existe	ence domain				

$$\mathcal{J}(u,v) = \frac{1}{p_1} \int_{\Omega} A(x,u) |\nabla u|^{p_1} dx + \frac{1}{p_2} \int_{\Omega} B(x,v) |\nabla v|^{p_2} dx$$
$$- \int_{\Omega} G(x,u,v) dx.$$

 $(h_1), (g_0)–(g_1) \implies \mathcal{J}$ is well defined in the Banach space

 $X = X_1 \times X_2 = W \cap L,$ $||(u, v)||_X = ||(u, v)||_W + ||(u, v)||_L,$

where

•
$$X_i = W_0^{1,p_i}(\Omega) \cap L^{\infty}(\Omega)$$
, for $i = 1, 2$,

• $W = W_0^{1,p_1}(\Omega) \times W_0^{1,p_2}(\Omega), \ ||(u,v)||_W = |\nabla u|_{p_1} + |\nabla v|_{p_2},$

周 医 金属 医金属 医白白素

Outline O	Quasilinear elliptic systems	Variational setting ○●○○○	Abstract setting	Main results	Other results O
Eviate	ance domain				

$$\mathcal{J}(u,v) = \frac{1}{p_1} \int_{\Omega} A(x,u) |\nabla u|^{p_1} dx + \frac{1}{p_2} \int_{\Omega} B(x,v) |\nabla v|^{p_2} dx$$
$$- \int_{\Omega} G(x,u,v) dx.$$

(h_1), (g_0)–(g_1) \implies \mathcal{J} is well defined in the Banach space

 $X = X_1 \times X_2 = W \cap L,$ $||(u, v)||_X = ||(u, v)||_W + ||(u, v)||_L,$

where

LUOIIIAIII

•
$$X_i = W_0^{1,p_i}(\Omega) \cap L^{\infty}(\Omega)$$
, for $i = 1, 2$,

• $W = W_0^{1,p_1}(\Omega) \times W_0^{1,p_2}(\Omega), ||(u,v)||_W = |\nabla u|_{p_1} + |\nabla v|_{p_2},$

• $L = L^{\infty}(\Omega) \times L^{\infty}(\Omega)$, $||(u,v)||_L = |u|_{\infty} + |v|_{\infty}$.

Outline O	Quasilinear elliptic systems	Variational setting 00●00	Abstract setting	Main results	Other results O
Gâtea	aux derivative				

Taking any (u, v), $(w, z) \in X$, the Gâteaux derivative of \mathcal{J} in (u, v) along the direction (w, z) is given by

Outline O	Quasilinear elliptic systems	Variational setting ००●००	Abstract setting	Main results	Other results O

Gâteaux derivative

Taking any (u, v), $(w, z) \in X$, the Gâteaux derivative of \mathcal{J} in (u, v) along the direction (w, z) is given by

$$d\mathcal{J}(u,v)[(w,z)] = \int_{\Omega} A(x,u) |\nabla u|^{p_1-2} \nabla u \cdot \nabla w \, dx$$

+ $\frac{1}{p_1} \int_{\Omega} A_u(x,u) w |\nabla u|^{p_1} dx + \int_{\Omega} B(x,v) |\nabla v|^{p_2-2} \nabla v \cdot \nabla z \, dx$
+ $\frac{1}{p_2} \int_{\Omega} B_v(x,v) z |\nabla v|^{p_2} dx - \int_{\Omega} G_u(x,u,v) w \, dx - \int_{\Omega} G_v(x,u,v) z \, dx.$

Outline O	Quasilinear elliptic systems	Variational setting 00●00	Abstract setting	Main results	Other results O

Gâteaux derivative

Taking any (u, v), $(w, z) \in X$, the Gâteaux derivative of \mathcal{J} in (u, v) along the direction (w, z) is given by

$$d\mathcal{J}(u,v)[(w,z)] = \int_{\Omega} A(x,u) |\nabla u|^{p_1-2} \nabla u \cdot \nabla w \, dx$$

+ $\frac{1}{p_1} \int_{\Omega} A_u(x,u) w |\nabla u|^{p_1} dx + \int_{\Omega} B(x,v) |\nabla v|^{p_2-2} \nabla v \cdot \nabla z \, dx$
+ $\frac{1}{p_2} \int_{\Omega} B_v(x,v) z |\nabla v|^{p_2} dx - \int_{\Omega} G_u(x,u,v) w \, dx - \int_{\Omega} G_v(x,u,v) z \, dx.$

For simplicity, we put

$$\frac{\partial \mathcal{J}}{\partial u}(u,v): w \in X_1 \mapsto \frac{\partial \mathcal{J}}{\partial u}(u,v)[w] = d\mathcal{J}(u,v)[(w,0)] \in \mathbb{R}, \\ \frac{\partial \mathcal{J}}{\partial v}(u,v): z \in X_2 \mapsto \frac{\partial \mathcal{J}}{\partial v}(u,v)[z] = d\mathcal{J}(u,v)[(0,z)] \in \mathbb{R}.$$

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
		00000			

Regularity theorem and variational principle

Assume that (h_1) and $(g_0)-(g_1)$ hold.

> < 물 > < 물 >

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
		00000			

Regularity theorem and variational principle

Assume that (h_1) and $(g_0)-(g_1)$ hold.

Proposition (A.M.C., A. Salvatore, C. Sportelli 2021)

Let $((u_n, v_n))_n \subset X$, $(u, v) \in X$ and M > 0 be such that:

 $(u_n, v_n) \rightarrow (u, v) \text{ in } W \text{ and } (u_n, v_n) \rightarrow (u, v) \text{ a.e. in } \Omega,$ $|u_n|_{\infty} \leq M \text{ and } |v_n|_{\infty} \leq M \text{ for all } n \in \mathbb{N}.$

Then,

 $\mathcal{J}(u_n, v_n) \to \mathcal{J}(u, v)$ and $\|d\mathcal{J}(u_n, v_n) - d\mathcal{J}(u, v)\|_{X'} \to 0.$ Hence, \mathcal{J} is a \mathcal{C}^1 functional on X.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
		00000			

Regularity theorem and variational principle

Assume that (h_1) and $(g_0)-(g_1)$ hold.

Proposition (A.M.C., A. Salvatore, C. Sportelli 2021)

Let $((u_n, v_n))_n \subset X$, $(u, v) \in X$ and M > 0 be such that:

 $(u_n, v_n) \rightarrow (u, v) \text{ in } W \text{ and } (u_n, v_n) \rightarrow (u, v) \text{ a.e. in } \Omega,$ $|u_n|_{\infty} \leq M \text{ and } |v_n|_{\infty} \leq M \text{ for all } n \in \mathbb{N}.$

Then,

 $\mathcal{J}(u_n, v_n) \to \mathcal{J}(u, v) \quad \text{ and } \quad \|d\mathcal{J}(u_n, v_n) - d\mathcal{J}(u, v)\|_{X'} \to 0.$

Hence, \mathcal{J} is a \mathcal{C}^1 functional on X.

 $(u, v) \in X$ is a weak bounded solution of the coupled system $\iff d\mathcal{J}(u, v) = 0.$

Outline O	Quasilinear elliptic systems	Variational setting 0000●	Abstract setting	Main results	Other results O
The	Palais–Smale pr	oblem			

Both $p_1 > N$ and $p_2 > N \implies W_0^{1,p_i}(\Omega) \hookrightarrow L^{\infty}(\Omega)$ for both i = 1 and $i = 2 \implies X = W$.

(4回) (日) (日) (日) (日)

Outline O	Quasilinear elliptic systems	Variational setting 0000●	Abstract setting	Main results	Other results O
The	Palais–Smale pr	oblem			

Both $p_1 > N$ and $p_2 > N \implies W_0^{1,p_i}(\Omega) \hookrightarrow L^{\infty}(\Omega)$ for both i = 1 and $i = 2 \implies X = W$.

Then, the classical Ambrosetti–Rabinowitz Mountain Pass Theorems may be applied.

伺 ト イヨト イヨト

Outline O	Quasilinear elliptic systems	Variational setting 0000●	Abstract setting	Main results	Other results O
The	Palais–Smale pr	oblem			

Both $p_1 > N$ and $p_2 > N \implies W_0^{1,p_i}(\Omega) \hookrightarrow L^{\infty}(\Omega)$ for both i = 1 and $i = 2 \implies X = W$.

Then, the classical Ambrosetti–Rabinowitz Mountain Pass Theorems may be applied.

Assume that either $1 < p_1 \leq N$ or $1 < p_2 \leq N$.

A > < > > < > > -

Outline O	Quasilinear elliptic systems	Variational setting 0000●	Abstract setting	Main results	Other results O
Thal	Dalais Smala pr	oblom			

The Palais–Smale problem

Both $p_1 > N$ and $p_2 > N \implies W_0^{1,p_i}(\Omega) \hookrightarrow L^{\infty}(\Omega)$ for both i = 1 and $i = 2 \implies X = W$.

Then, the classical Ambrosetti–Rabinowitz Mountain Pass Theorems may be applied.

Assume that either $1 < p_1 \le N$ or $1 < p_2 \le N$. As \mathcal{J} is \mathcal{C}^1 in $X \ne W$, then the classical Palais–Smale condition, or its Cerami's variant, require the convergence of the Palais–Smale sequences not only in $\|(\cdot, \cdot)\|_W$ but also in $\|(\cdot, \cdot)\|_L$.

Outline O	Quasilinear elliptic systems	Variational setting 0000●	Abstract setting	Main results	Other results O
The	Dolois Smolo nr	oblom			

The Palais–Smale problem

Both $p_1 > N$ and $p_2 > N \implies W_0^{1,p_i}(\Omega) \hookrightarrow L^{\infty}(\Omega)$ for both i = 1 and $i = 2 \implies X = W$.

Then, the classical Ambrosetti–Rabinowitz Mountain Pass Theorems may be applied.

Assume that either $1 < p_1 \le N$ or $1 < p_2 \le N$. As \mathcal{J} is \mathcal{C}^1 in $X \ne W$, then the classical Palais–Smale condition, or its Cerami's variant, require the convergence of the Palais–Smale sequences not only in $\|(\cdot, \cdot)\|_W$ but also in $\|(\cdot, \cdot)\|_L$. In general, Palais–Smale sequences may converge in $\|(\cdot, \cdot)\|_W$ but not in $\|(\cdot, \cdot)\|_L$ (counterexamples exist).

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
			00000		

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously and $J \in \mathcal{C}^1(X, \mathbb{R})$.

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
			●0000		

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously and $J \in \mathcal{C}^1(X, \mathbb{R})$. Taking $\beta \in \mathbb{R}$, a sequence $(u_n)_n \subset X$ is a $(CPS)_\beta$ -sequence, if

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting ●0000	Main results	Other results O

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously and $J \in C^1(X, \mathbb{R})$. Taking $\beta \in \mathbb{R}$, a sequence $(u_n)_n \subset X$ is a $(CPS)_{\beta}$ -sequence, if $\lim_{n \to +\infty} J(u_n) = \beta$ and

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously and $J \in C^1(X, \mathbb{R})$. Taking $\beta \in \mathbb{R}$, a sequence $(u_n)_n \subset X$ is a $(CPS)_\beta$ -sequence, if $\lim_{n \to +\infty} J(u_n) = \beta$ and $\lim_{n \to +\infty} \|dJ(u_n)\|_{X'}(1 + \|u_n\|_X) = 0$.

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously and $J \in C^1(X, \mathbb{R})$. Taking $\beta \in \mathbb{R}$, a sequence $(u_n)_n \subset X$ is a $(CPS)_\beta$ -sequence, if $\lim_{n \to +\infty} J(u_n) = \beta$ and $\lim_{n \to +\infty} \|dJ(u_n)\|_{X'}(1 + \|u_n\|_X) = 0$.

Definition

The functional \mathcal{J} satisfies a *weak version of the Cerami's variant* of *Palais–Smale condition at level* β ($\beta \in \mathbb{R}$), briefly (*wCPS*)_{β} condition, if for any (*CPS*)_{β}–sequence (u_n)_n a point $u \in X$ exists such that

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
			00000		

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously and $J \in C^1(X, \mathbb{R})$. Taking $\beta \in \mathbb{R}$, a sequence $(u_n)_n \subset X$ is a $(CPS)_\beta$ -sequence, if $\lim_{n \to +\infty} J(u_n) = \beta$ and $\lim_{n \to +\infty} \|dJ(u_n)\|_{X'}(1 + \|u_n\|_X) = 0$.

Definition

The functional \mathcal{J} satisfies a *weak version of the Cerami's variant* of *Palais–Smale condition at level* β ($\beta \in \mathbb{R}$), briefly (*wCPS*)_{β} condition, if for any (*CPS*)_{β}–sequence (u_n)_n a point $u \in X$ exists such that

(i)
$$\lim_{n \to +\infty} ||u_n - u||_W = 0$$
 (up to subsequences),

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously and $J \in C^1(X, \mathbb{R})$. Taking $\beta \in \mathbb{R}$, a sequence $(u_n)_n \subset X$ is a $(CPS)_\beta$ -sequence, if $\lim_{n \to +\infty} J(u_n) = \beta$ and $\lim_{n \to +\infty} \|dJ(u_n)\|_{X'}(1 + \|u_n\|_X) = 0$.

Definition

The functional \mathcal{J} satisfies a *weak version of the Cerami's variant* of *Palais–Smale condition at level* β ($\beta \in \mathbb{R}$), briefly (*wCPS*)_{β} condition, if for any (*CPS*)_{β}-sequence (u_n)_n a point $u \in X$ exists such that

(i)
$$\lim_{n \to +\infty} ||u_n - u||_W = 0$$
 (up to subsequences),
(ii) $J(u) = \beta$, $dJ(u) = 0$.

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
			00000		

Lemma (C-Palmieri 2009)

Let $J \in C^1(X, \mathbb{R})$ and consider $\beta \in \mathbb{R}$ such that

(日)、<回)、<三)、</p>

문 > 문

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
			00000		

Lemma (C-Palmieri 2009)

Let $J \in C^1(X, \mathbb{R})$ and consider $\beta \in \mathbb{R}$ such that

• J satisfies the $(wCPS)_{\beta}$ condition,

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
			00000		

Lemma (C-Palmieri 2009)

Let $J \in C^1(X, \mathbb{R})$ and consider $\beta \in \mathbb{R}$ such that

- J satisfies the $(wCPS)_{\beta}$ condition,
- $dJ(u) \neq 0$ if $u \in X$, $J(u) = \beta$.

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
			00000		

Lemma (C-Palmieri 2009)

Let $J \in C^1(X, \mathbb{R})$ and consider $\beta \in \mathbb{R}$ such that

- J satisfies the $(wCPS)_{\beta}$ condition,
- $dJ(u) \neq 0$ if $u \in X$, $J(u) = \beta$.

Then, fixing any $\overline{\varepsilon} > 0$, there exist a constant $\varepsilon > 0$ and a homeomorphism $\psi : X \to X$ such that $2\varepsilon < \overline{\varepsilon}$ and

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
			00000		

Lemma (C-Palmieri 2009)

Let $J \in C^1(X, \mathbb{R})$ and consider $\beta \in \mathbb{R}$ such that

- J satisfies the $(wCPS)_{\beta}$ condition,
- $dJ(u) \neq 0$ if $u \in X$, $J(u) = \beta$.

Then, fixing any $\bar{\varepsilon} > 0$, there exist a constant $\varepsilon > 0$ and a homeomorphism $\psi : X \to X$ such that $2\varepsilon < \bar{\varepsilon}$ and

(i) $\psi(u) = u$ if $J(u) \leq \beta - \overline{\varepsilon}$ or $J(u) \geq \beta + \overline{\varepsilon}$,

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
			00000		

Lemma (C-Palmieri 2009)

Let $J \in C^1(X, \mathbb{R})$ and consider $\beta \in \mathbb{R}$ such that

- J satisfies the $(wCPS)_{\beta}$ condition,
- $dJ(u) \neq 0$ if $u \in X$, $J(u) = \beta$.

Then, fixing any $\overline{\varepsilon} > 0$, there exist a constant $\varepsilon > 0$ and a homeomorphism $\psi : X \to X$ such that $2\varepsilon < \overline{\varepsilon}$ and

(i) $\psi(u) = u$ if $J(u) \le \beta - \overline{\varepsilon}$ or $J(u) \ge \beta + \overline{\varepsilon}$, (ii) $\psi(J^{\beta+\varepsilon}) \subset J^{\beta-\varepsilon}$.

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
			00000		

Lemma (C-Palmieri 2009)

Let $J \in C^1(X, \mathbb{R})$ and consider $\beta \in \mathbb{R}$ such that

- J satisfies the $(wCPS)_{\beta}$ condition,
- $dJ(u) \neq 0$ if $u \in X$, $J(u) = \beta$.

Then, fixing any $\overline{\varepsilon} > 0$, there exist a constant $\varepsilon > 0$ and a homeomorphism $\psi : X \to X$ such that $2\varepsilon < \overline{\varepsilon}$ and

(i) $\psi(u) = u$ if $J(u) \le \beta - \overline{\varepsilon}$ or $J(u) \ge \beta + \overline{\varepsilon}$, (ii) $\psi(J^{\beta+\varepsilon}) \subset J^{\beta-\varepsilon}$.

Moreover, if J is even then ψ can be chosen odd.

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting ○○●○○	Main results	Other results O
Gene Theo	ralized Ambrose rem	etti–Rabinov	vitz Mount	ain Pass	

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously.

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O
Gene	ralized Ambrose	tti-Rahinov	vitz Mount	ain Pass	

Theorem

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously.

Theorem

Let $J \in C^1(X, \mathbb{R})$ be such that J(0) = 0 and (wCPS) condition holds in \mathbb{R}_+ .

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O

Generalized Ambrosetti–Rabinowitz Mountain Pass Theorem

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously.

Theorem

Let $J \in C^1(X, \mathbb{R})$ be such that J(0) = 0 and (wCPS) condition holds in \mathbb{R}_+ .

Moreover, assume that there exist a continuous map $\ell : X \to \mathbb{R}$, some constants r_0 , $\varrho_0 > 0$, and a point $e \in X$ such that

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
			00000		

Generalized Ambrosetti–Rabinowitz Mountain Pass Theorem

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously.

Theorem

Let $J \in C^1(X, \mathbb{R})$ be such that J(0) = 0 and (wCPS) condition holds in \mathbb{R}_+ .

Moreover, assume that there exist a continuous map $\ell : X \to \mathbb{R}$, some constants r_0 , $\varrho_0 > 0$, and a point $e \in X$ such that

(i) $\ell(0) = 0$ and $\ell(u) \ge ||u||_W$ for all $u \in X$;

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
			00000		

Generalized Ambrosetti–Rabinowitz Mountain Pass Theorem

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously.

Theorem

Let $J \in C^1(X, \mathbb{R})$ be such that J(0) = 0 and (wCPS) condition holds in \mathbb{R}_+ .

Moreover, assume that there exist a continuous map $\ell : X \to \mathbb{R}$, some constants r_0 , $\varrho_0 > 0$, and a point $e \in X$ such that

(i) $\ell(0) = 0$ and $\ell(u) \ge ||u||_W$ for all $u \in X$; (ii) $u \in X$, $\ell(u) = r_0 \implies J(u) \ge \varrho_0$;

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
			00000		

Generalized Ambrosetti–Rabinowitz Mountain Pass Theorem

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously.

Theorem

Let $J \in C^1(X, \mathbb{R})$ be such that J(0) = 0 and (wCPS) condition holds in \mathbb{R}_+ .

Moreover, assume that there exist a continuous map $\ell : X \to \mathbb{R}$, some constants r_0 , $\varrho_0 > 0$, and a point $e \in X$ such that

(i) $\ell(0) = 0$ and $\ell(u) \ge ||u||_W$ for all $u \in X$; (ii) $u \in X$, $\ell(u) = r_0 \implies J(u) \ge \varrho_0$; (iii) $||e||_W > r_0$ and $J(e) < \varrho_0$.

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O
Gene	ralized Ambrose	tti-Rahinov	vitz Mount	ain Pass	

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously.

Theorem

Let $J \in C^1(X, \mathbb{R})$ be such that J(0) = 0 and (wCPS) condition holds in \mathbb{R}_+ .

Moreover, assume that there exist a continuous map $\ell : X \to \mathbb{R}$, some constants r_0 , $\varrho_0 > 0$, and a point $e \in X$ such that

(i) $\ell(0) = 0$ and $\ell(u) \ge ||u||_W$ for all $u \in X$; (ii) $u \in X$, $\ell(u) = r_0 \implies J(u) \ge \varrho_0$; (iii) $||e||_W > r_0$ and $J(e) < \varrho_0$. Then, J has a Mountain Pass critical point $u_0 \in X$ such that $J(u_0) \ge \varrho_0$.

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results O
Cond	lition (\mathcal{H}_{arrho})				

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously and $J \in \mathcal{C}^1(X, \mathbb{R})$.

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting ○○○●○	Main results	Other results O
Cond	ition (\mathcal{H}_{arrho})				

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously and $J \in \mathcal{C}^1(X, \mathbb{R})$. Taking $\rho > 0$, we consider the following condition:

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting 000●0	Main results	Other results O
Cond	ition (\mathcal{H}_{arrho})				

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously and $J \in \mathcal{C}^1(X, \mathbb{R})$. Taking $\varrho > 0$, we consider the following condition:

 (\mathcal{H}_{ϱ}) three closed subsets V_{ϱ} , Z_{ϱ} and \mathcal{M}_{ϱ} of X and a constant $R_{\varrho} > 0$ exist which satisfy the following conditions:

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting 000●0	Main results	Other results O
Cond	ition (\mathcal{H}_{ϱ})				

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously and $J \in C^1(X, \mathbb{R})$. Taking $\varrho > 0$, we consider the following condition: (\mathcal{H}_{ϱ}) three closed subsets V_{ϱ} , Z_{ϱ} and \mathcal{M}_{ϱ} of X and a constant $R_{\varrho} > 0$ exist which satisfy the following conditions: (i) V_{ϱ} and Z_{ϱ} are subspaces of X such that $V_{\varrho} + Z_{\varrho} = X$, codim $Z_{\varrho} < \dim V_{\varrho} < +\infty$;

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting 000●0	Main results	Other results O
Cond	ition (\mathcal{H}_{arrho})				

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously and $J \in C^1(X, \mathbb{R})$. Taking $\varrho > 0$, we consider the following condition: (\mathcal{H}_{ϱ}) three closed subsets V_{ϱ} , Z_{ϱ} and \mathcal{M}_{ϱ} of X and a constant $R_{\varrho} > 0$ exist which satisfy the following conditions: (i) V_{ϱ} and Z_{ϱ} are subspaces of X such that $V_{\varrho} + Z_{\varrho} = X$, $\operatorname{codim} Z_{\varrho} < \dim V_{\varrho} < +\infty$; (ii) $\mathcal{M}_{\varrho} = \partial \mathcal{N}$, where $\mathcal{N} \subset X$ is a neighborhood of the origin which is symmetric and bounded with respect to $\|\cdot\|_W$;

向 ト イヨ ト イヨト

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting 000●0	Main results	Other results O
Cond	ition (\mathcal{H}_{ϱ})				

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously and $J \in C^1(X, \mathbb{R})$. Taking $\varrho > 0$, we consider the following condition: (\mathcal{H}_{ϱ}) three closed subsets V_{ϱ} , Z_{ϱ} and \mathcal{M}_{ϱ} of X and a constant $R_{\varrho} > 0$ exist which satisfy the following conditions: (i) V_{ϱ} and Z_{ϱ} are subspaces of X such that $V_{\varrho} + Z_{\varrho} = X$, codim $Z_{\varrho} < \dim V_{\varrho} < +\infty$; (ii) $\mathcal{M}_{\varrho} = \partial \mathcal{N}$, where $\mathcal{N} \subset X$ is a neighborhood of the origin which is symmetric and bounded with respect to $\|\cdot\|_W$; (iii) $u \in \mathcal{M}_{\varrho} \cap Z_{\varrho} \implies J(u) \ge \varrho$;

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting 000●0	Main results	Other results O
Cond	ition (\mathcal{H}_{ϱ})				

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously and $J \in \mathcal{C}^1(X, \mathbb{R})$. Taking $\rho > 0$, we consider the following condition: (\mathcal{H}_{ρ}) three closed subsets V_{ρ} , Z_{ρ} and \mathcal{M}_{ρ} of X and a constant $R_o > 0$ exist which satisfy the following conditions: (i) V_{ρ} and Z_{ρ} are subspaces of X such that $V_{\rho} + Z_{\rho} = X$, codim $Z_{\rho} < \dim V_{\rho} < +\infty$; (*ii*) $\mathcal{M}_{o} = \partial \mathcal{N}$, where $\mathcal{N} \subset X$ is a neighborhood of the origin which is symmetric and bounded with respect to $\|\cdot\|_W$; (iii) $u \in \mathcal{M}_{\varrho} \cap Z_{\varrho} \implies J(u) \geq \varrho;$ (iv) $u \in V_a$, $||u||_X > R_a \implies J(u) < 0$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting 000●0	Main results	Other results O
Cond	lition (\mathcal{H}_{ϱ})				

Let $(X, \|\cdot\|_X)$ and $(W, \|\cdot\|_W)$ be two Banach spaces such that $X \hookrightarrow W$ continuously and $J \in \mathcal{C}^1(X, \mathbb{R})$. Taking $\rho > 0$, we consider the following condition: (\mathcal{H}_{ρ}) three closed subsets V_{ρ} , Z_{ρ} and \mathcal{M}_{ρ} of X and a constant $R_o > 0$ exist which satisfy the following conditions: (i) V_{ρ} and Z_{ρ} are subspaces of X such that $V_{\rho} + Z_{\rho} = X$, codim $Z_{\rho} < \dim V_{\rho} < +\infty$; (*ii*) $\mathcal{M}_{o} = \partial \mathcal{N}$, where $\mathcal{N} \subset X$ is a neighborhood of the origin which is symmetric and bounded with respect to $\|\cdot\|_W$; (iii) $u \in \mathcal{M}_{\rho} \cap Z_{\rho} \implies J(u) > \rho;$ (iv) $u \in V_a$, $||u||_X > R_a \implies J(u) < 0$. Define

 $\begin{array}{rcl} \mathsf{\Gamma}_{\varrho} &=& \{\gamma: X \to X: \ \gamma \text{ odd homeomorphism,} \\ & \gamma(u) = u \text{ if } u \in V_{\varrho} \text{ with } \|u\|_X \geq R_{\varrho} \}. \end{array}$

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting 0000●	Main results	Other results O
	ralized Ambrose Theorem	tti–Rabinov	vitz Symme	etric Mol	Intain

Let $J \in C^1(X, \mathbb{R})$ be an even functional such that

ヘロン 人間 とくほど 人間と

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting 0000●	Main results	Other results O
	ralized Ambrose Theorem	etti–Rabinov	vitz Symme	etric Moı	Intain

Let $J \in C^1(X, \mathbb{R})$ be an even functional such that • J(0) = 0,

・ロン ・回 とくほど ・ほど

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting 0000●	Main results	Other results
Gene	ralized Ambrose	etti–Rabinov	vitz Symm	etric Moı	untain
Pass	Theorem				

Let $J \in C^1(X, \mathbb{R})$ be an even functional such that

- J(0) = 0,
- (wCPS) condition holds in \mathbb{R}_+ ,

ヘロン 人間 とくほど 人間と

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting 0000●	Main results	Other results O
Gene	ralized Ambrose	etti–Rabinov	vitz Symm	etric Moı	untain
Pass	Theorem				

Let $J \in C^1(X, \mathbb{R})$ be an even functional such that

- J(0) = 0,
- (wCPS) condition holds in \mathbb{R}_+ ,
- $\rho > 0$ exists so that condition (\mathcal{H}_{ρ}) is satisfied.

イロン 人間 とくほとくほとう

э

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting ○○○○●	Main results	Other results O
Cono	ralized Ambrace	tti Dahinay		atria Mar	untain
Gene	ralized Ambrose	etti–Rabinov	vitz Symme	etric iviol	intain

Pass Theorem

Let $J \in C^1(X, \mathbb{R})$ be an even functional such that

- J(0) = 0,
- (wCPS) condition holds in \mathbb{R}_+ ,
- $\rho > 0$ exists so that condition (\mathcal{H}_{ρ}) is satisfied.

Then, J possesses at least a pair of symmetric critical points in X with corresponding critical level $\beta_{\varrho} = \inf_{\gamma \in \Gamma_{\varrho}} \sup_{u \in V_{\varrho}} J(\gamma(u))$, with

$$\varrho \leq \beta_{\varrho} \leq \varrho_{1}, \text{ where } \varrho_{1} \geq \sup_{u \in V_{\varrho}} J(u) > \varrho.$$

イロト イヨト イヨト イヨト

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting ○○○○●	Main results	Other results O
Gene	ralized Ambrose	etti–Rabinov	vitz Symme	etric Moı	untain

Pass

Let $J \in C^1(X, \mathbb{R})$ be an even functional such that

• J(0) = 0,

I heorem

- (wCPS) condition holds in \mathbb{R}_+ ,
- $\rho > 0$ exists so that condition (\mathcal{H}_{ρ}) is satisfied.

Then, J possesses at least a pair of symmetric critical points in X with corresponding critical level $\beta_{\varrho} = \inf_{\gamma \in \Gamma_{\varrho}} \sup_{u \in V_{\varrho}} J(\gamma(u))$, with

 $\varrho \leq \beta_{\varrho} \leq \varrho_{1}$, where $\varrho_{1} \geq \sup_{u \in V_{\varrho}} J(u) > \varrho$. Furthermore, if (\mathcal{H}_{ϱ}) holds for all $\varrho > 0$, then J possesses a sequence of critical points $(u_{n})_{n} \subset X$ such that $J(u_{n}) \nearrow +\infty$.

・ロト ・回ト ・ヨト ・ヨト

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
				●0000	

Back to the coupled gradient-type quasilinear system

Now, assume that (h_1) and $(g_0)-(g_1)$ hold and consider the functional related to the coupled quasilinear system

$$\mathcal{J}(u,v) = \frac{1}{p_1} \int_{\Omega} A(x,u) |\nabla u|^{p_1} dx + \frac{1}{p_2} \int_{\Omega} B(x,v) |\nabla v|^{p_2} dx$$
$$- \int_{\Omega} G(x,u,v) dx$$

which is a C^1 functional on $X = W \cap L$.

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results ○●○○○	Other results O
Some	e hypotheses				

Assume that $R \ge 1$ exists such that the following conditions hold:

< (T) >

< 注→ 注

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results ○●○○○	Other results O
Some	hypotheses				

Assume that $R \ge 1$ exists such that the following conditions hold: (*h*₂) there exists $\mu_1 > 0$ such that

$$\begin{aligned} A(x,u) &+ \frac{1}{p_1} A_u(x,u) u \ge \mu_1 A(x,u) \quad \text{ a.e. in } \Omega \text{ if } |u| \ge R, \\ B(x,v) &+ \frac{1}{p_2} B_v(x,v) v \ge \mu_1 B(x,v) \quad \text{ a.e. in } \Omega \text{ if } |v| \ge R; \end{aligned}$$

> < E > < E >

臣

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results ○●○○○	Other results O
Some	hypotheses				

Assume that $R \ge 1$ exists such that the following conditions hold: (*h*₂) there exists $\mu_1 > 0$ such that

$$\begin{aligned} A(x,u) &+ \frac{1}{p_1} A_u(x,u) u \ge \mu_1 A(x,u) \quad \text{ a.e. in } \Omega \text{ if } |u| \ge R, \\ B(x,v) &+ \frac{1}{p_2} B_v(x,v) v \ge \mu_1 B(x,v) \quad \text{ a.e. in } \Omega \text{ if } |v| \ge R; \end{aligned}$$

 (h_3) there exist θ_1 , θ_2 , $\mu_2 > 0$ such that $\theta_1 < \frac{1}{p_1}$, $\theta_2 < \frac{1}{p_2}$,

 $\begin{aligned} (1-p_1\theta_1)A(x,u) &- \theta_1A_u(x,u)u \geq \mu_2A(x,u) \quad \text{a.e. in}\Omega, \ \forall \ u \in \mathbb{R}, \\ (1-p_2\theta_2)B(x,v) &- \theta_2B_v(x,v)v \geq \mu_2B(x,v) \quad \text{a.e. in}\Omega, \ \forall \ v \in \mathbb{R}; \end{aligned}$

「日本 日本 日本 日本 日本

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results ○●○○○	Other results O
Some	hypotheses				

Assume that $R \ge 1$ exists such that the following conditions hold: (*h*₂) there exists $\mu_1 > 0$ such that

$$\begin{aligned} &A(x,u) + \frac{1}{p_1} A_u(x,u)u \ge \mu_1 A(x,u) \quad \text{ a.e. in } \Omega \text{ if } |u| \ge R, \\ &B(x,v) + \frac{1}{p_2} B_v(x,v)v \ge \mu_1 B(x,v) \quad \text{ a.e. in } \Omega \text{ if } |v| \ge R; \end{aligned}$$

 (h_3) there exist θ_1 , θ_2 , $\mu_2 > 0$ such that $\theta_1 < \frac{1}{p_1}$, $\theta_2 < \frac{1}{p_2}$,

 $\begin{aligned} (1-p_1\theta_1)A(x,u) &- \theta_1A_u(x,u)u \geq \mu_2A(x,u) \quad \text{a.e. in}\Omega, \ \forall \ u \in \mathbb{R}, \\ (1-p_2\theta_2)B(x,v) &- \theta_2B_v(x,v)v \geq \mu_2B(x,v) \quad \text{a.e. in}\Omega, \ \forall \ v \in \mathbb{R}; \end{aligned}$

(g₂) $0 < G(x, u, v) \le \theta_1 G_u(x, u, v)u + \theta_2 G_v(x, u, v)v$ a.e. in Ω if $|(u, v)| \ge R$.

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results ○○●○○	Other results O
Furth	ner hypotheses				

(g₃)
$$\limsup_{(u,v)\to 0} \frac{G(x, u, v)}{|u|^{p_1} + |v|^{p_2}} < \mu_0 \min\left\{\frac{\lambda_{1,1}}{p_1}, \frac{\lambda_{2,1}}{p_2}\right\} \text{ uniformly a.e.}$$

in Ω , with $\lambda_{i,1}$ first eigenvalue of $-\Delta_{p_i}$ in $W_0^{1,p_i}(\Omega)$ if $i \in \{1,2\}$;

・ロト・日本・日本・日本・日本・日本

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results ○○●○○	Other results O
Furth	ner hypotheses				

$$\begin{array}{l} (g_3) \ \limsup_{(u,v)\to 0} \frac{G(x,u,v)}{|u|^{p_1}+|v|^{p_2}} < \mu_0 \min\left\{\frac{\lambda_{1,1}}{p_1},\frac{\lambda_{2,1}}{p_2}\right\} \ \text{uniformly a.e.}\\ & \text{in }\Omega, \text{ with } \lambda_{i,1} \text{ first eigenvalue of } -\Delta_{p_i} \text{ in } W_0^{1,p_i}(\Omega) \text{ if } \\ & i \in \{1,2\};\\ (h_4) \ A(x,\cdot), B(x,\cdot) \text{ are even in } \mathbb{R} \text{ for a.e. } x \in \Omega; \end{array}$$

<ロ> <四> <ヨ> <ヨ> 三田

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results ○○●○○	Other results O
Furth	ner hypotheses				

$$\begin{array}{l} (g_3) \ \limsup_{\substack{(u,v)\to 0}} \frac{G(x,u,v)}{|u|^{p_1}+|v|^{p_2}} < \mu_0 \min\left\{\frac{\lambda_{1,1}}{p_1},\frac{\lambda_{2,1}}{p_2}\right\} \ \text{uniformly a.e.} \\ & \text{in } \Omega, \text{ with } \lambda_{i,1} \text{ first eigenvalue of } -\Delta_{p_i} \text{ in } W_0^{1,p_i}(\Omega) \text{ if } \\ & i \in \{1,2\}; \\ (h_4) \ A(x,\cdot), B(x,\cdot) \text{ are even in } \mathbb{R} \text{ for a.e. } x \in \Omega; \\ (g_4) \ \liminf_{|(u,v)|\to +\infty} \frac{G(x,u,v)}{|u|^{\frac{1}{\theta_1}}+|v|^{\frac{1}{\theta_2}}} > 0 \ \text{ uniformly a.e. in } \Omega; \end{array}$$

<ロ> <四> <四> <三</td>

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results ○○●○○	Other results O
Furth	ner hypotheses				

$$\begin{array}{ll} (g_3) & \limsup_{(u,v)\to 0} \frac{G(x,u,v)}{|u|^{p_1}+|v|^{p_2}} < \mu_0 \min\left\{\frac{\lambda_{1,1}}{p_1},\frac{\lambda_{2,1}}{p_2}\right\} & \text{uniformly a.e.} \\ & \text{in } \Omega, \text{ with } \lambda_{i,1} \text{ first eigenvalue of } -\Delta_{p_i} \text{ in } W_0^{1,p_i}(\Omega) \text{ if } \\ & i \in \{1,2\}; \\ (h_4) & A(x,\cdot), B(x,\cdot) \text{ are even in } \mathbb{R} \text{ for a.e. } x \in \Omega; \\ (g_4) & \liminf_{|(u,v)|\to+\infty} \frac{G(x,u,v)}{|u|^{\frac{1}{\theta_1}}+|v|^{\frac{1}{\theta_2}}} > 0 & \text{uniformly a.e. in } \Omega; \\ (g_5) & G(x,\cdot,\cdot) \text{ is even in } \mathbb{R}^2 \text{ for a.e. } x \in \Omega. \end{array}$$

<ロ> <四> <四> <三</td>

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results 000●0	Other results O
Subc	ritical case				

・ 回 ト ・ ヨ ト ・ ヨ ト

臣

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results 000●0	Other results O
Subc	ritical case				

Theorem (A.M.C., C. Sportelli, A. Salvatore 2021)

Suppose that $\mu_0 > 0$ exists such that

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results 000●0	Other results O
Subc	ritical case				

Theorem (A.M.C., C. Sportelli, A. Salvatore 2021)

Suppose that $\mu_0 > 0$ exists such that

• $A(x, u) \ge \mu_0$ and $B(x, v) \ge \mu_0$ a.e. in Ω , for all $u, v \in \mathbb{R}$;

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results 000●0	Other results O
Subcr	ritical case				

Theorem (A.M.C., C. Sportelli, A. Salvatore 2021)

Suppose that $\mu_0 > 0$ exists such that

• $A(x, u) \ge \mu_0$ and $B(x, v) \ge \mu_0$ a.e. in Ω , for all $u, v \in \mathbb{R}$;

•
$$1 \le q_1 < p_1^*, \ 1 \le q_2 < p_2^*,$$

 $0 \le t_1 < \frac{p_1}{N} \left(1 - \frac{1}{p_1^*}\right) p_2^*, \qquad 0 \le t_2 < \frac{p_2}{N} \left(1 - \frac{1}{p_2^*}\right) p_1^*.$

Thus,

/⊒ ► < ≣ ►

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results ○○○●○	Other results O
Subc	ritical case				

Theorem (A.M.C., C. Sportelli, A. Salvatore 2021)

Suppose that $\mu_0 > 0$ exists such that

• $A(x, u) \ge \mu_0$ and $B(x, v) \ge \mu_0$ a.e. in Ω , for all $u, v \in \mathbb{R}$;

•
$$1 \le q_1 < p_1^*, \ 1 \le q_2 < p_2^*, \ 0 \le t_1 < \frac{p_1}{N} \left(1 - \frac{1}{p_1^*}\right) p_2^*, \qquad 0 \le t_2 < \frac{p_2}{N} \left(1 - \frac{1}{p_2^*}\right) p_1^*.$$

Thus,

 $(g_3) \implies \mathcal{J}$ possesses at least one nontrivial critical point in X;

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results ○○○●○	Other results O
Subc	ritical case				

Theorem (A.M.C., C. Sportelli, A. Salvatore 2021)

Suppose that $\mu_0 > 0$ exists such that

• $A(x, u) \ge \mu_0$ and $B(x, v) \ge \mu_0$ a.e. in Ω , for all $u, v \in \mathbb{R}$;

•
$$1 \le q_1 < p_1^*, \ 1 \le q_2 < p_2^*,$$

 $0 \le t_1 < \frac{p_1}{N} \left(1 - \frac{1}{p_1^*}\right) p_2^*, \qquad 0 \le t_2 < \frac{p_2}{N} \left(1 - \frac{1}{p_2^*}\right) p_1^*.$

Thus,

 $(g_3) \implies \mathcal{J}$ possesses at least one nontrivial critical point in X; $(h_4), (g_4)-(g_5) \implies \mathcal{J}$ possesses an unbounded sequence of critical values in X.

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results 0000●	Other results O
Supe	rcritical case				

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results 0000●	Other results O
Supe	rcritical case				

Theorem (A.M.C., C. Sportelli (submitted))

Suppose that either $1 < p_1 \le N$ or $1 < p_2 \le N$, moreover $\mu_0 > 0$ and $s_1 \ge 0$, $s_2 \ge 0$ exist such that

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results 0000●	Other results O
<u> </u>					

Assume that $(h_1)-(h_3)$, $(g_0)-(g_2)$ are satisfied.

Theorem (A.M.C., C. Sportelli (submitted))

Suppose that either $1 < p_1 \le N$ or $1 < p_2 \le N$, moreover $\mu_0 > 0$ and $s_1 \ge 0$, $s_2 \ge 0$ exist such that

• $A(x, u) \ge \mu_0 (1 + |u|^{p_1 s_1})$ a.e. in Ω , for all $u \in \mathbb{R}$, $B(x, v) \ge \mu_0 (1 + |v|^{p_2 s_2})$ a.e. in Ω , for all $v \in \mathbb{R}$;

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results 0000●	Other results O
6					

Assume that $(h_1)-(h_3)$, $(g_0)-(g_2)$ are satisfied.

Theorem (A.M.C., C. Sportelli (submitted))

Suppose that either $1 < p_1 \le N$ or $1 < p_2 \le N$, moreover $\mu_0 > 0$ and $s_1 \ge 0$, $s_2 \ge 0$ exist such that

- $A(x, u) \ge \mu_0 (1 + |u|^{p_1 s_1})$ a.e. in Ω , for all $u \in \mathbb{R}$, $B(x, v) \ge \mu_0 (1 + |v|^{p_2 s_2})$ a.e. in Ω , for all $v \in \mathbb{R}$;
- $1 \le q_1 < p_1^*(s_1+1), \ 1 \le q_2 < p_2^*(s_2+1), \ 0 \le t_i < \frac{p_i}{N} \left(1 \frac{1}{p_i^*(s_i+1)}\right) p_j^*(s_j+1) \text{ if } i \ne j.$

Thus,

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results 0000●	Other results O
<u> </u>					

Assume that $(h_1)-(h_3)$, $(g_0)-(g_2)$ are satisfied.

Theorem (A.M.C., C. Sportelli (submitted))

Suppose that either $1 < p_1 \le N$ or $1 < p_2 \le N$, moreover $\mu_0 > 0$ and $s_1 \ge 0$, $s_2 \ge 0$ exist such that

• $A(x, u) \ge \mu_0 (1 + |u|^{p_1 s_1})$ a.e. in Ω , for all $u \in \mathbb{R}$, $B(x, v) \ge \mu_0 (1 + |v|^{p_2 s_2})$ a.e. in Ω , for all $v \in \mathbb{R}$;

•
$$1 \le q_1 < p_1^*(s_1+1), \ 1 \le q_2 < p_2^*(s_2+1), \ 0 \le t_i < rac{p_i}{N} \left(1 - rac{1}{p_i^*(s_i+1)}
ight) p_j^*(s_j+1) \ \ if \ i \ne j.$$

Thus,

 $(g_3) \implies \mathcal{J}$ possesses at least one nontrivial critical point in X;

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results ○○○○●	Other results O

Assume that $(h_1)-(h_3)$, $(g_0)-(g_2)$ are satisfied.

Theorem (A.M.C., C. Sportelli (submitted))

Suppose that either $1 < p_1 \le N$ or $1 < p_2 \le N$, moreover $\mu_0 > 0$ and $s_1 \ge 0$, $s_2 \ge 0$ exist such that

• $A(x, u) \ge \mu_0 (1 + |u|^{p_1 s_1})$ a.e. in Ω , for all $u \in \mathbb{R}$, $B(x, v) \ge \mu_0 (1 + |v|^{p_2 s_2})$ a.e. in Ω , for all $v \in \mathbb{R}$;

$$\begin{array}{l} \bullet \ \ 1 \leq q_1 < p_1^*(s_1+1), \ 1 \leq q_2 < p_2^*(s_2+1), \\ 0 \leq t_i < \frac{p_i}{N} \left(1 - \frac{1}{p_i^*(s_i+1)}\right) p_j^*(s_j+1) \ \ \text{if} \ i \neq j. \end{array}$$

Thus,

 $(g_3) \implies \mathcal{J}$ possesses at least one nontrivial critical point in X; $(h_4), (g_4)-(g_5) \implies \mathcal{J}$ possesses an unbounded sequence of critical values in X.

Outline	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
					•

Other results and open problems

Other results about systems

≣ >

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
Othe	r results and op	en problems	5		

A_i(*x*, *t*, *ξ*), 1 ≤ *i* ≤ *m*, *m* ≥ 2: A.M.C., C. Sportelli (Submitted)

< ≣ ▶

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results •
Othe	r results and op	en problems	5		

 A_i(x, t, ξ), 1 ≤ i ≤ m, m ≥ 2: A.M.C., C. Sportelli (Submitted)

Results about equations

-≣->

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results
Other	r results and op	en problems	5		

• $A_i(x, t, \xi)$, $1 \le i \le m$, $m \ge 2$: A.M.C., C. Sportelli (Submitted)

Results about equations

Some papers with G. Fragnelli, D. Mugnai, G. Palmieri, K. Perera, A. Salvatore, C. Sportelli (from 2006 to present) if:

- the nonlinear term is *p*-superlinear but subcritical with or without the Ambrosetti-Rabinowitz condition, supercritical, asymptotically *p*-linear, *p*-sublinear,
- there is a break of symmetry,
- the domain is unbounded, in particular \mathbb{R}^N .

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results •
Other	r results and op	en problems	5		

• $A_i(x, t, \xi)$, $1 \le i \le m$, $m \ge 2$: A.M.C., C. Sportelli (Submitted)

Results about equations

Some papers with G. Fragnelli, D. Mugnai, G. Palmieri, K. Perera, A. Salvatore, C. Sportelli (from 2006 to present) if:

- the nonlinear term is *p*-superlinear but subcritical with or without the Ambrosetti-Rabinowitz condition, supercritical, asymptotically *p*-linear, *p*-sublinear,
- there is a break of symmetry,
- the domain is unbounded, in particular \mathbb{R}^N .

Open problems

Outline O	Quasilinear elliptic systems	Variational setting	Abstract setting	Main results	Other results •
Othe	results and op	en problems	5		

• $A_i(x, t, \xi)$, $1 \le i \le m$, $m \ge 2$: A.M.C., C. Sportelli (Submitted)

Results about equations

Some papers with G. Fragnelli, D. Mugnai, G. Palmieri, K. Perera, A. Salvatore, C. Sportelli (from 2006 to present) if:

- the nonlinear term is *p*-superlinear but subcritical with or without the Ambrosetti-Rabinowitz condition, supercritical, asymptotically *p*-linear, *p*-sublinear,
- there is a break of symmetry,
- the domain is unbounded, in particular \mathbb{R}^N .

Open problems

• Neumann boundary conditions