Spectral aspects of eventually positive C_0 -semigroups

Sahiba Arora (Technische Universität Dresden) Joint work with Jochen Glück (Universität Passau)

Mini-symposium on Operator Semigroups and Evolution Equations 8th European Congress of Mathematics, 23rd June 2021

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = u_0;$$

where A is the generator of a C_0 -semigroup on a Banach space E.

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = u_0;$$

where A is the generator of a C_0 -semigroup on a Banach space E.

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = u_0;$$

where A is the generator of a C_0 -semigroup on a Banach space E.

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = u_0;$$

where A is the generator of a C_0 -semigroup on a Banach space E.

Example (Finite Dimensions) On $E = \mathbb{R}^4$, let $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix},$

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = u_0;$$

where A is the generator of a C_0 -semigroup on a Banach space E.

Example (Finite Dimensions) On $E = \mathbb{R}^4$, let $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$, then $e^A = \begin{bmatrix} + & + & + & + \\ + & + & + & + \\ - & + & + & + \\ + & + & + & + \end{bmatrix} \not\geq 0.$

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = u_0;$$

where A is the generator of a C_0 -semigroup on a Banach space E.

¹Noutsos and Tsatsomeros (2008)

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = u_0;$$

where A is the generator of a C_0 -semigroup on a Banach space E.

Example (Laplacian) ${\rm On} \ E = L^2(0,1), \ {\rm consider} \ A: u \mapsto u'' \ {\rm with} \label{eq:approx}$

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = u_0;$$

where A is the generator of a C_0 -semigroup on a Banach space E.

Example (Laplacian) On $E = L^2(0, 1)$, consider $A : u \mapsto u''$ with $D(A) = \{u \in H^2(0, 1) : u(0) = u(1) \text{ and } u'(0) = u'(1)\}.$

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = u_0;$$

where A is the generator of a C_0 -semigroup on a Banach space E.

Example (Laplacian) On $E = L^2(0, 1)$, consider $A : u \mapsto u''$ with $D(A) = \{u \in H^2(0, 1) : u(0) = u(1) \text{ and } u'(0) = u'(1)\}.$ Then $e^{tA} \ge 0$ for all $t \ge 0$

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = u_0;$$

where A is the generator of a C_0 -semigroup on a Banach space E.

Example (Laplacian) On $E = L^2(0, 1)$, consider $A : u \mapsto u''$ with $D(A) = \{u \in H^2(0, 1) : u'(0) = -u'(1) = u(0) + u(1)\}.$

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = u_0;$$

where A is the generator of a C_0 -semigroup on a Banach space E.

Example (Laplacian)

On $E = L^2(0, 1)$, consider $A : u \mapsto u''$ with

$$D(A) = \{ u \in H^2(0,1) : u'(0) = -u'(1) = u(0) + u(1) \}.$$

Then $\exists t_0 > 0 : e^{tA} \ge 0$ for all $t \ge t_0$ (but not for small t).¹

¹Daners and Glück (Jun 2018)

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = u_0;$$

where A is the generator of a C_0 -semigroup on a Banach space E.

Example (Dirichlet-to-Neumann)

Let $\Omega \subseteq \mathbb{R}^2$: unit disk and Δ_D : Dirichlet Laplacian on $L^2(\Omega)$. For $g \in L^2(\partial \Omega)$ and $\lambda \in \mathbb{R} \setminus \sigma(\Delta_D)$, we solve,

$$\Delta f = \lambda f$$
 in Ω , $f = g$ on $\partial \Omega$.

Let $E = L^2(\partial \Omega)$ and for smooth f, define $D_{\lambda} : g \mapsto \frac{\partial f}{\partial \nu}$.

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = u_0;$$

where A is the generator of a C_0 -semigroup on a Banach space E.

Example (Dirichlet-to-Neumann)

Let $\Omega \subseteq \mathbb{R}^2$: unit disk and Δ_D : Dirichlet Laplacian on $L^2(\Omega)$. For $g \in L^2(\partial \Omega)$ and $\lambda \in \mathbb{R} \setminus \sigma(\Delta_D)$, we solve,

$$\Delta f = \lambda f$$
 in Ω , $f = g$ on $\partial \Omega$.

Let $E = L^2(\partial \Omega)$ and for smooth f, define $D_{\lambda} : g \mapsto \frac{\partial f}{\partial \nu}$.

For large λ : $e^{-tD_{\lambda}} \ge 0$ for all $t \ge 0$.

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = u_0;$$

where A is the generator of a C_0 -semigroup on a Banach space E.

Example (Dirichlet-to-Neumann)

Let $\Omega \subseteq \mathbb{R}^2$: unit disk and Δ_D : Dirichlet Laplacian on $L^2(\Omega)$. For $g \in L^2(\partial \Omega)$ and $\lambda \in \mathbb{R} \setminus \sigma(\Delta_D)$, we solve,

$$\Delta f = \lambda f$$
 in Ω , $f = g$ on $\partial \Omega$.

Let $E = L^2(\partial \Omega)$ and for smooth f, define $D_{\lambda} : g \mapsto \frac{\partial f}{\partial \nu}$.

For large λ : $e^{-tD_{\lambda}} \ge 0$ for all $t \ge 0$.

For certain λ : $e^{-tD_{\lambda}} \ge 0$ for all large t but not for small t.¹

¹Daners (2014)

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = u_0;$$

where A is the generator of a C_0 -semigroup on a Banach space E.

Even more examples:

- D. Daners, J. Glück, and J. B. Kennedy (Jan & Sep 2016)
- D. Daners and J. Glück (Jun 2018)
- F. Gregorio and D. Mugnolo (2020)
- R. Denk, M. Kunze, and D. Ploß (2021)

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = u_0;$$

where A is the generator of a C_0 -semigroup on a Banach space E.

Definitions

A C_0 -semigroup $(e^{tA})_{t\geq 0}$ on a Banach lattice E is called

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = u_0;$$

where A is the generator of a C_0 -semigroup on a Banach space E.

Definitions

A $C_0\text{-semigroup }(e^{tA})_{t\geq 0}$ on a Banach lattice E is called

• positive if

 $\forall f \ge 0 \ \forall \ t \ge 0 \ : e^{tA} f \ge 0.$

$$\dot{u}(t) = Au(t) \quad (t \ge 0), \qquad u(0) = u_0;$$

where A is the generator of a C_0 -semigroup on a Banach space E.

Definitions

A $C_0\text{-semigroup }(e^{tA})_{t\geq 0}$ on a Banach lattice E is called

• positive if

$$\forall f \ge 0 \ \forall \ t \ge 0 \ : e^{tA} f \ge 0.$$

• (uniformly) eventually positive if

$$\exists t_0 \ge 0 \ \forall f \ge 0 \ \forall \ t \ge t_0 : e^{tA} f \ge 0.$$

$$\exists t_0 \ge 0 \ \forall f \ge 0 \ \forall \ t \ge t_0 : e^{tA} f \ge 0.$$

$$\exists t_0 \ge 0 \ \forall f \ge 0 \ \forall t \ge t_0 : e^{tA} f \ge 0.$$

Proposition

Let $(e^{tA})_{t\geq 0}$ be a C_0 -semigroup on a Banach lattice E. Then for each $f\in E$, $\mathcal{R}(\lambda,A)f=\int_0^\infty e^{-\lambda s}e^{sA}f\,ds$

for all $\operatorname{Re} \lambda > \omega_0(A)$.

$$\exists t_0 \ge 0 \ \forall f \ge 0 \ \forall t \ge t_0 : e^{tA} f \ge 0.$$

Proposition

Let $(e^{tA})_{t\geq 0}$ be a positive C_0 -semigroup on a Banach lattice E. Then for each $f \in E$,

$$\mathcal{R}(\lambda, A)f = \int_0^\infty e^{-\lambda s} e^{sA} f \, ds$$

for all $\operatorname{Re} \lambda > s(A) := \sup \{ \operatorname{Re} \lambda : \lambda \in \sigma(A) \}.$

$$\exists t_0 \ge 0 \ \forall f \ge 0 \ \forall t \ge t_0 : e^{tA} f \ge 0.$$

Proposition

Let $(e^{tA})_{t\geq 0}$ be a eventually positive C_0 -semigroup on a Banach lattice E. Then for each $f \in E$,

$$\mathcal{R}(\lambda, A)f = \int_0^\infty e^{-\lambda s} e^{sA} f \, ds$$

for all $\operatorname{Re} \lambda > s(A) = \sup \{ \operatorname{Re} \lambda : \lambda \in \sigma(A) \}.$

¹Daners, Glück, and Kennedy (Jan 2016)

$$\exists t_0 \ge 0 \ \forall f \ge 0 \ \forall t \ge t_0 : e^{tA} f \ge 0.$$

Theorem

Let $(e^{tA})_{t\geq 0}$ be a positive C_0 -semigroup on a Banach lattice E. Then $s(A) = \omega_0(A)$ when

$$\exists t_0 \ge 0 \ \forall f \ge 0 \ \forall t \ge t_0 : e^{tA} f \ge 0.$$

Theorem

Let $(e^{tA})_{t\geq 0}$ be a positive C_0 -semigroup on a Banach lattice E. Then $s(A) = \omega_0(A)$ when

- E is a Hilbert space.
- $E = L^p(\Omega, \Sigma, \mu)$ for σ -finite measure spaces (Ω, Σ, μ) .
- E = C(K) or $E = C_0(\Omega)$.

$$\exists t_0 \ge 0 \ \forall f \ge 0 \ \forall t \ge t_0 : e^{tA} f \ge 0.$$

Theorem

Let $(e^{tA})_{t\geq 0}$ be a eventually positive C_0 -semigroup on a Banach lattice E. Then $s(A)=\omega_0(A)$ when

- E is a Hilbert space.
- $E = L^1(\Omega, \Sigma, \mu)$ with $\mu \ge 0$.
- E = C(K) and A is real.

Theorem¹

If $(e^{tA})_{t\geq 0}$ is positive and bounded, then $\sigma(A) \cap i\mathbb{R}$ is empty or cyclic, i.e., $i\beta \in \sigma(A) \cap i\mathbb{R} \Rightarrow in\beta \in \sigma(A) \cap i\mathbb{R}$ for all $n \in \mathbb{N}$.

Theorem¹

If $(e^{tA})_{t\geq 0}$ is positive and bounded, then $\sigma(A)\cap i\mathbb{R}$ is empty or cyclic, i.e., $i\beta\in\sigma(A)\cap i\mathbb{R}\Rightarrow in\beta\in\sigma(A)\cap i\mathbb{R}$ for all $n\in\mathbb{N}$.

Theorem²

Suppose $(e^{tA})_{t\geq 0}$ is eventually positive and for each $f\in E$, the orbit $\{e^{tA}f:t\geq 0\}$ is relatively compact in weak topology.

Theorem¹

If $(e^{tA})_{t\geq 0}$ is positive and bounded, then $\sigma(A) \cap i\mathbb{R}$ is empty or cyclic, i.e., $i\beta \in \sigma(A) \cap i\mathbb{R} \Rightarrow in\beta \in \sigma(A) \cap i\mathbb{R}$ for all $n \in \mathbb{N}$.

Theorem²

Suppose $(e^{tA})_{t\geq 0}$ is eventually positive and for each $f\in E$, the orbit $\{e^{tA}f:t\geq 0\}$ is relatively compact in weak topology.

If $i\beta \in i\mathbb{R}$ is an eigenvalue of A, then so is $in\beta$ for all $n \in \mathbb{N}$.

 $^1 \rm Greiner$ (1982) $^2 \rm Glück$ (2016), A. and Glück (2021)

Theorem²

Suppose $(e^{tA})_{t\geq 0}$ is eventually positive and for each $f\in E$, the orbit $\{e^{tA}f:t\geq 0\}$ is relatively compact in weak topology.

If $i\beta \in i\mathbb{R}$ is an eigenvalue of A, then so is $in\beta$ for all $n \in \mathbb{N}$.

Application³: Let $E = L^2(0, 1), A : u \mapsto u'''$ with periodic boundary conditions.

²Glück (2016), A. and Glück (2021)

³A. and Glück (Preprint)

Theorem²

Suppose $(e^{tA})_{t\geq 0}$ is eventually positive and for each $f\in E$, the orbit $\{e^{tA}f:t\geq 0\}$ is relatively compact in weak topology.

If $i\beta \in i\mathbb{R}$ is an eigenvalue of A, then so is $in\beta$ for all $n \in \mathbb{N}$.

Application³: Let $E = L^2(0, 1), A : u \mapsto u'''$ with periodic boundary conditions. Then $(e^{tA})_{t \ge 0}$ is not eventually positive!

²Glück (2016), A. and Glück (2021)

³A. and Glück (Preprint)

Theorem

Suppose $(e^{tA})_{t\geq 0}$ is positive, s(A) = 0, and $(e^{tA})_{t\geq 0}$ is bounded.

Theorem

Suppose $(e^{tA})_{t\geq 0}$ is positive, s(A) = 0, and $(e^{tA})_{t\geq 0}$ is bounded. Then $\sigma(A) \cap i\mathbb{R} = \{0\}.$

Theorem

Suppose $(e^{tA})_{t\geq 0}$ is eventually positive, s(A) = 0, and $(e^{tA})_{t\geq 0}$ is bounded.

Then $\sigma(A) \cap i\mathbb{R} = \{0\}.$

Theorem (Strong convergence)

If E is reflexive and $(e^{tA})_{t\geq 0}$ is positive and bounded, then $\lim_{t\to\infty} e^{tA}f$ exists for all $f\in E$.

Theorem (Strong convergence)

If E is reflexive and $(e^{tA})_{t\geq 0}$ is positive and bounded, then $\lim_{t\to\infty} e^{tA}f$ exists for all $f\in E$.

Proof: Cyclicity + the ABLV theorem¹.

¹Arendt and Batty (1988), Lyubich and Vũ (1988)

Theorem (Strong Convergence)¹

If E is reflexive and $(e^{tA})_{t\geq 0}$ is uniformly eventually positive and bounded, then $\lim_{t\to\infty} e^{tA}f$ exists for all $f\in E$.

Theorem (Strong Convergence)¹

If E is reflexive and $(e^{tA})_{t\geq 0}$ is uniformly eventually positive and bounded, then $\lim_{t\to\infty} e^{tA}f$ exists for all $f\in E$.

Proof: Relies heavily on a cyclicity result for single operators 2 + the ABLV theorem.

¹A. and Glück (2021) ²Glück (2017)

Theorem (Operator norm convergence)¹

Suppose $(e^{tA})_{t\geq 0}$ is positive, s(A) = 0, and

• 0 is a first order pole of the resolvent $\mathcal{R}(\cdot, A)$.

Theorem (Operator norm convergence)¹

Suppose $(e^{tA})_{t\geq 0}$ is positive, s(A) = 0, and

• 0 is a first order pole of the resolvent $\mathcal{R}(\cdot, A)$.

Then $(e^{tA})_{t>0}$ converges uniformly as $t \to \infty$.

Theorem (Operator norm convergence)¹

Suppose $(e^{tA})_{t\geq 0}$ is eventually positive, s(A) = 0,

• 0 is a first order pole of the resolvent $\mathcal{R}(\,\cdot\,,A)$, and

Then $(e^{tA})_{t>0}$ converges uniformly as $t \to \infty$.

¹A. and Glück (2021)

Theorem (Operator norm convergence)¹

Suppose $(e^{tA})_{t\geq 0}$ is eventually positive, s(A) = 0,

- 0 is a $% \mathcal{D}(\cdot,A)$ pole of the resolvent $\mathcal{R}(\,\cdot\,,A)$, and
- $(e^{tA})_{t\geq 0}$ is bounded.

Then $(e^{tA})_{t\geq 0}$ converges uniformly as $t \to \infty$.

¹A. and Glück (2021)

Theorem¹

Let $(e^{tA})_{t\geq 0}$ be a C_0 -semigroup on E such that

Theorem¹

Let $(e^{tA})_{t\geq 0}$ be a C_0 -semigroup on E such that

(a) $(e^{tA})_{t\geq 0}$ is eventually norm continuous and s(A) = 0.

Theorem¹

Let $(e^{tA})_{t\geq 0}$ be a C_0 -semigroup on E such that

(a) $(e^{tA})_{t\geq 0}$ is eventually norm continuous and s(A) = 0.

(b) $0 \in \sigma(A)$ and $\sigma(A) \cap i\mathbb{R}$ contains only poles of the resolvent.

Theorem¹

Let $(e^{tA})_{t\geq 0}$ be a C_0 -semigroup on E such that

(a) $(e^{tA})_{t\geq 0}$ is eventually norm continuous and s(A) = 0. (b) $0 \in \sigma(A)$ and $\sigma(A) \cap i\mathbb{R}$ contains only poles of the resolvent.

(c) $\forall f \geq 0 \ \forall n \in \mathbb{N} \ \exists t_0 \geq 0 \ \exists c > 0 : \mathbb{1}_{K_n} e^{tA} f \geq c \ \mathbb{1} \ \forall t \geq t_0.$

Theorem¹

Let $(e^{tA})_{t\geq 0}$ be a C_0 -semigroup on E such that

(a) $(e^{tA})_{t\geq 0}$ is eventually norm continuous and s(A) = 0. (b) $0 \in \sigma(A)$ and $\sigma(A) \cap i\mathbb{R}$ contains only poles of the resolvent. (c) $\forall f \geq 0 \forall n \in \mathbb{N} \exists t_0 \geq 0 \exists c > 0 : \mathbb{1}_{K_n} e^{tA} f \geq c \mathbb{1} \forall t \geq t_0$. Then e^{tA} converges uniformly as $t \to \infty$.

- S. Arora, "Locally eventually positive operator semigroups," *To appear in J. Oper. Theory.*
- S. Arora and J. Glück, "Spectrum and convergence of eventually positive operator semigroups," *To appear in Semigroup Forum*.
- D. Daners, J. Glück, and J. B. Kennedy, "Eventually positive semigroups of linear operators," J. Math. Anal. Appl., vol. 433, no. 2, pp. 1561–1593, 2016.
- H. R. Thieme, "Balanced exponential growth of operator semigroups," J. Math. Anal. Appl., vol. 223, no. 1, pp. 30–49, 1998.