Closed G_2 -structures on compact locally homogeneous spaces

Anna Fino

Dipartimento di Matematica Universitá di Torino

Minisymposium "Geometries Defined by Differential Forms" 8 ECM 21 June 2021

Definition

A G_2 -structure on a 7-manifold M is given by a 3-form φ with pointwise stabilizer isomorphic to G_2 .

- Pointwise $\varphi = e^{127} + e^{347} + e^{567} + e^{135} e^{146} e^{236} e^{245}$.
- φ is non-degenerate: $i_X \varphi \wedge i_X \varphi \wedge \varphi \neq 0$, for every $X \neq 0$.

 $\rightsquigarrow \varphi$ induces a Riemannian metric g_{φ} with volume form dV_{φ} :

$$g_{\varphi}(X,Y)dV_{\varphi}=rac{1}{6}i_{X}arphi\wedge i_{Y}arphi\wedge arphi.$$

イロト イヨト イヨト イヨト 三日

Proposition (Fernández-Gray)

The following are equivalent:

- (a) $\nabla^{LC} \varphi = 0$; (b) $d\varphi = 0$ and $d(*\varphi) = 0$; (c) $Hol(g_{\varphi})$ is isomorphic to a subgroup of G_2 .
- A G_2 -structure satisfying (a), (b) or (c) is called parallel.

Remark

- The conditions $\nabla^{LC}\varphi = 0$ and $d(*\varphi) = 0$ are non-linear in φ .
- Metrics induced by parallel G₂-structures are Ricci-flat [Bonan].

イロト イボト イヨト

A G₂-structure φ is closed (or calibrated) if $d\varphi = 0$. Then

 $d * \varphi = \tau \wedge \varphi,$

where $\tau \in \Lambda^2_{14} \cong \mathfrak{g}_2$, i.e. $\tau \wedge \varphi = - * \tau$ and $\tau \wedge * \varphi = 0$.

Remark

• $\tau = d^* \varphi \Rightarrow d^* \tau = 0 \Rightarrow d\tau = \Delta_{\varphi} \varphi$, where $\Delta_{\varphi} = dd^* + d^* d$ is the Hodge Laplacian.

• φ defines a calibration on M (i.e. $\varphi|_{\xi} \leq vol_{\xi}$, \forall tg oriented 3-plane ξ) [Harvey-Lawson].

• $Scal(g_{\varphi}) = -\frac{1}{2}|\tau|^2 \leq 0$ [Bryant] \rightsquigarrow no restrictions on compact manifolds!

イロト イボト イヨト イヨト 二日

Remark

General results on the existence of closed G_2 -structures on (compact) 7-manifolds are still not known.

 $Aut(M,\varphi) := \{ f \in Diff(M) | f^*\varphi = \varphi \} \Rightarrow \text{ when } M \text{ is compact}$ its Lie algebra is $\mathfrak{aut}(M,\varphi) = \{ X \in \chi(M) | L_X \varphi = 0 \}.$

Theorem (Podestá-Raffero)

M compact with φ closed non-parallel. Then

- dim $\operatorname{aut}(M, \varphi) \leq b_2(M)$;
- $aut(M, \varphi)$ is abelian with dim ≤ 6 .

 \hookrightarrow There are no compact homogeneous examples with invariant (non-parallel) closed G_2 -structures.

イロン 不同 とうほう 不同 とう

The first known example of compact manifold admitting a closed G_2 -structure but with no parallel G_2 -structures is a nilmanifold $\Gamma \setminus N$ [Fernández].

Problem

Study the existence of invariant closed G_2 -structures on compact locally homogeneous $\Gamma \setminus G$, with G Lie group.

 $\Gamma \setminus G$ with an invariant closed G_2 -structure $\varphi \longleftrightarrow (\mathfrak{g}, \varphi)$

Remark

 \mathfrak{g} has to be unimodular, i.e. $tr(ad_X) = 0$, for every $X \in \mathfrak{g}$.

< ロ > < 同 > < 三 > < 三 >

Classification results on Lie algebras

- Unimodular non-solvable Lie algebras [F-Raffero]
- $\hookrightarrow \mathfrak{g}$ must have Levi decomposition $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{R}) \ltimes \mathfrak{r}$ with
- \mathfrak{r} centerless if \mathfrak{g} is a product (3 classes of isomorphism)
- $\mathfrak{r} \cong \mathbb{R} \ltimes \mathbb{R}^3$ if \mathfrak{g} is not a product (1 class of isomorphism).
- \hookrightarrow A unimodular Lie algebra with non-trivial center admitting a closed G_2 -structure must be solvable!

Problem

Classify all unimodular Lie algebras with non-trivial center admitting closed G₂-structures, up to isomorphism.

• In the nilpotent case the are 12 classes of isomorphisms [Conti-Fernández].

A D D A D D A D D A D D A

Theorem (F-Raffero-Salvatore)

- There exist 11 isomorphism classes of unimodular non-nilpotent Lie algebras with non-trivial center admitting a closed G₂-structure.
- **Two** of the isomorphism classes are the contactization of a symplectic Lie algebra.

For the proof we use that \mathfrak{g} has to be the central extension of a symplectic Lie algebra \mathfrak{h} endowed with a closed (possibly non-degenerate) 2-form ω_0 , i.e. $\mathfrak{g} = \mathfrak{h} \oplus \mathbb{R}z$, with

$$[z,\mathfrak{h}]=0,\ [x,y]=-\omega_0(x,y)z+[x,y]_{\mathfrak{h}},\ \forall x,y\in\mathfrak{h}.$$

Idea: use a geometric flow to deform a closed G_2 -structure and eventually obtain a parallel one

Definition (Bryant)

Let φ_0 be a a closed G_2 -structure on M^7 . The Laplacian flow (LF) is

$$\left\{ egin{array}{l} \partial_t arphi(t) = \Delta_{arphi(t)} arphi(t) \ darphi(t) = 0, \ arphi(0) = arphi_0. \end{array}
ight.$$

where $\Delta_{\varphi(t)}$ is the Hodge Laplacian of $g_{\varphi(t)}$.

if $\varphi(t)$ solves the LF, then $\varphi(t) \in [\varphi_0] \in H^3_{DR}(M^7)$ and

$$\partial_t g_{\varphi(t)} = -2Ric(g_{\varphi(t)}) + I.o.t.$$

Remark

- If M^7 is compact, then
- stationary points are parallel G₂-structures.
- the LF is the gradient flow of Hitchin's volume functional $\mathcal{V}: \varphi \in [\varphi_0] \mapsto \int_M \varphi \wedge *\varphi.$

 \mathcal{V} is monotonically increasing along the LF, its critical points are parallel G_2 -structures and they are strict local maxima.

Theorem (Bryant-Xu)

Assume that (M^7, φ_0) is compact. Then the LF has a unique solution for short time $t \in [0, \epsilon)$, with ϵ depending on $\varphi_0 = \varphi(0)$.

• If φ_0 is near a torsion-free G_2 -structure $\tilde{\varphi}$, then the LF converges to a torsion-free G_2 -structure which is related to $\tilde{\varphi}$ via a diffeomorphism [Xu-Ye; Lotay-Wei].

• Shi-type derivative estimates for Rm and τ along the flow:

a bound on $\Lambda(x,t) := \left(\frac{1}{4}|\nabla \tau|^2_{g_{\varphi(t)}} + |\operatorname{Rm}(x,t)|^2_{g_{\varphi(t)}}\right)^{\frac{1}{2}}$ will imply bounds on all covariant derivatives of Rm and τ . Then, the flow will exist as long as $\Lambda(x,t)$ remains bounded.

→ uniqueness and compactness theory [Lotay-Wei].

• Non-collapsing under the assumption of bounded Scal [G. Chen].

・ 同 ト ・ ヨ ト ・ ヨ ト

Study of explicit solutions on

• simply connected Lie groups with left-invariant closed *G*₂-structure [Fernández-F-Manero; Lauret; F-Raffero].

• \mathbb{T}^7 with cohomogeneity one closed G_2 -structure [Huang-Wang-Yao].

• $M^6 \times S^1$, with a warped closed G_2 -structure $\varphi = f \, ds \wedge \omega + \rho$, $f \in C^{\infty}(M^6)$, f > 0 and compact base (M^6, ω, ρ) [F-Raffero].

• M^7 with an S^1 -invariant closed G_2 -structure [Fowdar].

• $(M^4 \times T^3, \varphi)$, where φ is induced by a hypersymplectic structure $(\omega_1, \omega_2, \omega_3)$ on the compact M^4 [Fine-Yao].

• Long-time existence and convergence of LF flow in cases related to coassociative fibrations [Lambert-Lotay].

イロト イポト イヨト イヨト ヨー わらの

Self-similar solutions $\varphi(t) = \sigma(t)f_t^*\varphi$ of the LF \iff closed G_2 -structures φ satisfying

 $\Delta_{\varphi}\varphi = \lambda\varphi + L_X\varphi \quad \text{(Laplacian solition)}$

for some $\lambda \in \mathbb{R}$ and vector field X.

Definition

A Laplacian soliton φ is called

- shrinking if $\lambda < 0$,
- steady if $\lambda = 0$,
- expanding if $\lambda > 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Lin; Lotay-Wei)

On a compact manifold any Laplacian soliton φ (which is not torsion-free) must have $\lambda > 0$ and $X \neq 0$.

In particular, on a compact 7-manifold the only steady Laplacian solitons are given by parallel G_2 -structures.

Open Problem

 \exists expanding Laplacian solitons on compact manifolds?

In the non-compact case:

- ∃ steady, shrinking and expanding (homogeneous) solitons [Lauret-Nicolini; F-Raffero; Ball].
- ∃ inhomogeneous complete steady and shrinking gradient solitons [Ball; Fowdar].

Any homogeneous Laplacian soliton φ on a Lie group G is a semi-algebraic soliton, i.e. X is defined by a 1-parameter group of automorphisms induced by a derivation D of g [Lauret].

Theorem (F, Raffero, Salvatore)

Let \mathfrak{g} a unimodular Lie algebra with $\mathfrak{z}(\mathfrak{g}) \neq \{0\}$ admitting a semi-algebraic soliton φ . Then

- if \mathfrak{g} is the contactization of a symplectic Lie algebra, then $\lambda = |\tau|^2 \hookrightarrow \varphi$ is expanding;
- if dim $\mathfrak{z}(\mathfrak{g}) = 2 \hookrightarrow 10$ isomorphism classes (7 are nilpotent).

Remark

The known examples of Lie groups admitting shrinking or steady Laplacian solitons have trivial center!

イロト イボト イヨト イヨト

Remark

An expanding Laplacian soliton is an exact G₂-structure!

Problem

Does there exist compact $\Gamma \setminus G$ with an invariant exact G_2 -structure?

A unimodular Lie group cannot admit any left-invariant exact symplectic form [Diatta-Manga].

Example (Fernández-F-Raffero)

There exists a unimodular solvable Lie algebra $\mathfrak{s} = \mathbb{R} \ltimes \mathfrak{n}$, with \mathfrak{n} 4-step nilpotent, satisfying $b_2(\mathfrak{s}) = b_3(\mathfrak{s}) = 0$ and admitting an exact G_2 -structure.

イロト イヨト イヨト イヨト

Remark

The simply connected solvable Lie group S with Lie algebra \mathfrak{s} is not strongly unimodular $\Rightarrow S$ does not admit any compact quotient $\Gamma \setminus S!$

Definition (Garland)

A solvable G is strongly unimodular if $\operatorname{tr}(\operatorname{ad}_X)|_{\mathfrak{n}^i/\mathfrak{n}^{i+1}} = 0$, for every $X \in \mathfrak{g}$, where $\mathfrak{n}^0 = \mathfrak{n}, \mathfrak{n}^i = [\mathfrak{n}, \mathfrak{n}^{i-1}], i \geq 1$, is the descending central series of the nilradical \mathfrak{n} of \mathfrak{g} .

There are no compact examples $\Gamma \setminus G$ with an invariant exact G_2 -structure, if \mathfrak{g} is (2,3)-trivial, i.e. if $b_2(\mathfrak{g}) = b_3(\mathfrak{g}) = 0$.

Theorem (Fernández-F-Raffero)

A strongly unimodular (2,3)-trivial g does not admit any exact G_2 -structure.

イロト イポト イヨト イヨト

э

To prove the result:

- we use the property that a (2,3)-trivial \mathfrak{g} is solvable and
- $\mathfrak{g}=\mathbb{R}\ltimes\mathfrak{n},$ with \mathfrak{n} nilpotent [Madsen-Swann]
- we classify 7-dim strongly unimodular (2,3)-trivial Lie algebras.

Problem

What happens if either $b_3(g) \neq 0$ or $b_2(g) \neq 0$?

Theorem (Freibert, Salamon)

If the Lie algebra of G has a codimension-one nilpotent ideal, then $\Gamma \setminus G$ does not admit any invariant exact G_2 -structure. If in addition G is completely solvable, $\Gamma \setminus G$ does not have any exact G_2 -structure at all.

< ロ > < 同 > < 三 > < 三 >

Theorem (Cleyton-Ivanov; Bryant)

If *M* is compact with a closed *G*₂-structure φ , then 1) g_{φ} Einstein $\Rightarrow \tau \equiv 0$, i.e. φ is parallel. 2) $\int_{M} [Scal(g_{\varphi})]^2 dV_{\varphi} \leq 3 \int_{M} |Ric(g_{\varphi})|^2 dV_{\varphi}$.

[Bryant]: equality in 2) holds if and only if

$$d au = rac{| au|^2}{6}arphi + rac{1}{6}*(au\wedge au),$$

in such a case, φ is called extremally Ricci pinched (ERP).

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (F-Raffero)

M compact with an *ERP* closed G_2 -structure φ . Then the solution of the Laplacian flow with initial condition $\varphi(0) = \varphi$ is defined for every $t \in \mathbb{R}$ and remains *ERP*.

Example (Kath-Lauret)

A compact locally homogeneous space with an ERP G_2 -structure is given by the compact quotient of the unimodular solvable Lie group S with structure equations

$$(0, 0, 0, -e^{14} - e^{24} - e^{34}, -e^{15} + e^{25} + e^{35}, e^{16} - e^{26} + e^{36}, e^{17} + e^{27} - e^{37})$$

by a lattice.

S is the only unimodular Lie group admitting a left-invariant ERP G_2 -structure [F-Raffero].

イロン イヨン イヨン

THANK YOU VERY MUCH FOR THE ATTENTION !!

イロン 不同 とうほう 不同 とう

2