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The elliptic problem

We look for (weak) solutions of the quasilinear elliptic equation

(P) − div
(
A(x , u)|∇u|p−2∇u

)
+

1

p
At(x , u)|∇u|p + |u|p−2u = g(x , u) in RN

where

I N ≥ 3, p > 1;

I A : RN × R→ R is a C 1-Carathéodory function, i.e. A(·, t) is measurable for all t ∈ R and

A(x , ·) is C 1 for a.e. x ∈ RN with At(x , t) = ∂A
∂t (x , t);

I g : RN × R→ R is a Carathéodory function, i.e. g(·, t) is measurable for all t ∈ R and g(x , ·) is

continous for a.e. x ∈ RN .

If A(x , t) ≡ 1 and p = 2:

−∆u + u = g(x , u) in RN
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Variational setting

The natural action functional associated to problem (P) is

J(u) =
1

p

∫
RN

A(x , u)|∇u|p dx +
1

p

∫
RN

|u|p dx − 1

p

∫
RN

G (x , u) dx

(here G (x , t) =
∫ t

0
g(x , s) ds)

which is not defined in W 1,p(RN) for a general coefficient A in the principal part. We note that if

0 < α∗ ≤ A(x , t) ≤ α2 but with ∂A
∂t (x , t) 6= 0, functional J is well defined in W 1,p(RN) but it is

Gâteaux differentiable only along directions in the Banach space X = W 1,p(RN) ∩ L∞(RN).

Anyway, under suitable assumptions, J is C 1 in X equipped with

‖u‖X = ‖u‖W + |u|∞

where ‖u‖W =
(
|∇u|pp + |u|pp

) 1
p and |u|∞ = ess sup

RN

|u|.
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Variational setting

More precisely, assume that:

(H1) A(x , t) and At(x , t) are essentially bounded if t is bounded, i.e.

sup
|t|≤r
|A(·, t)| ∈ L∞(RN), sup

|t|≤r
|At(·, t)| ∈ L∞(RN) for any r > 0;

(G1) a1, a2 > 0 and q ≥ p exist such that

|g(x , t)| ≤ a1|t|p−1 + a2|t|q−1 a.e. in RN , for all t ∈ R.

The following regularity result holds:
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Regularity result

Proposition (Regularity Result)

Assume that (H1) and (G1) hold. If (un)n ⊂ X , u ∈ X , M > 0 are such that

I ‖un − u‖W → 0, un → u a.e. in RN if n→ +∞,

I |un|∞ ≤ M for all n ∈ N,

then

J(un)→ J(u) and ‖dJ(un)− dJ(u)‖X ′ → 0,

where for any u, v ∈ X we have

〈dJ(u), v〉 =

∫
RN

A(x , u)|∇u|p−2∇u · ∇v dx +
1

p

∫
RN

At(x , u)v |∇u|p dx

+

∫
RN

|u|p−2uv dx −
∫
RN

g(x , u)v dx .
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Remarks

Remark

From the previous proposition it follows that

I J ∈ C 1(X ,R)

I Critical points of J in X are bounded weak solutions of problem (P).

Remark

Functional J does not verify the classical Palais-Smale condition in X as Palais-Smale sequences

may exist which are unbounded in X but converge in the W 1,p(RN)-norm.

[Candela - Palmieri, Calc. Var. 2017]
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wCPS condition: definition

Taking β ∈ R, a sequence (un)n ⊂ X is a (CPS)β-sequence if

lim
n

J(un) = β and lim
n
‖dJ(un)‖X ′(1 + ‖un‖X ) = 0.

Definition

Functional J satisfies a weak version of the Cerami’s variant of Palais-Smale condition at level β

(β ∈ R), briefly (wCPS)β condition, if taking any (CPS)β-sequence (un)n a point u ∈ X exists such

that

(i) limn ‖un − u‖W = 0 (up to subsequences),

(ii) J(u) = β, dJ(u) = 0
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wCPS condition: remarks

This weaker compactness condition is enough to prove a Deformation Lemma and then some

abstract critical point theorems.

Theorem (generalized version of the Mountain Pass Theorem)

Let J ∈ C 1(X ,R) be such that J(0) = 0 and the (wCPS) condition holds in R.

Moreover, assume that two constants r , ρ > 0 and a point e ∈ X exist such that

u ∈ X , ‖u‖W = r =⇒ J(u) ≥ ρ

‖e‖W > r and J(e) < ρ.

Then, J has a Mountain pass critical point u∗ ∈ X such that J(u∗) ≥ ρ.

[Candela, Palmieri Discrete and Continous Dynam. Systems, Suppl., 2009]
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Main result

We consider the space
Xr = W 1,p

r (RN) ∩ L∞(RN)

endowed with ‖ · ‖X and from now on, for simplicity, we still denote by J the restriction of J to Xr .

Theorem (Candela-Salvatore, Nonlinear Anal. 2020)

Assume that A(x , t) and g(x , t) satisfy (H1), (G1) and some positive constants α0, α1, α2, R and

µ > p exist s.t.

(H2) A(x , t) ≥ α0 a.e. in RN , for all t ∈ R,

(H3) pA(x , t) + At(x , t)t ≥ α1A(x , t) a.e. in RN , for all t ∈ R,

(H4) (µ− p)A(x , t)− At(x , t)t ≥ α2A(x , t) a.e. in RN , for all t ∈ R,

(H5) A(x , t) = A(|x |, t) a.e. in RN , for all t ∈ R,

(G2) lim
t→0

g(x , t)

|t|p−1
= 0 uniformly for a.e. x ∈ RN ,

(G3) 0 < µG (x , t) ≤ g(x , t) a.e. in RN , for all t ∈ R,

(G4) g(x , t) = g(|x |, t) a.e. in RN , for all t ∈ R.

Then, if p < q < p∗, (P) has at least one weak bounded nontrivial radial solution.
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Main result

Remark

If we consider the particular coefficient

A(x , t) = A1(x) + A2(x)|t|γ

with A1,A2 ∈ L∞(RN), then the previous assumptions on A are verified if

γ > 1, A1(x) ≥ α0, A2(x) ≥ 0 a.e. in RN , A1,A2 radially symmetric.

In particular, if A(x , t) = 1, we obtain the following result:

Corollary

Assume that g(x , t) verify (G1) – (G4). Then, if p < q < p∗, the p-Laplacian equation

−div
(
|∇u|p−2∇u

)
+ |u|p−2u = g(x , u) in RN

has at least one weak bounded nontrivial radial solution.
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Proof of the main result

By adapting the arguments in Bérestycki-Lions, Arch. Ration. Mech. Anal. 1983, the following

results can be stated:

Proposition (Radial Lemma)

If p > 1, then every radial function u ∈W 1,p
r (RN) is almost everywhere equal to a function U(x),

continous for x 6= 0, s.t.

|U(x)| ≤ C
‖u‖W
|x |θ

for all x ∈ RN with |x | ≥ 1

for suitable constants C , θ > 0 depending only on N and p.

Proposition (Compact Imbedding)

If p > 1, then the following compact impeddings hold:

W 1,p
r (RN) ↪→↪→ L`(RN) for any p < ` < p∗.
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Proof of the main Theorem

In order to apply the Generalized Version of the Mountain Pass Theorem, we need to prove that J

verifies the (wCPS) condition in R if p < q < p∗.

Let (un)n be a (CPS)β-sequence (β ∈ R). It is easy to prove that (un)n is bounded in W 1,p
r (RN)

then, from the Radial Lemma, an uniform estimate holds, i.e.

|un(x)| ≤ β0 for a.e. x ∈ RN , |x | ≥ 1, for all n ∈ N.

Moreover, there exist u ∈W 1,p
r (RN) s.t., up to subsequences,

un → u weakly in W 1,p
r (RN)

un → u strongly in L`(RN) for each ` ∈ ]p, p∗[

un → u a.e. in RN .

Clearly, the Radial Lemma implies that

ess sup
|x|≥1

|u(x)| is finite.
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Existence of solutions

Furthermore, adapting the arguments developed by Candela-Palmieri (Advanced Nonlinear Stud.

2006, Calculus of Variations 2009) we prove that

I u is bounded on the bounded sets, hence u ∈ L∞(RN)

I ‖un − u‖W → 0 if n→∞

I J(u) = β and dJ(u) = 0 ,

i.e. (wCPS)β holds.

Finally, we note that J has the Mountain Pass geometry, then a mountain pass critical point of J in

Xr exists and the existence of at least one nontrivial radial bounded solution follows.
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Thank you for your attention
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