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What are primes?

Write P = {2, 3, 5, 7, 11, 13, 17, . . . } for the set of primes, i.e.
natural numbers > 1 that are only divisible by 1 and
themselves.

In this talk, p with or without subscripts is always a prime.

Euclid (c. 300 BC) showed that there are infinitely many
primes: Suppose only p1, . . . , pk were primes. Then
p1 · · · pk + 1 is either a new prime or divisible by a new prime.
Hence we obtain a contradiction.

Every integer can be uniquely written as a product of primes,
e.g. 2021 = 43 · 47 — primes are the building blocks of the
integers.
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But are primes really like building blocks?

Factoring a given integer is slow, even for a computer. On the
other hand, building, i.e. multiplying is fast.

Completely different from building blocks!

Legos are a more accuare model as they stick together...

You need more and more primes to construct all integers

Same for Legos — the kids want more and more!
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How many primes are there?

Hadamard and de la Vallee Poussin showed independently in
1896 that the number of primes up to x is

(1 + o(1))

∫ x

2

dx

log x
= (1 + o(1))

x

log x
.

This is called the prime number theorem (PNT).

It asserts that the ”probability” that an integer n is prime is
about 1/ log n.

Hence it is convenient to normalize prime p by log p. More
precisely we write Λ(n) for the von Mangoldt function

Λ(n) =

{
log p if n = pk with k ≥ 1;

0 otherwise.

Now PNT is equivalent to
∑

n≤x Λ(n) = (1 + o(1))x .
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Relation to zeta zeros

Write, for <s > 1,

ζ(s) =
∑
n∈N

1

ns
=
∏
p∈P

(
1 +

1

ps
+

1

p2s
+ · · ·

)
=
∏
p∈P

(
1− 1

ps

)−1
.

This can be analytically continued to the whole complex plane
except for a pole at s = 1. ζ(s) is called the Riemann zeta
function.

The non-trivial zeros of ζ(s) are the zeros with 0 ≤ <s ≤ 1.
The famous Riemann Hypothesis (RH) asserts that all of
these have <s = 1/2.

PNT ⇐⇒
∑
n≤x

Λ(n) = (1 + o(1))x ⇐⇒ ζ(s) 6= 0 when <s = 1

RH ⇐⇒
∑
n≤x

Λ(n) = x + O(x1/2+ε) for all ε > 0.
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Why zeta zeros are related to primes?

One has

−ζ
′(s)

ζ(s)
= − d

ds
log ζ(s) =

d

ds
log
∏
p∈P

(
1− 1

ps

)
=
∞∑
n=1

Λ(n)

ns

Furthermore by contour integration

1

2πi

∫ 2+i∞

2−i∞

y s

s
ds =

{
1 if y < 1;

0 if y > 1.

These give (when x 6∈ N)

∑
n≤x

Λ(n) =
∑
n

Λ(n)
1

2πi

∫ 2+i∞

2−i∞

(x/n)s

s
ds =

1

2πi

∫ 2+i∞

2−i∞

ζ ′

ζ
(s)

x s

s
ds.
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s = 1 corresponding to the main term x and further poles at
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Infinitude of primes from zeta

One can see the infinitude of the primes also from

ζ(s) =
∑
n∈N

1

ns
=
∏
p∈P

(
1 +

1

ps
+

1

p2s
+ · · ·

)
=
∏
p∈P

(
1− 1

ps

)−1
for <s > 1: Taking logs and letting s → 1 one actually sees
that

∑
p∈P

1
p diverges.

Analogously, if the number of buildings keeps tending to
infinity, so must the number of bricks.
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Primes in short intervals

One wants to know about primes in short intervals. Huxley’s
prime number theorem from 1972 gives∑

x<n≤x+H

Λ(n) = (1 + o(1))H, H ≥ x7/12+ε.

This is based on Huxley’s zero-density estimate

N(σ,T ) = O
(
T ( 12

5
+ε)(1−σ)

)
for all T ≥ 2 and σ ∈ [1/2, 1],

where N(σ,T ) is the number of zeros of the Riemann zeta
function in the rectangle <(s) ≥ σ, |=(s)| ≤ T .

This has resisted improvements, except Heath-Brown (1988)
has shown H ≥ x7/12−o(1).
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Primes in short intervals

One wants to know about primes in short intervals. Huxley’s
prime number theorem from 1972 gives∑

x<n≤x+H

Λ(n) = (1 + o(1))H, H ≥ x7/12+ε.

This is based on Huxley’s zero-density estimate

N(σ,T ) = O
(
T ( 12

5
+ε)(1−σ)

)
for all T ≥ 2 and σ ∈ [1/2, 1],

where N(σ,T ) is the number of zeros of the Riemann zeta
function in the rectangle <(s) ≥ σ, |=(s)| ≤ T .

This has resisted improvements, except Heath-Brown (1988)
has shown H ≥ x7/12−o(1).
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Primes in short intervals

Baker-Harman-Pintz (2001) showed with a sieve method∑
x<n≤x+H

Λ(n) ≥ εH, H ≥ x0.525

for some ε > 0.

For shorter intervals one does not even know existence of
primes!

Assuming RH one knows that [x , x + x1/2 log x ] always
contains primes.

Cramer made a probabilistic model based on ”probability of n
being prime is 1/ log n”. Based on this, one expects that
intervals [x , x + (log x)2+ε] contain primes for all large x .

Huge gap between what’s known and what’s expected.
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Primes in almost all short intervals

Even under RH it is not known that [x , x + x1/2] always
contains primes.

What if one only requires that almost all intervals contain
primes?

A variant of Huxley’s prime number theorem says that, for
almost all x ∈ [X , 2X ],∑

x<n≤x+H

Λ(n) = (1 + o(1))H, H ≥ x1/6+ε.

This can be proved using the same zero-density estimates and
has also resisted improvements.

A lower bound has been shown for H ≥ X 1/20 by Jia.

One expects that, for any h→∞ with X →∞, the interval
(x , x + h log x ] contains primes for almost all x ∈ [X , 2X ].

We mostly keep Legos only in one room, so fortunately no
analogue with primes in almost all short intervals!!
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Primes in almost all short intervals

Even under RH it is not known that [x , x + x1/2] always
contains primes.

What if one only requires that almost all intervals contain
primes?

A variant of Huxley’s prime number theorem says that, for
almost all x ∈ [X , 2X ],∑

x<n≤x+H

Λ(n) = (1 + o(1))H, H ≥ x1/6+ε.

This can be proved using the same zero-density estimates and
has also resisted improvements.

A lower bound has been shown for H ≥ X 1/20 by Jia.

One expects that, for any h→∞ with X →∞, the interval
(x , x + h log x ] contains primes for almost all x ∈ [X , 2X ].

We mostly keep Legos only in one room, so fortunately no
analogue with primes in almost all short intervals!!
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Primes in almost all short intervals, conditional results

Conjecturally, for any h→∞ with X →∞, the interval
(x , x + h log x ] contains primes for almost all x ∈ [X , 2X ].

Heath-Brown (1982) has established this assuming both RH
and the pair correlation conjecture for zeros of ζ(s).

With Jori Merikoski we are working under the unlikely
assumption of exceptional characters.
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Primes in almost all short intervals, conditional results

Corollary (M.-Merikoski, provisional)

Fix K > 0. Assume there is a sequence of moduli qj →∞ of
primitive quadratic characters χj with qj+1 < exp(logK qj) such
that for all j ≥ 1 either

L(1, χj) = o

(
1

log qj

)
or there exists a real zero βj of L(s, χj) with

1− βj = o

(
1

log qj

)
.

Let H/ logX →∞ with X →∞. Then, for almost all y ∈ [X , 2X ],∑
y<p≤y+H

1 = (1 + o(1))
H

log y
.
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Almost primes

One expects that, for any h→∞ with X →∞, the interval
(x , x + h log x ] contains primes for almost all x ∈ [X , 2X ].

One can ask similar questions about almost-primes, i.e. Pk

numbers that have at most k prime factors or Ek numbers
that have exactly k prime factors.

Teräväinen has shown that almost intervals of length
(logX )3.51 contain an E2-number. Wu has shown that
(x − x101/232, x ] contains P2 numbers for all large x .

Friedlander and Iwaniec sketched that if h→∞ with X →∞,
almost all intervals of length h logX contain P3-numbers.

Theorem (M. (202?))

Let h→∞ with X →∞. Then the interval (x − h logX , x ]
contains P2 numbers for almost all x ≤ X .

There are some almost Legos by other trademarks! I have no
experience, so don’t know how good approximations they are...
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Möbius function

Let µ(n) denote the Möbius function

µ(n) =

{
(−1)k if n = p1 · · · pk with pi distinct;

0 otherwise

Now, for <s > 1,
∞∑
n=1

µ(n)

ns
=

1

ζ(s)
,

so µ(n) is closely related to Λ(n) whose generating Dirichlet
series was −ζ ′/ζ.

In particular

PNT ⇐⇒ ζ(s) has no zeros with <s = 1 ⇐⇒
∑
n≤x

µ(n) = o(x)

RH ⇐⇒
∑
n≤x

µ(n) = O(x1/2+ε) for all ε > 0.

Unfortunately, no more Lego analogues!
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(−1)k if n = p1 · · · pk with pi distinct;

0 otherwise

Now, for <s > 1,
∞∑
n=1

µ(n)

ns
=

1

ζ(s)
,

so µ(n) is closely related to Λ(n) whose generating Dirichlet
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In particular

PNT ⇐⇒ ζ(s) has no zeros with <s = 1 ⇐⇒
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Möbius in short intervals

Until 2014 the story for the Möbius function was exactly the
same as for Λ(n).

Motohashi and Ramachandra independently adapted Huxley’s
proof in 1970s to show∑

x<n≤x+H

µ(n) = o(H), H ≥ x7/12+ε.

Analogously it was known that, for almost all x ∈ (X , 2X ],∑
x<n≤x+H

µ(n) = o(H), H ≥ x1/6+ε.

This almost-all interval result was shown to hold for any
H →∞ with X →∞ in my work with Radziwi l l (2016). We
crucially used that a typical n has prime factors from certain
convenient intervals — something that is certainly not true for
n ∈ P.
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Möbius in short intervals

A natural question is whether one can do analogous thing for all
intervals. Recently Teräväinen and I obtained such a result.

Theorem (M-Teräväinen (202?))

∑
x<n≤x+H

µ(n) = o(H), H ≥ x0.55+ε.

Note that 7/12 = 0.5833 · · · , and that even under RH one cannot
get beyond 1/2, so we get significantly closer to this natural
barrier.

Kaisa Matomäki On primes, almost primes and the Möbius function in short intervals
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How to prove things related to primes, almost primes or
Möbius

Often there are two steps, a combinatorial and an analytic.

In combinatorial step combinatorial identity or sieve reduces
the problem to so-called type I and type II sums.

In the analytic step these are estimated.
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The combinatorial step

For instance Vaughan’s identity implies that, for any (αn),∑
X<n≤2X

αnΛ(n) =
∑

X<bc≤2X
b≤X 1/3

αbcµ(b) log c

−
∑

X<abc≤2X
b,c≤X 1/3

αabcµ(b)Λ(c) +
∑

X<abc≤2X
b,c>X 1/3

αabcµ(b)Λ(c).

Thus
∑

X<n≤2X αnΛ(n) splits into type I and type II sums∑
X<mn≤2X
m≤X 1/3

αmnam and
∑

X<mn≤2X
X 1/3≤m≤X 2/3

αmnambn

with certain bounded coefficients am and bn.

In type I sums we have a smooth variable n, whereas in type II
sums we have genuine bilinear structure.
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The combinatorial step

For instance Vaughan’s identity implies that, for any (αn),∑
X<n≤2X

αnΛ(n) =
∑

X<bc≤2X
b≤X 1/3

αbcµ(b) log c

−
∑

X<abc≤2X
b,c≤X 1/3

αabcµ(b)Λ(c) +
∑

X<abc≤2X
b,c>X 1/3

αabcµ(b)Λ(c).

Thus
∑

X<n≤2X αnΛ(n) splits into type I and type II sums∑
X<mn≤2X
m≤X 1/3

αmnam and
∑

X<mn≤2X
X 1/3≤m≤X 2/3

αmnambn

with certain bounded coefficients am and bn.

In type I sums we have a smooth variable n, whereas in type II
sums we have genuine bilinear structure.
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The analytic step

In the analytic step one estimates these type I and type II
sums.

For instance when studying short intervals, one can use
Dirichlet polynomials through Perron’s formula:

1

H

∑
x<mn≤x+H

ambn ≈
1

X

∑
X<mn≤2X

ambn

essentially if∫ x/H

(logX )100

∣∣∣ ∑
mn∼X

ambn
(mn)1+it

∣∣∣ dt = O

(
x1/2

(log x)100

)
.

Such mean values can be estimated through mean and large
value results for Dirichlet polynomials.
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Tools in our theorems

In the problem for almost primes in almost all short intervals,
the combinatorial tool is Richert’s weighted sieve with β-sieve.
This way one reduces to type I sums but can never catch
primes.

In the problem for Möbius in short intervals, in the
combinatorial step we use Ramaré’s identity and
Heath-Brown’s identity.

In the analytic step we use respectively Kloostermania and
Dirichlet polynomials.
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The theorems

Theorem (M. (202?))

Let h→∞ with X →∞. Then the interval (x − h logX , x ]
contains P2 numbers for almost all x ≤ X .

Theorem (M-Teräväinen (202?))

∑
x<n≤x+H

µ(n) = o(H), H ≥ x0.55+ε.

Similar method works for other problems. E.g.

Theorem (M-Teräväinen (202?))

∑
x<p1p2≤x+H

pj∈P

1 = H
log log x

log x
+ O

(
H

log log log x

log x

)
, H ≥ x0.55+ε.
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The theorems

Theorem (M. (202?))

Let h→∞ with X →∞. Then the interval (x − h logX , x ]
contains P2 numbers for almost all x ≤ X .

Theorem (M-Teräväinen (202?))
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Thank you!
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