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Organization of the talk:

Recollections from quandles and cocycle invariants;

Ternary quandles and their cohomology;

Ternary cocycle invariants of framed links;

Ternary cocycle invariants of compact surfaces with boundary;

Ternary quandles in symmetric monoidal categories;

Examples from Lie algebras and Hopf monoids;

Quantum invariants.
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(Binary) Quandles

Definition

A quandle is a set X togehter with a binary operation
∗ : X × X −→ X satisfying the following three axioms

x ∗ x = x , for all x ∈ X ,

the right multiplicaiton map − ∗ x : X −→ X is a bijection for
all x ∈ X , where − is a placeholder,

(x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z), for all x , y , z ∈ X .

Remark

The three axioms in the definition of quandle correspond to
Reidmeister moves of type I, II and III.
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Examples of quandles:

Any group G with operation given by conjugation:
x ∗ y = y−1xy .

Z/nZ with operation given by x ∗ y = 2y − x .

Any Λ(= Z[t, t−1])-module M is a quandle with
a ∗ b := ta + (1− t)b, for a, b ∈ M, and is called an
Alexander quandle.

Given a group G and an automorpism f ∈ Aut(G ), it is easy
to show that x ∗ y := f (xy−1)y defines a quandle structure.
This is called a generalized Alexander quandle.
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Quandles and Yang-Baxter operators

Quandles give rise to Yang-Baxter operators, i.e. maps that satisfy
the Yang-Baxter equation:

(R ⊗ 1)(1⊗ R)(R ⊗ 1) = (1⊗ R)(R ⊗ 1)(1⊗ R),

by the assignment (x , y) 7→ (y , x ∗ y) and linearization.
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(Co)homology (Carter-Kamada-Saito)

Define Cn(X ) to be the free abelian group generated by
n-tuples (x1, x2, · · · , xn) of elements of a rack X .

Define differentials ∂n : Cn(X ) −→ Cn−1(X ) as:

∂n(x1, x2, · · · , xn)

=
n∑

i=2

(−1)i [(x1, · · · , x̂i , · · · , xn)

−(x1 ∗ xi , · · · , xi−1 ∗ xi , x̂i , · · · , xn)].
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(Co)homology (Carter-Kamada-Saito)

Put Hn = ker∂n/im∂n+1.

Normalize the chain complex for quandles.

Dualize to obtain cohomology.
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Cocycle invariant of links

Define coloring of a diagram by quandle: C : R −→ X , where
R is the set of arcs of the diagram D with compatibility
property similar to rule to define Yang-Baxter operator from
quandle.

Fix 2-cocycle φ ∈ Z 2(X ,A).

Then the Boltzmann weight at crossing τ is given by
B(τ, C) := φ(x , y)ε(τ).

Set Ψ =
∑
C
∏

τ B(τ, C).
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Theorem

The Boltzmann state sum defined above is invariant under
Reidmeister moves. It therefore defines an invariant of links.

Theorem

If we compute the cocycle invariant with respect to two cocycles
that are in the same cohomology class, then the invariants coincide
(up to an integer term).
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Ternary racks/quandles

A set X together with a ternary operation
T : X × X × X −→ X satisfying the properties:

T (T (x , y , z), u, v) = T (T (x , u, v),T (y , u, v),T (z , u, v)) for
all x , y , z , u, v ∈ X .
The map T (−, y , z) : X −→ X is a bijection for all y , z ∈ X .
T (x , x , x) = x for all x ∈ X . .

Examples:

Iteration of binary self distriutive operation:
T (x , y , z) = (x ∗ y) ∗ z .
Heap of a group: T (x , y , z) = xy−1z .
Mutually distributive operations (Przytycki) composed
appropriately.
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Ternary (co)homology

Define Cn(X ) to be the free abelian group generated by
(2n + 1)-tuples (x0, x1, · · · , x2n) of elements of a ternary rack
X .

Define differentials ∂nCn(X ) −→ Cn−1(X ) as:

∂n(x0, x1, · · · , x2n)

=
2n−1∑
i=1

(−1)i [(x1, · · · , x̂i , x̂i+1, · · · , xn)

−(T (x0, xi , xi+1), · · · ,T (xi−1, xi , xi+1), x̂i , x̂i+1, · · · , xn)].
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Framed Knot/Link Invariants

Recall (Framed) Knot Diagrams:

Figure: Taken from Even-Zohar, Chaim. The writhe of permutations and
random framed knots. Random Struct. Algorithms 51 (2017): 121-142.

Emanuele Zappala Ternary self-distributive cohomology and invariants of framed links and knotted surfaces with boundary



Fundamental heap

At crossings:

x
y u

v

w

z

y u

z

x v

w

(A) (B)

Generators: all arcs of a diagram. Relators: Defined through
equalities z = T (x , u, v) and w = T (y , u, v).

Obtain a group whose heap is an invariant of framed links, called
fundamental heap.
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Define colorings of of framed diagrams: Heap morphisms from
fundamental heap.

Define Boltzmann weights using diagrammatic interpretation
at crossings.

Theorem

The Boltzmann sum

Θ(D) =
∑
C

∏
τ

B(φ, τ, C) ∈ Z[A]⊗ Z[A]

is an invariant of framed links.

Proof.

One needs to show invariance of moves for framed link diagram,
instead of Reidemeister moves. RII and RIII are related to
functoriality (described above), and kinks with opposite signs give
contributions that cancel each other.
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Computations of cohomology show that

Can define subcomplexes fitting in long exact sequences:
Corresponding cohomologies are nontrivial, actually there is
abundance of nontrivial cocycles.

Cohomologies of cyclic heaps, and dihedral heaps, have
arbitrarily large ranks.

The associated ternary cocycle invariants are nontrivial (this
can be used to prove lower bounds for rank of cohomology).
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Surfaces with boundary in 3-space

u
−1

v u
−1

v

x y u v

s t

y xΘ Θ

y xΘ Θ

v uΩ Ω

s

t

Λ

Λ

Figure: Normal form of surface ribbons
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IH

CL

YI

RII RIII

IY

Figure: Moves
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One can define the fundamental heap for surface ribbons
(similar procedure as with framed links), and this is an isotopy
invariant.

Interesting relations between minimal number of generators of
fundamental heap, and Euler characteristic and genus of
surface ribbons.

Using stabilization, one can always modify a surface to get a
new one whose fundamental heap is free.

Every heap is realizable as the fundamental heap of some
ribbon surface (up to a free factor determined by the number
of generators and relators in a given presentation).
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Cocycle invariants of ribbon surfaces

Cohomology with some extra conditions:

ψ(w , x , y) + ψ(wx−1y , y , x) = 0 (reversibility);
ψ(w , x , y) + ψ(wx−1y , y , z) = ψ(w , x , z) (additivity).

Define Boltzmann sums for each boundary component, where
cocycles are used at each crossing:

t

u

v

s

ψ(          )s,x,y

ψ(          )v,y,x

x y
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Take tensor product of all boundary components and sum
over colorings.

The result is an isotopy invariant of surfaces.

Some results related to cocycle invariants:

Boundary connected sum can be detected through cocycle
invariant (nice formulas relating invaraints of surface ribbons
and their connected sums).

Can prove geometrically that RA cohomology of generalized
quaternion groups have free factors.
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Categorical self-distributivity

In symmetric monoidal category:

Observe that we need comultiplication ∆ (there are repeated
elements in the definition of self-distributivity.)
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Lie examples

For a given Lie algebra L over a ground field k, define
X = k⊕ L. The map T : X ⊗ X ⊗ X −→ X ,
(a, x)⊗ (b, y)⊗ (c, z) 7−→
(abc, bcx + c[x , y ] + b[x , z ] + [[x , y ], z ]), extended by
linearity, is self distributive.

We can also use ternary Lie brackets instead of iterated binary
Lie brackets.

Homotopy Lie algebras!
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Hopf Examples

Let H be a Hopf algebra. Define a ternary operation
T : H ⊗ H ⊗ H −→ H by the assignment
T (x ⊗ y ⊗ z) = µ(µ(x ⊗ S(y))⊗ z), extended by linearity,
where µ indicates the product of H and S is the antipode.
(Quantum Heap)

Let p : X⊗2 −→ H be a ternary augmented rack. Then the
ternary operation defined on monomials via
x ⊗ y ⊗ z 7−→ x · p(y ⊗ z), and extended by linearity, is self
distributive.
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From TSD object (X ,T ) one gets Yang-Baxter operators.

In vector spaces:

R(x⊗y⊗z⊗w) = z(1)⊗w (1)⊗T (x⊗z(2)⊗w (2))⊗T (y⊗z(3)⊗w (3)).
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Quantum version

One can construct a category Rα(X ), from a ternary
self-distributive object (X ,T ) in the category of vector spaces, and
endow it with a braiding cα and a nontrivial twist θα.

Theorem

The category R∗α(X ) with braiding induced by cα and twisting
morphisms induced by θα is a ribbon category. Moreover, if
[α] = [β] the two categories R∗α(X ) and R∗β(X ) are equivalent.
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The previous category gives rise to an invariant of framed links,
ΨD(X ,T , α), as the quantum trace of an endomorphism of
R∗α(X ), associated to a framed braid representing the framed link.

Theorem

Fix a diagram D of L. Then the ribbon cocycle invariant
ΘD(X ,T , α) and the quantum invariant ΨD(X ,T , α) coincide.
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The end

Thank you very much for your attention!
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