Existence of radial bounded solutions for some quasi-linear elliptic equations in \mathbb{R}^{N}

Addolorata Salvatore

addolorata.salvatore@uniba.it

Dipartimento di Matematica

Università degli Studi di Bari Aldo Moro, Bari (Italy)

Topological Methods in Differential Equations

Joint work with Anna Maria Candela

A quasilinear elliptic equation

2 Variational setting

3 wCPS

4 Existence of solutions

A quasilinear elliptic equation	Variational setting	wCPS	
The elliptic problem			

We look for (weak) solutions of the quasilinear elliptic equation

(P)
$$-\operatorname{div}\left(A(x,u)|\nabla u|^{p-2}\nabla u\right) + \frac{1}{p}A_t(x,u)|\nabla u|^p + |u|^{p-2}u = g(x,u) \quad \text{in } \mathbb{R}^N$$

where

- ▶ N ≥ 3, p > 1;
- ► $A : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ is a C^1 -Carathéodory function, *i.e.* $A(\cdot, t)$ is measurable for all $t \in \mathbb{R}$ and $A(x, \cdot)$ is C^1 for a.e. $x \in \mathbb{R}^N$ with $A_t(x, t) = \frac{\partial A}{\partial t}(x, t)$;
- ▶ $g : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function, *i.e.* $g(\cdot, t)$ is measurable for all $t \in \mathbb{R}$ and $g(x, \cdot)$ is continous for a.e. $x \in \mathbb{R}^N$.

If $A(x, t) \equiv 1$ and p = 2:

$$-\Delta u + u = g(x, u)$$
 in \mathbb{R}^N

A quasilinear elliptic equation	Variational setting	wCPS	
	0000		0000000
Variational cotting			
Variational setting			

The natural action functional associated to problem (P) is

$$J(u) = \frac{1}{p} \int_{\mathbb{R}^N} A(x, u) |\nabla u|^p \, \mathrm{d}x + \frac{1}{p} \int_{\mathbb{R}^N} |u|^p \, \mathrm{d}x - \frac{1}{p} \int_{\mathbb{R}^N} G(x, u) \, \mathrm{d}x$$

(here $G(x,t) = \int_0^t g(x,s) \, ds$) which is not defined in $W^{1,p}(\mathbb{R}^N)$ for a general coefficient A in the principal part. We note that if $0 < \alpha_* \le A(x,t) \le \alpha_2$ but with $\frac{\partial A}{\partial t}(x,t) \ne 0$, functional J is well defined in $W^{1,p}(\mathbb{R}^N)$ but it is Gâteaux differentiable only along directions in the Banach space $X = W^{1,p}(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N)$. Anyway, under suitable assumptions, J is C^1 in X equipped with

$$||u||_{X} = ||u||_{W} + |u|_{\infty}$$

where
$$\|u\|_W = \left(|\nabla u|_p^p + |u|_p^p\right)^{\frac{1}{p}}$$
 and $|u|_{\infty} = \operatorname{ess\,sup}_{\mathbb{R}^N} |u|.$

A quasilinear elliptic equation	Variational setting	wCPS	
	0000		0000000
Variational setting			
variational setting			

More precisely, assume that:

(H₁) A(x, t) and $A_t(x, t)$ are essentially bounded if t is bounded, *i.e.*

 $\sup_{|t|\leq r} |A(\cdot,t)| \in L^{\infty}(\mathbb{R}^N), \qquad \sup_{|t|\leq r} |A_t(\cdot,t)| \in L^{\infty}(\mathbb{R}^N) \qquad \text{for any } r>0;$

(G₁) $a_1, a_2 > 0$ and $q \ge p$ exist such that

 $|g(x,t)| \leq a_1|t|^{p-1} + a_2|t|^{q-1}$ a.e. in \mathbb{R}^N , for all $t \in \mathbb{R}$.

The following regularity result holds:

A quasilinear elliptic equation	Variational setting	wCPS	
	0000	00	0000000
Domulouity, yooult			
Regularity result			

Proposition (Regularity Result)

Assume that (H_1) and (G_1) hold. If $(u_n)_n \subset X$, $u \in X$, M > 0 are such that

$$\blacktriangleright \|u_n - u\|_W \to 0, \quad u_n \to u \quad \text{ a.e. in } \mathbb{R}^N \quad \text{if } n \to +\infty,$$

$$\blacktriangleright ||u_n|_{\infty} \leq M \quad \text{ for all } n \in \mathbb{N},$$

then

$$J(u_n) \rightarrow J(u)$$
 and $\|dJ(u_n) - dJ(u)\|_{X'} \rightarrow 0$,

where for any $u, v \in X$ we have

$$\langle \mathsf{d}J(u), v \rangle = \int_{\mathbb{R}^N} A(x, u) |\nabla u|^{p-2} \nabla u \cdot \nabla v \, \mathsf{d}x + \frac{1}{p} \int_{\mathbb{R}^N} A_t(x, u) v |\nabla u|^p \, \mathsf{d}x$$
$$+ \int_{\mathbb{R}^N} |u|^{p-2} uv \, \mathsf{d}x - \int_{\mathbb{R}^N} g(x, u) v \, \mathsf{d}x.$$

A quasilinear elliptic equation	Variational setting	wCPS	
	0000		000000
Remarks			

Remark

From the previous proposition it follows that

- ▶ $J \in C^1(X, \mathbb{R})$
- Critical points of J in X are bounded weak solutions of problem (P).

Remark

Functional J does not verify the classical Palais-Smale condition in X as Palais-Smale sequences may exist which are unbounded in X but converge in the $W^{1,p}(\mathbb{R}^N)$ -norm.

[Candela - Palmieri, Calc. Var. 2017]

A quasilinear elliptic equation	Variational setting	wCPS	Existence of solutions
		•0	
wCPS conditions d	-finition		

Taking $\beta \in \mathbb{R}$, a sequence $(u_n)_n \subset X$ is a $(CPS)_{\beta}$ -sequence if

$$\lim_n J(u_n) = \beta \qquad \text{and} \qquad \lim_n \|\mathrm{d} J(u_n)\|_{X'}(1+\|u_n\|_X) = 0.$$

Definition

Functional J satisfies a weak version of the Cerami's variant of Palais-Smale condition at level β ($\beta \in \mathbb{R}$), briefly (wCPS)_{β} condition, if taking any (CPS)_{β}-sequence $(u_n)_n$ a point $u \in X$ exists such that

(i) $\lim_{n} ||u_{n} - u||_{W} = 0$ (up to subsequences), (ii) $J(u) = \beta$, dJ(u) = 0

A quasilinear elliptic equation	Variational setting	wCPS	
	0000	00	0000000
wCPS condition: re	amarks		
	TIIDINS		

This weaker compactness condition is enough to prove a Deformation Lemma and then some abstract critical point theorems.

Theorem (generalized version of the Mountain Pass Theorem)

Let $J \in C^1(X, \mathbb{R})$ be such that J(0) = 0 and the (wCPS) condition holds in \mathbb{R} . Moreover, assume that two constants $r, \rho > 0$ and a point $e \in X$ exist such that

$$u \in X, ||u||_W = r \implies J(u) \ge \rho$$

$$\|e\|_W > r$$
 and $J(e) < \rho$.

Then, J has a Mountain pass critical point $u^* \in X$ such that $J(u^*) \ge \rho$. [Candela, Palmieri Discrete and Continous Dynam. Systems, Suppl., 2009]

A quasilinear elliptic equation	Variational setting	wCPS	Existence of solutions
			•000000

Main result

We consider the space

$$X_r = W^{1,p}_r(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N)$$

endowed with $\|\cdot\|_X$ and from now on, for simplicity, we still denote by J the restriction of J to X_r .

Theorem (Candela-Salvatore, Nonlinear Anal. 2020)

Assume that A(x, t) and g(x, t) satisfy (H₁), (G₁) and some positive constants α_0 , α_1 , α_2 , R and $\mu > p$ exist s.t.

$$\begin{array}{lll} (\mathsf{H}_2) & A(x,t) \geq \alpha_0 & \text{a.e. in } \mathbb{R}^N, \text{ for all } t \in \mathbb{R}, \\ (\mathsf{H}_3) & pA(x,t) + A_t(x,t)t \geq \alpha_1 A(x,t) & \text{a.e. in } \mathbb{R}^N, \text{ for all } t \in \mathbb{R}, \\ (\mathsf{H}_4) & (\mu - p)A(x,t) - A_t(x,t)t \geq \alpha_2 A(x,t) & \text{a.e. in } \mathbb{R}^N, \text{ for all } t \in \mathbb{R}, \\ (\mathsf{H}_5) & A(x,t) = A(|x|,t) & \text{a.e. in } \mathbb{R}^N, \text{ for all } t \in \mathbb{R}, \\ (\mathsf{G}_2) & \lim_{t \to 0} \frac{g(x,t)}{|t|^{p-1}} = 0 & \text{uniformly for a.e. } x \in \mathbb{R}^N, \\ (\mathsf{G}_3) & 0 < \mu G(x,t) \leq g(x,t) & \text{a.e. in } \mathbb{R}^N, \text{ for all } t \in \mathbb{R}, \\ (\mathsf{G}_4) & g(x,t) = g(|x|,t) & \text{a.e. in } \mathbb{R}^N, \text{ for all } t \in \mathbb{R}. \end{array}$$

Then, if $p < q < p^*$, (P) has at least one weak bounded nontrivial radial solution.

A quasilinear elliptic equation	Variational setting	wCPS	Existence of solutions
	0000		000000
Main result			

Remark

If we consider the particular coefficient

$$A(x,t) = A_1(x) + A_2(x)|t|^{\gamma}$$

with $A_1, A_2 \in L^{\infty}(\mathbb{R}^N)$, then the previous assumptions on A are verified if

$$\gamma>1, \quad A_1(x)\geq lpha_0, \quad A_2(x)\geq 0 \qquad \text{a.e. in } \mathbb{R}^N, \qquad A_1,A_2 \text{ radially symmetric}$$

In particular, if A(x, t) = 1, we obtain the following result:

Corollary

Assume that g(x, t) verify $(G_1) - (G_4)$. Then, if $p < q < p^*$, the *p*-Laplacian equation

$$-\operatorname{div}\left(|
abla u|^{p-2}
abla u
ight)+|u|^{p-2}u=g(x,u) \quad ext{in } \mathbb{R}^N$$

has at least one weak bounded nontrivial radial solution.

A quasilinear elliptic equation	Variational setting	wCPS	Existence of solutions
			000000

Proof of the main result

By adapting the arguments in **Bérestycki-Lions**, *Arch. Ration. Mech. Anal.* 1983, the following results can be stated:

Proposition (Radial Lemma)

If p > 1, then every radial function $u \in W_r^{1,p}(\mathbb{R}^N)$ is almost everywhere equal to a function U(x), continous for $x \neq 0$, s.t.

$$|U(x)| \leq C rac{\|u\|_W}{|x|^{ heta}}$$
 for all $x \in \mathbb{R}^N$ with $|x| \geq 1$

for suitable constants $C, \theta > 0$ depending only on N and p.

Proposition (Compact Imbedding)

If p > 1, then the following compact impeddings hold:

$$W^{1,p}_r(\mathbb{R}^N) \hookrightarrow L^\ell(\mathbb{R}^N) \qquad ext{for any } p < \ell < p^*.$$

A quasilinear elliptic equation	Variational setting	wCPS	Existence of solutions
			0000000

Proof of the main Theorem

In order to apply the Generalized Version of the Mountain Pass Theorem, we need to prove that J verifies the (wCPS) condition in \mathbb{R} if $p < q < p^*$.

Let $(u_n)_n$ be a $(CPS)_{\beta}$ -sequence $(\beta \in \mathbb{R})$. It is easy to prove that $(u_n)_n$ is bounded in $W_r^{1,p}(\mathbb{R}^N)$ then, from the Radial Lemma, an uniform estimate holds, *i.e.*

 $|u_n(x)| \leq \beta_0$ for a.e. $x \in \mathbb{R}^N$, $|x| \geq 1$, for all $n \in \mathbb{N}$.

Moreover, there exist $u \in W^{1,p}_r(\mathbb{R}^N)$ s.t., up to subsequences,

$$\begin{array}{ll} u_n \to u & \text{weakly in } W_r^{1,p}(\mathbb{R}^N) \\ u_n \to u & \text{strongly in } L^{\ell}(\mathbb{R}^N) \text{ for each } \ell \in]p, p^*[\\ u_n \to u & \text{a.e. in } \mathbb{R}^N. \end{array}$$

Clearly, the Radial Lemma implies that

$$\mathrm{ess\,sup}_{|x|\geq 1} |u(x)|$$
 is finite.

A quasilinear elliptic equation	Variational setting	wCPS	Existence of solutions
	0000		0000000
Existence of solution	ns		

Furthermore, adapting the arguments developed by **Candela-Palmieri** (*Advanced Nonlinear Stud.* 2006, *Calculus of Variations* 2009) we prove that

- ▶ *u* is bounded on the bounded sets, hence $u \in L^{\infty}(\mathbb{R}^N)$
- $\blacktriangleright \ \|u_n u\|_W \to 0 \quad \text{if } n \to \infty$
- ▶ $J(u) = \beta$ and dJ(u) = 0,

i.e. $(wCPS)_{\beta}$ holds.

Finally, we note that J has the Mountain Pass geometry, then a mountain pass critical point of J in X_r exists and the existence of at least one nontrivial radial bounded solution follows.

A quasilinear elliptic equation	Variational setting	wCPS	Existence of solutions
			0000000

Papers in preparation

A. M. Candela, G. Palmieri, A. Salvatore

Existence of solutions of Modified Schrödinger equations on unbounded domains

A. M. Candela, A. Salvatore, C. Sportelli

Existence and multiplicity results for some weighted quasilinear elliptic equation in \mathbb{R}^N

A quasilinear elliptic equation	Variational setting	wCPS	Existence of solutions
	0000	00	000000

Thank you for your attention