Trivalent dihedrants and bi-dihedrants

Mimi Zhang
School of Mathematical Sciences, Hebei Normal University

Joint work with Professor Jin-Xin Zhou
June 23, 2021

Contents

(1) Introduction
(2) Trivalent dihedrants
(3) Trivalent bi-dihedrants

Definitions

- All graphs considered are finite, connected, simple and undirected.
- A graph is vertex-transitive (edge-transitive, arc-transitive) if its automorphism group acts transitively on its vertices (edges, arcs).
- Cayley graphs: Given a finite group G and an inverse closed subset $S \subseteq G \backslash\{1\}$, the Cayley graph $\operatorname{Cay}(G, S)$ on G with respect to S is defined to have vertex set G and edge set $\{\{g, s g\} \mid g \in G, s \in S\}$
- $R(G)=\{R(g) \mid g \in G\} \leq \operatorname{Aut}(\operatorname{Cay}(G, S))$.
- Cay (G, S) is normal if $R(G)$ is normal in $\operatorname{Aut}(\operatorname{Cay}(G, S))$.
- A graph is isomornhic to a Cayley graph over $G \Longleftrightarrow$ it admits a group isomorphic G as a regular group of automorphisms.

Definitions

- All graphs considered are finite, connected, simple and undirected.
- A graph is vertex-transitive (edge-transitive, arc-transitive) if its automorphism group acts transitively on its vertices (edges, arcs).
- Cayley graphs: Given a finite group G and an inverse closed subset $S \subseteq G \backslash\{1\}$, the Cayley graph $\operatorname{Cay}(G, S)$ on G with respect to S is defined to have vertex set G and edge set $\{\{g, s g\} \mid g \in G, s \in S\}$.
- $R(G)=\{R(g) \mid g \in G\} \leq \operatorname{Aut}(\operatorname{Cay}(G, S))$.
- Cay (G, S) is normal if $R(G)$ is normal in $\operatorname{Aut}(\operatorname{Cay}(G, S))$
- A graph is isomornhic to a Cayley graph over $G \Longleftrightarrow$ it admits a group isomorphic G as a regular group of automorphisms.

Definitions

- All graphs considered are finite, connected, simple and undirected.
- A graph is vertex-transitive (edge-transitive, arc-transitive) if its automorphism group acts transitively on its vertices (edges, arcs).
- Cayley graphs: Given a finite group G and an inverse closed subset $S \subseteq G \backslash\{1\}$, the Cayley graph $\operatorname{Cay}(G, S)$ on G with respect to S is defined to have vertex set G and edge set $\{\{g, s g\} \mid g \in G, s \in S\}$.
- $R(G)=\{R(g) \mid g \in G\} \leq \operatorname{Aut}(\operatorname{Cay}(G, S))$.
- Cay (G, S) is normal if $R(G)$ is normal in $\operatorname{Aut}(\operatorname{Cay}(G, S))$.
- A graph is isomorphic to a Cayley graph over $G \Longleftrightarrow$ it admits a group isomorphic G as a regular group of automorphisms.

Definitions

- All graphs considered are finite, connected, simple and undirected.
- A graph is vertex-transitive (edge-transitive, arc-transitive) if its automorphism group acts transitively on its vertices (edges, arcs).
- Cayley graphs: Given a finite group G and an inverse closed subset $S \subseteq G \backslash\{1\}$, the Cayley graph $\operatorname{Cay}(G, S)$ on G with respect to S is defined to have vertex set G and edge set $\{\{g, s g\} \mid g \in G, s \in S\}$.
- $R(G)=\{R(g) \mid g \in G\} \leq \operatorname{Aut}(\operatorname{Cay}(G, S))$.
- $\operatorname{Cay}(G, S)$ is normal if $R(G)$ is normal in $\operatorname{Aut}(\operatorname{Cay}(G, S))$.
- A graph is isomorphic to a Cayley graph over $G \Longleftrightarrow$ it admits a group isomorphic G as a regular group of automorphisms.

Definitions

- A graph is called a bi-Cayley graph over H if it admits a group isomorphic H as a semiregular group of automorphisms with two vertex-orbits.
- Given a finite group H. Let $R, L, S \subseteq H$ such that $R^{-1}=R$, $L^{-1}=L$ and $1_{H} \notin R \cup L$.
The bi-Cayley graph over H, denoted by $\Gamma=\operatorname{BiCay}(H, R, L, S)$:
Vertex set: $V(\Gamma)=H_{0} \cup H_{1}$, where $H_{i}=\left\{h_{i} \mid h \in H\right\}, i=0,1$.
Edge set: $E(\Gamma)=E_{0} \cup E_{1} \cup E_{01}$, where

$$
\begin{aligned}
E_{0} & =\left\{\left\{h_{0}, g_{0}\right\} \mid g h^{-1} \in R\right\} \\
E_{1} & =\left\{\left\{h_{1}, g_{1}\right\} \mid g h^{-1} \in L\right\} \\
E_{01} & =\left\{\left\{h_{0}, g_{1}\right\} \mid g h^{-1} \in S\right\}
\end{aligned}
$$

Definitions

- If $|R|=|L|=s$, then $\operatorname{BiCay}(H, R, L, S)$ is said to be an s-type bi-Cayley graph.
- A bi-Cayley graph over a cyclic group is simply called a bicirculant.
- A bi-Cayley graph over a abelian group is simply called a bi-abeliant.
- A Cayley (resp. bi-Cayley) graph on a dihedral group is called a dihedrant (resp. bi-dihedrant).

Examples

- The smallest vertex-transitive non-Cayley graph:

Figure: Petersen graph

Examples

- The smallest vertex-transitive non-Cayley graph:

Figure: Petersen graph
$\operatorname{BiCay}\left(\mathbb{Z}_{5},\{1,4\},\{2,3\},\{0\}\right)$

Examples

- The generalized Petersen graph $P(n, t)$

Definition

Let $n \geq 3$ and $1 \leq t \leq n / 2$. The generalized Petersen graph $P(n, t)$ is the graph with vertex set $\left\{\left\{x_{i}, y_{i}\right\} \mid i \in \mathbb{Z}_{n}\right\}$ and edge set the union the out edges $\left\{\left\{x_{i}, x_{i+1}\right\} \mid i \in \mathbb{Z}_{n}\right\}$, the inner edges $\left\{\left\{y_{i}, y_{i+t}\right\} \mid i \in \mathbb{Z}_{n}\right\}$ and the spokes $\left\{\left\{x_{i}, y_{i}\right\} \mid i \in \mathbb{Z}_{n}\right\}$.

Examples

- The generalized Petersen graph $P(n, t)$

Definition

Let $n \geq 3$ and $1 \leq t \leq n / 2$. The generalized Petersen graph $P(n, t)$ is the graph with vertex set $\left\{\left\{x_{i}, y_{i}\right\} \mid i \in \mathbb{Z}_{n}\right\}$ and edge set the union the out edges $\left\{\left\{x_{i}, x_{i+1}\right\} \mid i \in \mathbb{Z}_{n}\right\}$, the inner edges $\left\{\left\{y_{i}, y_{i+t}\right\} \mid i \in \mathbb{Z}_{n}\right\}$ and the spokes $\left\{\left\{x_{i}, y_{i}\right\} \mid i \in \mathbb{Z}_{n}\right\}$.

- $P(n, t) \cong \operatorname{BiCay}\left(\mathbb{Z}_{n},\{1,-1\},\{t,-t\},\{0\}\right)$

Examples

Theorem

$P(n, t)$ is vertex-transitive if and only if $t^{2} \equiv \pm 1(\bmod n)$ or $(n, t)=(10,2)$. Moreover, if $t^{2} \equiv-1(\bmod n)$, then $P(n, t)$ is vertex-transitive non-Cayley.

- R. Frucht, J.E. Graver, M.E. Watkins, The groups of the generalized Petersen graphs, Proc. Cambridge Philos. Soc. 70 (1974) 211-218.
- R. Nedela, M. Škoviera, Which generalized Petersen graphs are not Cayley graphs? J. Graph Theory 19 (1995) 1-11.

Background

- D. Marušič and T. Pisanski classified all trivalent vertex-transitive bicirculants; ${ }^{12}$
- J.-X. Zhou and Y.-Q. Feng classfied all trivalent vertex-transitive bi-abeliants. ${ }^{3}$

[^0]
Motivation

Classify trivalent vertex-transitive non-Cayley bi-dihdrants.

By checking the census of trivalent vertex-transitive graphs of order up to $1000,{ }^{4}$ there are 981 non-Cayley graphs, and among these graphs, 233 graphs are non-Cayley bi-dihedrants.

[^1]
Dihedrants

- In 2000, Marušič and Pisanski gave a classification of trivalent arc-transitive dihedrants. ${ }^{5}$
- S. Du, A. Malnič and D. Marušič gave the complete classification of 2-arc-transitive dihedrants. ${ }^{6} 7$
- For each prime p, every non-arc-transitive trivalent dihedrant of order $4 p$ or $8 p$ is either a normal Cayley graph, or isomorphic to the cross ladder graph. ${ }^{8} 9$

[^2]
The cross ladder graph

Definition

For an integer $m \geq 2$, the cross ladder graph $\mathrm{CL}_{4 m}$ has vertex set $V_{0} \cup V_{1} \cup \ldots V_{2 m-2} \cup V_{2 m-1}$, where $V_{i}=\left\{x_{i}^{0}, x_{i}^{1}\right\}$, and edge set $\left\{\left\{x_{2 i}^{r}, x_{2 i+1}^{r}\right\},\left\{x_{2 i+1}^{r}, x_{2 i+2}^{s}\right\} \mid i \in \mathbb{Z}_{m}, r, s \in \mathbb{Z}_{2}\right\}$.

Trivalent dihedrants

Theorem 1 (Zhang \&Zhou, AMC, 2021)

Let $\Sigma=\operatorname{Cay}(H, S)$ be a connected trivalent Cayley graph, where $H=\left\langle a, b \mid a^{n}=b^{2}=1, b a b=a^{-1}\right\rangle(n \geq 3)$. If Σ is non-arc-transitive and non-normal, then n is even and $\Sigma \cong \mathrm{CL}_{4 \cdot \frac{n}{2}}$ and $S^{\alpha}=\left\{b, b a, b a^{\frac{n}{2}}\right\}$ for some $\alpha \in \operatorname{Aut}(H)$.

The multi-cross ladder graph

Definition

The multi-cross ladder graph, denoted by $\mathrm{MCL}_{4 m, 2}$, is the graph obtained from $\mathrm{CL}_{4 m}$ by blowing up each vertex x_{i}^{r} of $\mathrm{CL}_{4 m}$ into two vertices $x_{i}^{r, 0}$ and $x_{i}^{r, 1}$.
The edge set is $\left\{\left\{x_{2 i}^{r, s}, x_{2 i+1}^{r, t}\right\},\left\{x_{2 i+1}^{r, s}, x_{2 i+2}^{s, r}\right\} \mid i \in \mathbb{Z}_{m}, r, s, t \in \mathbb{Z}_{2}\right\}$.

Figure: The multi-cross ladder graph $\mathrm{MCL}_{20,2}$

Trivalent bi-dihedrants

- Each $\mathrm{MCL}_{4 m, 2}$ is a bi-Cayley graph.
$\mathrm{MCL}_{4 m, 2} \cong \operatorname{BiCay}\left(H,\{c, c a\},\left\{c a, c a^{2} b\right\},\{1\}\right)$, where

$$
H=\left\langle a, b, c \mid a^{m}=b^{2}=c^{2}=1, a^{b}=a, a^{c}=a^{-1}, b^{c}=b\right\rangle .
$$

- If m is odd, then each $\mathrm{MCL}_{4 m, 2}$ is a bi-diheddrant. (Let $e=a b$ and $f=c a$) $\mathrm{MCL}_{4 m, 2} \cong \operatorname{BiCay}\left(H,\left\{f, f e^{m-1}\right\},\{f, f e\},\{1\}\right)$, where $H=\left\langle e, f \mid e^{2 m}=f^{2}=1, e^{f}=e^{-1}\right\rangle$

Trivalent bi-dihedrants

- Each $\mathrm{MCL}_{4 m, 2}$ is a bi-Cayley graph.
$\mathrm{MCL}_{4 m, 2} \cong \operatorname{BiCay}\left(H,\{c, c a\},\left\{c a, c a^{2} b\right\},\{1\}\right)$, where

$$
H=\left\langle a, b, c \mid a^{m}=b^{2}=c^{2}=1, a^{b}=a, a^{c}=a^{-1}, b^{c}=b\right\rangle .
$$

- If m is odd, then each $\mathrm{MCL}_{4 m, 2}$ is a bi-diheddrant.
(Let $e=a b$ and $f=c a$)
$\operatorname{MCL}_{4 m, 2} \cong \operatorname{BiCay}\left(H,\left\{f, f e^{m-1}\right\},\{f, f e\},\{1\}\right)$, where

$$
H=\left\langle e, f \mid e^{2 m}=f^{2}=1, e^{f}=e^{-1}\right\rangle
$$

Trivalent bi-dihedrants

- E. Dobson et al. shown that every $\mathrm{MCL}_{4 m, 2}$ is vertex-transitive. ${ }^{10}$
- J.-X. Zhou and Y.-Q. Feng proved that $\mathrm{MCL}_{4 p, 2}$ is a vertex-transitive non-Cayley graph for each prime $p>7$. ${ }^{11}$

Theorem 2 (Zhang \&Zhou, AMC, 2021) The multi-cross ladder graph $\mathrm{MCL}_{4 m, 2}$ is a Cayley graph if and only if either m is even, or m is odd and $3 \mid m$.

[^3]
Trivalent bi-dihedrants

- E. Dobson et al. shown that every $\mathrm{MCL}_{4 m, 2}$ is vertex-transitive. ${ }^{10}$
- J.-X. Zhou and Y.-Q. Feng proved that $\mathrm{MCL}_{4 p, 2}$ is a vertex-transitive non-Cayley graph for each prime $p>7$. ${ }^{11}$

Theorem 2 (Zhang \&Zhou, AMC, 2021)

The multi-cross ladder graph $\mathrm{MCL}_{4 m, 2}$ is a Cayley graph if and only if either m is even, or m is odd and $3 \mid m$.

[^4]
Trivalent bi-dihedrants

Theorem 3 (Zhang \&Zhou, DM, 2017)

Let $H=\left\langle a, b \mid a^{n}=b^{2}=1, b a b=a^{-1}\right\rangle(n \geq 3)$. A connected trivalent bi-dihedrant $\Gamma=\operatorname{BiCay}(H, R, L, S)$ is edge-transitive if and only if the triple (R, L, S) is equivalent to one of the triples in Table 1. Furthermore, all of the graphs in Table 1 are arc-transitive.

Trivalent bi-dihedrants

No.	n	$(R, L, S) \equiv$	Γ	Conditions	Cayley
1	$2 m$	$\left(\{b\},\left\{b a^{2 t}\right\},\{1, a\}\right)$	$\mathrm{CQ}(t, m)$	$\begin{gathered} 2 \leq t \leq m-3 \\ m \mid t^{2}+t+1 \\ \hline \end{gathered}$	Yes
2	4	$\left(\{b, b a\},\left\{b a^{2}, b a^{3}\right\},\{1\}\right)$	F016A		Yes
3	4	$(\{b\},\{b a\},\{1, a\})$	F016A		Yes
4	5	$\left(\left\{b, b a^{3}\right\},\left\{b a, b a^{2}\right\},\{1\}\right)$	F020B		No
5	5	$\left(\{b, b a\},\left\{a, a^{-1}\right\},\{1\}\right)$	F020A		No
6	6	$\left(\{b, b a\},\left\{b a^{3}, b a^{4}\right\},\{1\}\right)$	F024A		Yes
7	6	$\left(\{b\},\left\{b a^{2}\right\},\{1, a\}\right)$	F024A		Yes
8	8	$\left(\{b, b a\},\left\{b a^{2}, b a^{5}\right\},\{1\}\right)$	F032A		Yes
9	10	$\left(\left\{b, b a^{4}\right\},\left\{b a, b a^{3}\right\},\{1\}\right)$	F040A		No
10	10	$\left(\left\{b, b a^{4}\right\},\left\{a, a^{-1}\right\},\{1\}\right)$	F040A		No
11	12	$\left(\{b, b a\},\left\{b a^{3}, b a^{10}\right\},\{1\}\right)$	F048A		Yes
12	20	$\left(\left\{b, b a^{14}\right\},\left\{b a, b a^{3}\right\},\{1\}\right)$	F080A		No
13	$2 m$	$\left(\{b, b a\},\left\{b a^{-2 t}, b a^{-2 t-1}\right\},\{1\}\right)$	CQ(t, m)	$\begin{aligned} & 2 \leq t \leq m-3 \\ & m \mid t^{2}-t+1 \\ & \hline \end{aligned}$	Yes
14	$2 m$	$\left(\{b, b a\},\left\{b a^{-2 t}, b a^{-2 t+m-1}\right\},\{1\}\right)$,	CQ(t, m)	$\begin{gathered} 2 \leq t \leq m-3 \\ m \mid 2\left(t^{2}-t+1\right) \\ m \text { even, } t \text { odd } \end{gathered}$	Yes

Table 1: Trivalent edge-transitive bi-dihedrants

Trivalent bi-dihedrants

Theorem 4 (Zhang \&Zhou, DM, 2017)

Every connected trivalent vertex-transitive 0- or 1-type bi-dihedrant is a Cayley graph.

Trivalent bi-dihedrants

For 2-type:

- $H=\left\langle a, b \mid a^{n}=b^{2}=1, b a b=a^{-1}\right\rangle(n \geq 3)$,
- $\Gamma=\operatorname{BiCay}(H, R, L,\{1\})$: a connected trivalent 2-type vertex-transitive bi-Cayley graph over the group H,
- G : a minimum group of automorphisms of Γ subject to $\mathcal{R}(H) \leq G$ and G is transitive on the vertices but intransitive on the arcs of Γ.

Trivalent bi-dihedrants

Theorem 5 (Zhang \&Zhou, DM, 2017)

If H_{0} and H_{1} are blocks of imprimitivity of G on $V(\Gamma)$, then either Γ is Cayley or one of the following occurs:
(1) $(R, L, S) \equiv\left(\left\{b, b a^{\ell+1}\right\},\left\{b a, b a^{\ell^{2}+\ell+1}\right\},\{1\}\right)$, where $n \geq 5$, $\ell^{3}+\ell^{2}+\ell+1 \equiv 0(\bmod n), \ell^{2} \not \equiv 1(\bmod n) ;$
(2) $(R, L, S) \equiv\left(\left\{b a^{-\ell}, b a^{\ell}\right\},\left\{a, a^{-1}\right\},\{1\}\right)$, where $n=2 k$ and $\ell^{2} \equiv-1(\bmod k)$. Furthermore, Γ is also a bi-Cayley graph over an abelian group $\mathbb{Z}_{n} \times \mathbb{Z}_{2}$.
Furthermore, all of the graphs arising from (1)-(2) are vertex-transitive non-Cayley.

Trivalent bi-dihedrants

Theorem 6 (Zhang \&Zhou, AMC, 2021)

Suppose that H_{0} and H_{1} are not blocks of imprimitivity of G on $V(\Gamma)$. Then $\Gamma=\operatorname{BiCay}(H, R, L, S)$ is vertex-transitive non-Cayley if and only if one of the followings occurs:
(1) $(R, L, S) \equiv\left(\{b, b a\},\left\{b, b a^{2 m}\right\},\{1\}\right)$, where $n=2(2 m+1)$, $m \not \equiv 1(\bmod 3)$, and the corresponding graph is isomorphic the multi-cross ladder graph $\mathrm{MCL}_{4 m, 2}$;
(2) $(R, L, S) \equiv\left(\{b, b a\},\left\{b a^{24 \ell}, b a^{12 \ell-1}\right\},\{1\}\right)$, where $n=48 \ell$ and $\ell \geq 1$.

Theorem 7 (Zhang \&Zhou, AMC, 2021)

Let $\Gamma=\operatorname{BiCay}(R, L, S)$ be a trivalent vertex-transitive bi-dihedrant where $H=\left\langle a, b \mid a^{n}=b^{2}=1, b a b=a^{-1}\right\rangle$ is a dihedral group. Then either Γ is a Cayley graph or one of the following occurs:
(1) $(R, L, S) \equiv\left(\{b, b a\},\left\{a, a^{-1}\right\},\{1\}\right)$, where $n=5$.
(2) $(R, L, S) \equiv\left(\left\{b, b a^{\ell+1}\right\},\left\{b a, b a^{\ell^{2}+\ell+1}\right\},\{1\}\right)$, where $n \geq 5$, $\ell^{3}+\ell^{2}+\ell+1 \equiv 0(\bmod n), \ell^{2} \not \equiv 1(\bmod n)$.
(3) $(R, L, S) \equiv\left(\left\{b a^{-\ell}, b a^{\ell}\right\},\left\{a, a^{-1}\right\},\{1\}\right)$, where $n=2 m$ and $\ell^{2} \equiv-1(\bmod m)$. Furthermore, Γ is also a bi-Cayley graph over an abelian group $\mathbb{Z}_{n} \times \mathbb{Z}_{2}$.
(4) $(R, L, S) \equiv\left(\{b, b a\},\left\{b, b a^{2 m}\right\},\{1\}\right)$, where $n=2(2 m+1), m \not \equiv 1(\bmod 3)$, and the corresponding graph is isomorphic the multi-cross ladder graph $\mathrm{MCL}_{4 m, 2}$.
(5) $(R, L, S) \equiv\left(\{b, b a\},\left\{b a^{24 \ell}, b a^{12 \ell-1}\right\},\{1\}\right)$, where $n=48 \ell$ and $\ell \geq 1$.

Moreover, all of the graphs arising from (1)-(5) are vertex-transitive non-Cayley.

End

Thanks!

[^0]: ${ }^{1}$ D. Marušič, T. Pisanski, Symmetries of hexagonal molecular graphs on the torus, Croat. Chem. Acta 73 (2000) 969-981.
 ${ }^{2}$ T. Pisanski, A classification of cubic bicirculants, Discrete Math. 307 (2007) 567-578.
 3 J.-X. Zhou, Y.-Q. Feng, Cubic bi-Cayley graphs over abelian groups, European J.Combin. 36 (2014) 679=693.

[^1]: ${ }^{4}$ P. Potočnik, P. Spiga, G. Verret, Cubic vertex-transitive graphs on up to 1280 vertices, J. Symb. Comput. 50
 (2013) 465-477.

[^2]: ${ }^{5}$ D. Marušič, T. Pisanski, Symmetries of hexagonal molecular graphs on the torus, Croat. Chem. Acta 73 (2000) 969-981.
 ${ }^{6}$ S. Du, A. Malnič, D. Marušič, Classification of 2-arc-transitive dihedrants, J. Combin. Theory B 98 (2008) 1349-1372.
 ${ }^{7}$ D. Marušič, On 2-arc-transitivity of Cayley graphs, J. Combin. Theory B 87 (2003) 162-196.
 ${ }^{8}$ C. Zhou, Y.-Q. Feng, Automorphism groups of connected cubic Cayley graphs of order $4 p$, Algebra Colloq. 14 (2007) 351-359.

 9 J.-X. Zhou, M. Ghasemi, Automorhisms of a family of cubic graphs, Algebra Colloq. 20 (2013) 495-506.

[^3]: ${ }^{10}$ E. Dobson, A. Malnič, D. Marušič, L.A. Nowitz, Semiregular automorphisms of vertex-transitive graphs of certain valencies, J. Combin. Theory B 97 (2007) 371-380.

 11 J.-X. Zhou, Y.-Q. Feng, Cubic vertex-transitive non-Cayley graphs of order $8 p$, Electron. J. Comb. 19 (2012) \#P53.

[^4]: ${ }^{10}$ E. Dobson, A. Malnič, D. Marušič, L.A. Nowitz, Semiregular automorphisms of vertex-transitive graphs of certain valencies, J. Combin. Theory B 97 (2007) 371-380.
 ${ }^{11}$ J.-X. Zhou, Y.-Q. Feng, Cubic vertex-transitive non-Cayley graphs of order $8 p$, Electron. J. Comb. 19 (2012) \#P53.

