Computing Eigenvalues of the Laplacian on Rough Domains

F. Rösler (Cardiff University)

joint work with Alexei Stepanenko (Cardiff University)

23rd June 2021

Co-funded by the Horizon 2020 Framework Programme of the European Union

Engineering and Physical Sciences Research Council

Introduction

General question:

Can one always compute the spectrum of the Laplacian on a domain?

Introduction

General question:

Can one always compute the spectrum of the Laplacian on a domain?

$$\mathcal{O} \subset \mathbb{R}^d$$
 open, $-\Delta_\mathcal{O} =$ Dirichlet Laplacian on \mathcal{O} .

• Does there exist **one** sequence (Γ_N) of computer algorithms s.t.

$$\Gamma_N(-\Delta_{\mathcal{O}}) \to \sigma(-\Delta_{\mathcal{O}})$$

for all \mathcal{O} in a given class Ω ?

• How large can Ω be?

Introduction

Definition:¹ A *computational (spectral) problem* consists of

- Class of operators Ω,
- A set Λ of *input information* (e.g. $A \mapsto \langle e_i, Ae_j \rangle$).

Definition:¹ An *Algorithm* is a map

 $\Gamma:\Omega\to [\text{closed subsets of }\mathbb{C}]$

such that

• $\Gamma(T)$ depends only on finitely many $f \in \Lambda$,

Γ(T) can be computed using finitely many arithmetic operations on these f(T).

¹[Hansen(2011)], [Ben-Artzi-Colbrook-Hansen-Nevanlinna-Seidel(2020)]

Background

Recent work:

[Hansen(2011)], [Ben-Artzi-Colbrook-Hansen-Nevanlinna-Seidel(2015)]:

- Development of abstract framework for computational problems & algorithms;
- Abstract theory of computational complexity;
- Classification of computational complexity for some abstract (spectral and other) problems;

[Colbrook-Hansen(2020)], [Colbrook(2020)]:

 Classification of complexity for wider classes of spectral problems: computing spectra in R^d, spectral measures, spectral gaps, ...

Setup

Computational problem for Laplacians on domains:

 \blacktriangleright Class of operators: $\Omega:=$ set of all bounded open subsets $\mathcal{O}\subset \mathbb{R}^2$ with

(i)
$$\mathcal{O} = \overline{\mathcal{O}}^{\circ}$$

- (ii) $|\partial \mathcal{O}| = 0$
- (iii) $\mathbb{R}^2\setminus \mathcal{O}$ has finitely many connected components whose diameter is bounded below.
- Operator: Dirichlet Laplacian $-\Delta_{\mathcal{O}}$.
- Input information:

$$\Lambda = \{ \mathcal{O} \mapsto \mathbb{1}_{\mathcal{O}}(x) \mid x \in \mathbb{R}^2 \}.$$

Setup

Computational problem for Laplacians on domains:

• Class of operators: $\Omega :=$ set of all bounded open subsets $\mathcal{O} \subset \mathbb{R}^2$ with

(i)
$$\mathcal{O} = \overline{\mathcal{O}}^{\circ}$$

- (ii) $|\partial \mathcal{O}| = 0$
- (iii) $\mathbb{R}^2\setminus \mathcal{O}$ has finitely many connected components whose diameter is bounded below.
- Operator: Dirichlet Laplacian $-\Delta_{\mathcal{O}}$.
- Input information:

$$\Lambda = \{ \mathcal{O} \mapsto \mathbb{1}_{\mathcal{O}}(x) \mid x \in \mathbb{R}^2 \}.$$

Examples:

- $\mathcal{O} = \text{interior of Jordan curve (e.g. Koch Snowflake)},$
- $\mathcal{O} =$ filled Julia set with connected interior.

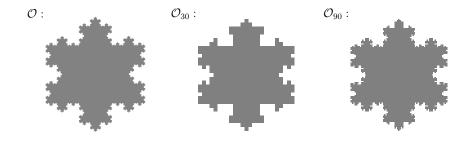
Theorem 1 (R., Stepanenko, 2021): For Ω , Λ as above, there exists a sequence of algorithms $\Gamma_n : \Omega \to cl(\mathbb{C})$ such that

 $\Gamma_n(\mathcal{O}) \to \sigma(\mathcal{O})$ as $n \to \infty$ for all $\mathcal{O} \in \Omega$,

locally in Hausdorff sense.

Idea of Proof:

- Approximate \mathcal{O} by union \mathcal{O}_n of **finitely many** small boxes,
- ▶ approximate spectrum $\sigma(\mathcal{O}_n)$ using FEM (\rightsquigarrow off-the-shelf),²
- ▶ show that $\sigma(\mathcal{O}_n) \to \sigma(\mathcal{O})$ as $n \to \infty$ (\rightsquigarrow Mosco Convergence).



Idea of Proof: Mosco Convergence

Theorem 2 (R., Stepanenko, 2021): Let $\mathcal{O} \in \Omega$. Suppose that $\mathcal{O}_n \subset \mathbb{R}^2$, $n \in \mathbb{N}$, is a collection of bounded, open sets such that $\partial \mathcal{O}_n$ is locally connected for all $n \in \mathbb{N}$ and such that

$$d_H(\mathcal{O}, \mathcal{O}_n) + d_H(\partial \mathcal{O}, \partial \mathcal{O}_n) \to 0 \quad \text{as} \quad n \to \infty.$$

Then, \mathcal{O}_n converges to \mathcal{O} in Mosco sense as $n \to \infty$.

Idea of Proof: Mosco Convergence

Theorem 2 (R., Stepanenko, 2021): Let $\mathcal{O} \in \Omega$. Suppose that $\mathcal{O}_n \subset \mathbb{R}^2$, $n \in \mathbb{N}$, is a collection of bounded, open sets such that $\partial \mathcal{O}_n$ is locally connected for all $n \in \mathbb{N}$ and such that

$$d_H(\mathcal{O}, \mathcal{O}_n) + d_H(\partial \mathcal{O}, \partial \mathcal{O}_n) \to 0 \quad \text{as} \quad n \to \infty.$$

Then, \mathcal{O}_n converges to \mathcal{O} in Mosco sense as $n \to \infty$.

Proof: Need to show:

- 1. $H_0^1(\mathcal{O}_n) \ni u_n \rightharpoonup u \text{ in } H^1(\mathbb{R}^2) \quad \Rightarrow \quad u \in H_0^1(\mathcal{O}).$
- 2. $u \in H^1_0(\mathcal{O}) \implies \exists u_n \in H^1_0(\mathcal{O}_n) \text{ with } u_n \to u \text{ in } H^1(\mathbb{R}^2).$

To prove 1.:

- ▶ Take cutoff function χ_n with $\chi_n \equiv 0$ in nbhd. of ∂O and consider $\chi_n u_n$.
- ► To control $u_n \nabla \chi_n$: Need **explicit Poincaré inequality** on \mathcal{O}_n .

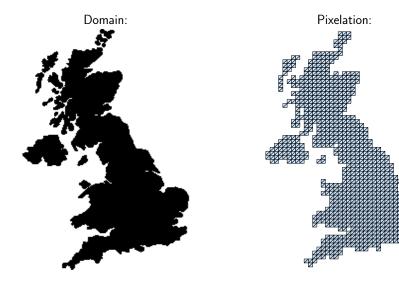
Idea of Proof: Poincaré Inequality

Theorem 3 (R., Stepanenko, 2021): Let $\mathcal{O} \subset \mathbb{R}^2$ open with no arbitrarily small holes.³ If r > 0 is small enough, then $\|u\|_{L^2(N_r(\partial \mathcal{O}))} \leq 5r \|\nabla u\|_{L^2(N_{2\sqrt{2}r}(\partial \mathcal{O}))}$ for all $u \in H^1_0(\mathcal{O})$.

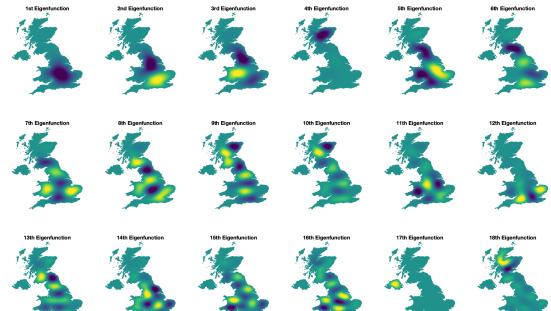
Proof: Explicit estimates in nbhd. of ∂O , using the fact that O cannot have arbitrarily small holes.

³diam(Γ) > c > 0 for all path-connected components Γ of ∂O .

Numerical Results



Numerical Results



Thank You!

