Trivalent dihedrants and bi-dihedrants

Mimi Zhang

School of Mathematical Sciences, Hebei Normal University

Joint work with Professor Jin-Xin Zhou

June 23, 2021

▶ ∢ ⊒ ▶

Contents

э

▶ ▲ 문 ▶ ▲ 문 ▶

- All graphs considered are finite, connected, simple and undirected.
- A graph is vertex-transitive (edge-transitive, arc-transitive) if its automorphism group acts transitively on its vertices (edges, arcs).
- Cayley graphs: Given a finite group G and an inverse closed subset $S \subseteq G \setminus \{1\}$, the Cayley graph Cay(G, S) on G with respect to S is defined to have vertex set G and edge set $\{\{g, sg\} \mid g \in G, s \in S\}$.

•
$$R(G) = \{R(g) \mid g \in G\} \le \operatorname{Aut}(\operatorname{Cay}(G, S)).$$

- Cay(G, S) is normal if R(G) is normal in Aut(Cay(G, S)).
- A graph is isomorphic to a Cayley graph over G ⇐⇒ it admits a group isomorphic G as a regular group of automorphisms.

- All graphs considered are finite, connected, simple and undirected.
- A graph is vertex-transitive (edge-transitive, arc-transitive) if its automorphism group acts transitively on its vertices (edges, arcs).
- Cayley graphs: Given a finite group G and an inverse closed subset $S \subseteq G \setminus \{1\}$, the Cayley graph Cay(G, S) on G with respect to S is defined to have vertex set G and edge set $\{\{g, sg\} \mid g \in G, s \in S\}$.
- $R(G) = \{R(g) \mid g \in G\} \le \operatorname{Aut}(\operatorname{Cay}(G, S)).$
- Cay(G, S) is normal if R(G) is normal in Aut(Cay(G, S)).
- A graph is isomorphic to a Cayley graph over G ⇐⇒ it admits a group isomorphic G as a regular group of automorphisms.

イロト イヨト イヨト

- All graphs considered are finite, connected, simple and undirected.
- A graph is vertex-transitive (edge-transitive, arc-transitive) if its automorphism group acts transitively on its vertices (edges, arcs).
- Cayley graphs: Given a finite group G and an inverse closed subset $S \subseteq G \setminus \{1\}$, the Cayley graph Cay(G, S) on G with respect to S is defined to have vertex set G and edge set $\{\{g, sg\} \mid g \in G, s \in S\}$.

•
$$R(G) = \{R(g) \mid g \in G\} \le \operatorname{Aut}(\operatorname{Cay}(G, S)).$$

- Cay(G, S) is normal if R(G) is normal in Aut(Cay(G, S)).
- A graph is isomorphic to a Cayley graph over G ⇐⇒ it admits a group isomorphic G as a regular group of automorphisms.

くロ と く 同 と く ヨ と 一

- All graphs considered are finite, connected, simple and undirected.
- A graph is vertex-transitive (edge-transitive, arc-transitive) if its automorphism group acts transitively on its vertices (edges, arcs).
- Cayley graphs: Given a finite group G and an inverse closed subset $S \subseteq G \setminus \{1\}$, the Cayley graph Cay(G, S) on G with respect to S is defined to have vertex set G and edge set $\{\{g, sg\} \mid g \in G, s \in S\}$.

•
$$R(G) = \{R(g) \mid g \in G\} \le \operatorname{Aut}(\operatorname{Cay}(G, S)).$$

- Cay(G, S) is normal if R(G) is normal in Aut(Cay(G, S)).
- A graph is isomorphic to a Cayley graph over G ⇐⇒ it admits a group isomorphic G as a regular group of automorphisms.

• A graph is called a bi-Cayley graph over *H* if it admits a group isomorphic *H* as a semiregular group of automorphisms with two vertex-orbits.

• Given a finite group H. Let $R, L, S \subseteq H$ such that $R^{-1} = R$, $L^{-1} = L$ and $1_H \notin R \cup L$.

The bi-Cayley graph over H, denoted by $\Gamma = \text{BiCay}(H, R, L, S)$: Vertex set: $V(\Gamma) = H_0 \cup H_1$, where $H_i = \{h_i \mid h \in H\}$, i = 0, 1.

Edge set: $E(\Gamma) = E_0 \cup E_1 \cup E_{01}$, where

- If |R| = |L| = s, then BiCay(H, R, L, S) is said to be an *s*-type bi-Cayley graph.
- A bi-Cayley graph over a cyclic group is simply called a *bicirculant*.
- A bi-Cayley graph over a abelian group is simply called a *bi-abeliant*.
- A Cayley (resp. bi-Cayley) graph on a dihedral group is called a *dihedrant* (resp. *bi-dihedrant*).

• The smallest vertex-transitive non-Cayley graph:

Figure: Petersen graph

 $BiCay(\mathbb{Z}_5, \{1,4\}, \{2,3\}, \{0\})$

3 D 🗸 3 D

• The smallest vertex-transitive non-Cayley graph:

Figure: Petersen graph

 $BiCay(\mathbb{Z}_5,\{1,4\},\{2,3\},\{0\})$

$\bullet\,$ The generalized Petersen graph $P(n,\,t)$

Definition

Let $n \geq 3$ and $1 \leq t \leq n/2$. The generalized Petersen graph P(n,t) is the graph with vertex set $\{\{x_i, y_i\} \mid i \in \mathbb{Z}_n\}$ and edge set the union the out edges $\{\{x_i, x_{i+1}\} \mid i \in \mathbb{Z}_n\}$, the inner edges $\{\{y_i, y_{i+t}\} \mid i \in \mathbb{Z}_n\}$ and the spokes $\{\{x_i, y_i\} \mid i \in \mathbb{Z}_n\}$.

• $P(n, t) \cong \operatorname{BiCay}(\mathbb{Z}_n, \{1, -1\}, \{t, -t\}, \{0\})$

• The generalized Petersen graph P(n, t)

Definition

Let $n \geq 3$ and $1 \leq t \leq n/2$. The generalized Petersen graph P(n,t) is the graph with vertex set $\{\{x_i, y_i\} \mid i \in \mathbb{Z}_n\}$ and edge set the union the out edges $\{\{x_i, x_{i+1}\} \mid i \in \mathbb{Z}_n\}$, the inner edges $\{\{y_i, y_{i+t}\} \mid i \in \mathbb{Z}_n\}$ and the spokes $\{\{x_i, y_i\} \mid i \in \mathbb{Z}_n\}$.

•
$$P(n, t) \cong \operatorname{BiCay}(\mathbb{Z}_n, \{1, -1\}, \{t, -t\}, \{0\})$$

Theorem

P(n,t) is vertex-transitive if and only if $t^2 \equiv \pm 1 \pmod{n}$ or (n,t) = (10,2). Moreover, if $t^2 \equiv -1 \pmod{n}$, then P(n,t) is vertex-transitive non-Cayley.

- R. Frucht, J.E. Graver, M.E. Watkins, The groups of the generalized Petersen graphs, Proc. Cambridge Philos. Soc. 70 (1974) 211–218.
- R. Nedela, M. Škoviera, Which generalized Petersen graphs are not Cayley graphs?
 J. Graph Theory 19 (1995) 1–11.

- D. Marušič and T. Pisanski classified all trivalent vertex-transitive bicirculants;^{1 2}
- J.-X. Zhou and Y.-Q. Feng classfied all trivalent vertex-transitive bi-abeliants.³

¹D. Marušič, T. Pisanski, Symmetries of hexagonal molecular graphs on the torus, Croat. Chem. Acta 73 (2000) 969–981.

²T. Pisanski, A classification of cubic bicirculants, Discrete Math. 307 (2007) 567–578.

³ J.-X. Zhou, Y.-Q. Feng, Cubic bi-Cayley graphs over abelian groups, European J. Combin: 36 (2014) 679–693. 📑 🔊 🤉 🖓

Classify trivalent vertex-transitive non-Cayley bi-dihdrants.

By checking the census of trivalent vertex-transitive graphs of order up to 1000,⁴ there are 981 non-Cayley graphs, and among these graphs, 233 graphs are non-Cayley bi-dihedrants.

⁴ P. Potočnik, P. Spiga, G. Verret, Cubic vertex-transitive graphs on up to 1280 vertices, J. Symb. Comput. 50 (2013) 465–477.

- In 2000, Marušič and Pisanski gave a classification of trivalent arc-transitive dihedrants.⁵
- S. Du, A. Malnič and D. Marušič gave the complete classification of 2-arc-transitive dihedrants.⁶ ⁷
- For each prime p, every non-arc-transitive trivalent dihedrant of order 4p or 8p is either a normal Cayley graph, or isomorphic to the cross ladder graph.⁸

 $^{^{5}}$ D. Marušič, T. Pisanski, Symmetries of hexagonal molecular graphs on the torus, Croat. Chem. Acta 73 (2000) 969–981.

⁶S. Du, A. Malnič, D. Marušič, Classification of 2-arc-transitive dihedrants, J. Combin. Theory B 98 (2008) 1349–1372.

⁷D. Marušič, On 2-arc-transitivity of Cayley graphs, J. Combin. Theory B 87 (2003) 162–196.

⁸C. Zhou, Y.-Q. Feng, Automorphism groups of connected cubic Cayley graphs of order 4*p*, Algebra Colloq. 14 (2007) 351 - 359.

⁹ J.-X. Zhou, M. Ghasemi, Automorhisms of a family of cubic graphs, Algebra Colloq: 20 (2013) 495 - 506: 🕨 🚊 🔊

Definition

For an integer $m \ge 2$, the cross ladder graph CL_{4m} has vertex set $V_0 \cup V_1 \cup \ldots V_{2m-2} \cup V_{2m-1}$, where $V_i = \{x_i^0, x_i^1\}$, and edge set $\{\{x_{2i}^r, x_{2i+1}^r\}, \{x_{2i+1}^r, x_{2i+2}^s\} \mid i \in \mathbb{Z}_m, r, s \in \mathbb{Z}_2\}$.

Theorem 1 (Zhang & Zhou, AMC, 2021)

Let $\Sigma = \operatorname{Cay}(H, S)$ be a connected trivalent Cayley graph, where $H = \langle a, b \mid a^n = b^2 = 1, bab = a^{-1} \rangle (n \ge 3)$. If Σ is non-arc-transitive and non-normal, then n is even and $\Sigma \cong \operatorname{CL}_{4,\frac{n}{2}}$ and $S^{\alpha} = \{b, ba, ba^{\frac{n}{2}}\}$ for some $\alpha \in \operatorname{Aut}(H)$.

The multi-cross ladder graph

Definition

The multi-cross ladder graph, denoted by $MCL_{4m,2}$, is the graph obtained from CL_{4m} by blowing up each vertex x_i^r of CL_{4m} into two vertices $x_i^{r,0}$ and $x_i^{r,1}$.

The edge set is $\{\{x_{2i}^{r,s}, x_{2i+1}^{r,t}\}, \{x_{2i+1}^{r,s}, x_{2i+2}^{s,r}\} \mid i \in \mathbb{Z}_m, r, s, t \in \mathbb{Z}_2\}.$

Figure: The multi-cross ladder graph $MCL_{20,2}$

Trivalent bi-dihedrants

• Each $MCL_{4m,2}$ is a bi-Cayley graph.

 $MCL_{4m,2} \cong BiCay(H, \{c, ca\}, \{ca, ca^2b\}, \{1\}), \text{ where }$

$$H = \langle a, b, c \mid a^m = b^2 = c^2 = 1, a^b = a, a^c = a^{-1}, b^c = b \rangle.$$

 If m is odd, then each MCL_{4m,2} is a bi-diheddrant. (Let e = ab and f = ca)

 $MCL_{4m,2} \cong BiCay(H, \{f, fe^{m-1}\}, \{f, fe\}, \{1\}), \text{ where }$

$$H = \langle e, f \mid e^{2m} = f^2 = 1, e^f = e^{-1} \rangle.$$

Trivalent bi-dihedrants

• Each $MCL_{4m,2}$ is a bi-Cayley graph.

 $MCL_{4m,2} \cong BiCay(H, \{c, ca\}, \{ca, ca^{2}b\}, \{1\}), \text{ where }$

$$H = \langle a, b, c \mid a^m = b^2 = c^2 = 1, a^b = a, a^c = a^{-1}, b^c = b \rangle.$$

If m is odd, then each MCL_{4m,2} is a bi-diheddrant.
 (Let e = ab and f = ca)

 $MCL_{4m,2} \cong BiCay(H, \{f, fe^{m-1}\}, \{f, fe\}, \{1\}), \text{ where}$ $H = \langle e, f \mid e^{2m} = f^2 = 1, e^f = e^{-1} \rangle.$

- E. Dobson et al. shown that every $MCL_{4m,2}$ is vertex-transitive.¹⁰
- J.-X. Zhou and Y.-Q. Feng proved that $MCL_{4p,2}$ is a vertex-transitive non-Cayley graph for each prime $p > 7.^{11}$

Theorem 2 (Zhang &Zhou, AMC, 2021)

The multi-cross ladder graph $MCL_{4m,2}$ is a Cayley graph if and only if either m is even, or m is odd and $3 \mid m$.

¹⁰ E. Dobson, A. Malnič, D. Marušič, L.A. Nowitz, Semiregular automorphisms of vertex-transitive graphs of certain valencies. J. Combin. Theory B 97 (2007) 371–380.

¹¹ J.-X. Zhou, Y.-Q. Feng, Cubic vertex-transitive non-Cayley graphs of order 8*p*, Electron. J. Comb. 19 (2012) #P53.

- E. Dobson et al. shown that every $MCL_{4m,2}$ is vertex-transitive.¹⁰
- J.-X. Zhou and Y.-Q. Feng proved that $MCL_{4p,2}$ is a vertex-transitive non-Cayley graph for each prime $p > 7.^{11}$

Theorem 2 (Zhang & Zhou, AMC, 2021)

The multi-cross ladder graph $MCL_{4m,2}$ is a Cayley graph if and only if either m is even, or m is odd and $3 \mid m$.

¹⁰ E. Dobson, A. Malnič, D. Marušič, L.A. Nowitz, Semiregular automorphisms of vertex-transitive graphs of certain valencies. J. Combin. Theory B 97 (2007) 371–380.

¹¹ J.-X. Zhou, Y.-Q. Feng, Cubic vertex-transitive non-Cayley graphs of order 8*p*, Electron. J. Comb. 19 (2012) #P53.

Theorem 3 (Zhang & Zhou, DM, 2017)

Let $H = \langle a, b \mid a^n = b^2 = 1, bab = a^{-1} \rangle (n \ge 3)$. A connected trivalent bi-dihedrant $\Gamma = \operatorname{BiCay}(H, R, L, S)$ is edge-transitive if and only if the triple (R, L, S) is equivalent to one of the triples in Table 1. Furthermore, all of the graphs in Table 1 are arc-transitive.

Trivalent bi-dihedrants

No.	n	$(R, L, S) \equiv$	Г	Conditions	Cayley
1	2m	$(\{b\}, \{ba^{2t}\}, \{1, a\})$	CQ(t, m)	$2 \le t \le m - 3$,	Yes
				$m \mid t^2 + t + 1$	
2	4	$(\{b, ba\}, \{ba^2, ba^3\}, \{1\})$	F016A		Yes
3	4	$(\{b\}, \{ba\}, \{1, a\})$	F016A		Yes
4	5	$(\{b, ba^3\}, \{ba, ba^2\}, \{1\})$	F020B		No
5	5	$(\{b, ba\}, \{a, a^{-1}\}, \{1\})$	F020A		No
6	6	$(\{b, ba\}, \{ba^3, ba^4\}, \{1\})$	F024A		Yes
7	6	$(\{b\}, \{ba^2\}, \{1, a\})$	F024A		Yes
8	8	$(\{b, ba\}, \{ba^2, ba^5\}, \{1\})$	F032A		Yes
9	10	$(\{b, ba^4\}, \{ba, ba^3\}, \{1\})$	F040A		No
10	10	$(\{b, ba^4\}, \{a, a^{-1}\}, \{1\})$	F040A		No
11	12	$(\{b, ba\}, \{ba^3, ba^{10}\}, \{1\})$	F048A		Yes
12	20	$(\{b, ba^{14}\}, \{ba, ba^3\}, \{1\})$	F080A		No
13	2m	$(\{b, ba\}, \{ba^{-2t}, ba^{-2t-1}\}, \{1\})$	CQ(t, m)	$2 \le t \le m - 3$	Yes
				$m t^2 - t + 1$	
14	2m	$(\{b, ba\}, \{ba^{-2t}, ba^{-2t+m-1}\}, \{1\}),$	CQ(t, m)	$2 \le t \le m - 3$	Yes
				$m \mid 2(t^2 - t + 1),$	
				m even, t odd	

Table 1: Trivalent edge-transitive bi-dihedrants

æ

イロト イヨト イヨト イヨト

Theorem 4 (Zhang & Zhou, DM, 2017)

Every connected trivalent vertex-transitive 0- or 1-type bi-dihedrant is a Cayley graph.

For 2-type:

- $H = \langle a, b \mid a^n = b^2 = 1, bab = a^{-1} \rangle (n \ge 3),$
- $\Gamma = \text{BiCay}(H, R, L, \{1\})$: a connected trivalent 2-type vertex-transitive bi-Cayley graph over the group H,
- G: a minimum group of automorphisms of Γ subject to R(H) ≤ G and G is transitive on the vertices but intransitive on the arcs of Γ.

Theorem 5 (Zhang & Zhou, DM, 2017)

If H_0 and H_1 are blocks of imprimitivity of G on $V(\Gamma)$, then either Γ is Cayley or one of the following occurs:

(1)
$$(R, L, S) \equiv (\{b, ba^{\ell+1}\}, \{ba, ba^{\ell^2+\ell+1}\}, \{1\})$$
, where $n \ge 5$, $\ell^3 + \ell^2 + \ell + 1 \equiv 0 \pmod{n}$, $\ell^2 \not\equiv 1 \pmod{n}$;

(2) $(R, L, S) \equiv (\{ba^{-\ell}, ba^{\ell}\}, \{a, a^{-1}\}, \{1\})$, where n = 2k and $\ell^2 \equiv -1 \pmod{k}$. Furthermore, Γ is also a bi-Cayley graph over an abelian group $\mathbb{Z}_n \times \mathbb{Z}_2$.

Furthermore, all of the graphs arising from (1)-(2) are vertex-transitive non-Cayley.

Theorem 6 (Zhang & Zhou, AMC, 2021)

Suppose that H_0 and H_1 are not blocks of imprimitivity of G on $V(\Gamma)$. Then $\Gamma = \operatorname{BiCay}(H, R, L, S)$ is vertex-transitive non-Cayley if and only if one of the followings occurs:

- (1) $(R, L, S) \equiv (\{b, ba\}, \{b, ba^{2m}\}, \{1\})$, where n = 2(2m + 1), $m \not\equiv 1 \pmod{3}$, and the corresponding graph is isomorphic the multi-cross ladder graph $MCL_{4m,2}$;
- $(2) \ (R,L,S) \equiv (\{b,ba\}, \{ba^{24\ell}, ba^{12\ell-1}\}, \{1\}), \text{ where } n = 48\ell \text{ and } \ell \geq 1.$

Theorem 7 (Zhang &Zhou, AMC, 2021)

Let $\Gamma = \operatorname{BiCay}(R, L, S)$ be a trivalent vertex-transitive bi-dihedrant where $H = \langle a, b \mid a^n = b^2 = 1, bab = a^{-1} \rangle$ is a dihedral group. Then either Γ is a Cayley graph or one of the following occurs:

(1)
$$(R, L, S) \equiv (\{b, ba\}, \{a, a^{-1}\}, \{1\}), \text{ where } n = 5.$$

(2)
$$(R, L, S) \equiv (\{b, ba^{\ell+1}\}, \{ba, ba^{\ell^2+\ell+1}\}, \{1\}), \text{ where } n \ge 5, \ \ell^3 + \ell^2 + \ell + 1 \equiv 0 \pmod{n}, \ \ell^2 \not\equiv 1 \pmod{n}.$$

- (3) $(R, L, S) \equiv (\{ba^{-\ell}, ba^{\ell}\}, \{a, a^{-1}\}, \{1\})$, where n = 2m and $\ell^2 \equiv -1 \pmod{m}$. Furthermore, Γ is also a bi-Cayley graph over an abelian group $\mathbb{Z}_n \times \mathbb{Z}_2$.
- (4) $(R, L, S) \equiv (\{b, ba\}, \{b, ba^{2m}\}, \{1\})$, where n = 2(2m + 1), $m \not\equiv 1 \pmod{3}$, and the corresponding graph is isomorphic the multi-cross ladder graph $MCL_{4m,2}$.

(5) $(R, L, S) \equiv (\{b, ba\}, \{ba^{24\ell}, ba^{12\ell-1}\}, \{1\})$, where $n = 48\ell$ and $\ell \ge 1$.

Moreover, all of the graphs arising from (1)-(5) are vertex-transitive non-Cayley.

Thanks!

Mimi Zhang (HEBNU)

æ

< ロ > < 部 > < き > < き >