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Semigroups that (eventually) preserve positivity

Consider the abstract Cauchy problem

u̇(t) = Au(t) (t ≥ 0), u(0) = u0;

where A is the generator of a C0-semigroup on a Banach space E.
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where A is the generator of a C0-semigroup on a Banach space E.

Example (Finite Dimensions)
On E = R4, let

A =


1 1 1 1
1 1 1 1
1 1 1 1
1 0 1 1

.

Then etA =
∑∞
k=0

tkAk

k! ≥ 0 for all t ≥ 0.
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Example (Finite Dimensions)
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On E = L2(0, 1), consider A : u 7→ u′′ with
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Consider the abstract Cauchy problem

u̇(t) = Au(t) (t ≥ 0), u(0) = u0;

where A is the generator of a C0-semigroup on a Banach space E.

Example (Dirichlet-to-Neumann)
Let Ω ⊆ R2 : unit disk and ∆D : Dirichlet Laplacian on L2(Ω).
For g ∈ L2(∂Ω) and λ ∈ R \ σ(∆D), we solve,

∆f = λf in Ω, f = g on ∂Ω.

Let E = L2(∂Ω) and for smooth f , define Dλ : g 7→ ∂f
∂ν .

For large λ: e−tDλ ≥ 0 for all t ≥ 0.

For certain λ: e−tDλ ≥ 0 for all large t but not for small t.1
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Consider the abstract Cauchy problem

u̇(t) = Au(t) (t ≥ 0), u(0) = u0;

where A is the generator of a C0-semigroup on a Banach space E.

Even more examples:
• D. Daners, J. Glück, and J. B. Kennedy (Jan & Sep 2016)

• D. Daners and J. Glück (Jun 2018)

• F. Gregorio and D. Mugnolo (2020)

• R. Denk, M. Kunze, and D. Ploß (2021)
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∃ t0 ≥ 0 ∀f ≥ 0 ∀ t ≥ t0 : etAf ≥ 0.
Theorem
Let (etA)t≥0 be a positive C0-semigroup on a Banach lattice E.
Then s(A) = ω0(A) when

• E is a Hilbert space.

• E = Lp(Ω,Σ, µ) for σ-finite measure spaces (Ω,Σ, µ).

• E = C(K) or E = C0(Ω).
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Some nice properties

A C0-semigroup (etA)t≥0 on a Banach lattice E is called
eventually positive if

∃ t0 ≥ 0 ∀f ≥ 0 ∀ t ≥ t0 : etAf ≥ 0.
Theorem
Let (etA)t≥0 be a eventually positive C0-semigroup on a Banach
lattice E. Then s(A) = ω0(A) when
• E is a Hilbert space.

• E = L1(Ω,Σ, µ) with µ ≥ 0.

• E = C(K) and A is real.

1Daners, Glück, and Kennedy (Jan 2016)
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Some more spectral results

Let (etA)t≥0 be a C0-semigroup on a Banach lattice E.

Theorem1

If (etA)t≥0 is positive and bounded, then σ(A) ∩ iR is empty or
cyclic, i.e., iβ ∈ σ(A) ∩ iR⇒ inβ ∈ σ(A) ∩ iR for all n ∈ N.

Theorem2

Suppose (etA)t≥0 is eventually positive and for each f ∈ E, the
orbit {etAf : t ≥ 0} is relatively compact in weak topology.

If iβ ∈ iR is an eigenvalue of A, then so is inβ for all n ∈ N.

Application3: Let E = L2(0, 1), A : u 7→ u′′′ with periodic boundary
conditions. Then (etA)t≥0 is not eventually positive!

1Greiner (1982)
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Some more spectral results

Let (etA)t≥0 be an eventually norm continuous C0-semigroup on a
Banach lattice E.

Theorem
Suppose (etA)t≥0 is positive, s(A) = 0, and (etA)t≥0 is bounded.

Then σ(A) ∩ iR = {0}.
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Some more spectral results

Let (etA)t≥0 be an eventually norm continuous C0-semigroup on a
Banach lattice E.

Theorem
Suppose (etA)t≥0 is eventually positive, s(A) = 0, and (etA)t≥0
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Some convergence results

Let (etA)t≥0 be an eventually norm continuous C0-semigroup on a
Banach lattice E.

Theorem (Strong convergence)
If E is reflexive and (etA)t≥0 is positive and bounded, then
limt→∞ e

tAf exists for all f ∈ E.
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Let (etA)t≥0 be an eventually norm continuous C0-semigroup on a
Banach lattice E.

Theorem (Strong convergence)
If E is reflexive and (etA)t≥0 is positive and bounded, then
limt→∞ e

tAf exists for all f ∈ E.

Proof: Cyclicity + the ABLV theorem1.

1Arendt and Batty (1988), Lyubich and Vũ (1988)
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Some convergence results

Let (etA)t≥0 be an eventually norm continuous C0-semigroup on a
Banach lattice E.

Theorem (Strong Convergence)1

If E is reflexive and (etA)t≥0 is uniformly eventually positive and
bounded, then limt→∞ e

tAf exists for all f ∈ E.
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Some convergence results

Let (etA)t≥0 be an eventually norm continuous C0-semigroup on a
Banach lattice E.

Theorem (Strong Convergence)1

If E is reflexive and (etA)t≥0 is uniformly eventually positive and
bounded, then limt→∞ e

tAf exists for all f ∈ E.

Proof: Relies heavily on a cyclicity result for single operators2 + the
ABLV theorem.

1A. and Glück (2021)
2Glück (2017)
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Some convergence results

Let (etA)t≥0 be an eventually norm continuous C0-semigroup on a
Banach lattice E.

Theorem (Operator norm convergence)1

Suppose (etA)t≥0 is positive, s(A) = 0, and
• 0 is a first order pole of the resolvent R( · , A).

Then (etA)t≥0 converges uniformly as t→∞.

1Thieme (1998)
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A glimpse of local eventual positivity

Let Ω ⊆ Rd be a bounded domain and E = Lp(Ω), p ∈ (1,∞).
Consider compact sets Kn ⊆ Kn+1 ⊆ Ω such that Ω =

⋃
nKn.

Theorem1

Let (etA)t≥0 be a C0-semigroup on E such that

(a) (etA)t≥0 is eventually norm continuous and s(A) = 0.

(b) 0 ∈ σ(A) and σ(A) ∩ iR contains only poles of the resolvent.

(c) ∀ f ≥ 0 ∀ n ∈ N ∃ t0 ≥ 0 ∃ c > 0 : 1Kn etAf ≥ c1 ∀ t ≥ t0.

Then etA converges uniformly as t→∞.
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