On primes, almost primes and the Möbius function in short intervals

Kaisa Matomäki
University of Turku, Finland
June 22nd, 2021

Contents

(1) Primes

- Introduction to primes
- The relation of primes with the Riemann zeta function
- Primes in short intervals
- Almost primes
(2) Other interesting sequences, i.e. the Möbius function
- Introducing the Möbius function
- Möbius in short intervals
(3) Proof ideas
(4) Back to the theorems
- Write $\mathbb{P}=\{2,3,5,7,11,13,17, \ldots\}$ for the set of primes, i.e. natural numbers >1 that are only divisible by 1 and themselves.
- In this talk, p with or without subscripts is always a prime.
- Write $\mathbb{P}=\{2,3,5,7,11,13,17, \ldots\}$ for the set of primes, i.e. natural numbers >1 that are only divisible by 1 and themselves.
- In this talk, p with or without subscripts is always a prime.
- Euclid (c. 300 BC) showed that there are infinitely many primes: Suppose only p_{1}, \ldots, p_{k} were primes. Then $p_{1} \cdots p_{k}+1$ is either a new prime or divisible by a new prime. Hence we obtain a contradiction.
- Write $\mathbb{P}=\{2,3,5,7,11,13,17, \ldots\}$ for the set of primes, i.e. natural numbers >1 that are only divisible by 1 and themselves.
- In this talk, p with or without subscripts is always a prime.
- Euclid (c. 300 BC) showed that there are infinitely many primes: Suppose only p_{1}, \ldots, p_{k} were primes. Then $p_{1} \cdots p_{k}+1$ is either a new prime or divisible by a new prime. Hence we obtain a contradiction.
- Every integer can be uniquely written as a product of primes, e.g. $2021=43.47$ - primes are the building blocks of the integers.

But are primes really like building blocks?

- Factoring a given integer is slow, even for a computer. On the other hand, building, i.e. multiplying is fast.

But are primes really like building blocks?

- Factoring a given integer is slow, even for a computer. On the other hand, building, i.e. multiplying is fast.
- Completely different from building blocks!

- Legos are a more accuare model as they stick together...

But are primes really like building blocks?

- Factoring a given integer is slow, even for a computer. On the other hand, building, i.e. multiplying is fast.
- Completely different from building blocks!

- Legos are a more accuare model as they stick together...
- You need more and more primes to construct all integers

But are primes really like building blocks?

- Factoring a given integer is slow, even for a computer. On the other hand, building, i.e. multiplying is fast.
- Completely different from building blocks!

- Legos are a more accuare model as they stick together...
- You need more and more primes to construct all integers
- Same for Legos - the kids want more and more!

How many primes are there?

- Hadamard and de la Vallee Poussin showed independently in 1896 that the number of primes up to x is

$$
(1+o(1)) \int_{2}^{x} \frac{d x}{\log x}=(1+o(1)) \frac{x}{\log x}
$$

- This is called the prime number theorem (PNT).
- It asserts that the "probability" that an integer n is prime is about $1 / \log n$.
- Hadamard and de la Vallee Poussin showed independently in 1896 that the number of primes up to x is

$$
(1+o(1)) \int_{2}^{x} \frac{d x}{\log x}=(1+o(1)) \frac{x}{\log x}
$$

- This is called the prime number theorem (PNT).
- It asserts that the "probability" that an integer n is prime is about $1 / \log n$.
- Hence it is convenient to normalize prime p by $\log p$. More precisely we write $\Lambda(n)$ for the von Mangoldt function

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{k} \text { with } k \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- Now PNT is equivalent to $\sum_{n \leq x} \Lambda(n)=(1+o(1)) x$.
- Write, for $\Re s>1$,

$$
\zeta(s)=\sum_{n \in \mathbb{N}} \frac{1}{n^{s}}=\prod_{p \in \mathbb{P}}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\cdots\right)=\prod_{p \in \mathbb{P}}\left(1-\frac{1}{p^{s}}\right)^{-1} .
$$

This can be analytically continued to the whole complex plane except for a pole at $s=1 . \zeta(s)$ is called the Riemann zeta function.

- Write, for $\Re s>1$,

$$
\zeta(s)=\sum_{n \in \mathbb{N}} \frac{1}{n^{s}}=\prod_{p \in \mathbb{P}}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\cdots\right)=\prod_{p \in \mathbb{P}}\left(1-\frac{1}{p^{s}}\right)^{-1} .
$$

This can be analytically continued to the whole complex plane except for a pole at $s=1 . \zeta(s)$ is called the Riemann zeta function.

- The non-trivial zeros of $\zeta(s)$ are the zeros with $0 \leq \Re s \leq 1$. The famous Riemann Hypothesis (RH) asserts that all of these have $\Re s=1 / 2$.
- Write, for $\Re s>1$,

$$
\zeta(s)=\sum_{n \in \mathbb{N}} \frac{1}{n^{s}}=\prod_{p \in \mathbb{P}}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\cdots\right)=\prod_{p \in \mathbb{P}}\left(1-\frac{1}{p^{s}}\right)^{-1} .
$$

This can be analytically continued to the whole complex plane except for a pole at $s=1 . \zeta(s)$ is called the Riemann zeta function.

- The non-trivial zeros of $\zeta(s)$ are the zeros with $0 \leq \Re s \leq 1$. The famous Riemann Hypothesis (RH) asserts that all of these have $\Re s=1 / 2$.
PNT $\Longleftrightarrow \sum_{n \leq x} \Lambda(n)=(1+o(1)) x \Longleftrightarrow \zeta(s) \neq 0$ when $\Re s=1$
$\mathrm{RH} \Longleftrightarrow \sum_{n \leq x} \Lambda(n)=x+O\left(x^{1 / 2+\varepsilon}\right)$ for all $\varepsilon>0$.

Why zeta zeros are related to primes?

One has

$$
-\frac{\zeta^{\prime}(s)}{\zeta(s)}=-\frac{d}{d s} \log \zeta(s)=\frac{d}{d s} \log \prod_{p \in \mathbb{P}}\left(1-\frac{1}{p^{s}}\right)=\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{s}}
$$

Furthermore by contour integration

$$
\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{y^{s}}{s} d s= \begin{cases}1 & \text { if } y<1 \\ 0 & \text { if } y>1\end{cases}
$$

Why zeta zeros are related to primes?

One has

$$
-\frac{\zeta^{\prime}(s)}{\zeta(s)}=-\frac{d}{d s} \log \zeta(s)=\frac{d}{d s} \log \prod_{p \in \mathbb{P}}\left(1-\frac{1}{p^{s}}\right)=\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{s}}
$$

Furthermore by contour integration

$$
\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{y^{s}}{s} d s= \begin{cases}1 & \text { if } y<1 \\ 0 & \text { if } y>1\end{cases}
$$

These give (when $x \notin \mathbb{N}$)
$\sum_{n \leq x} \Lambda(n)=\sum_{n} \Lambda(n) \frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{(x / n)^{s}}{s} d s=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{\zeta^{\prime}}{\zeta}(s) \frac{x^{s}}{s} d s$.

Why zeta zeros are related to primes?

- We obtained (when $x \notin \mathbb{N}$)

$$
\sum_{n \leq x} \Lambda(n)=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{\zeta^{\prime}}{\zeta}(s) \frac{x^{s}}{s} d s
$$

Why zeta zeros are related to primes?

- We obtained (when $x \notin \mathbb{N}$)

$$
\sum_{n \leq x} \Lambda(n)=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{\zeta^{\prime}}{\zeta}(s) \frac{x^{s}}{s} d s
$$

- Moving the integration to the left one picks up a pole at $s=1$ corresponding to the main term x and further poles at zeros of zeta that affect error terms.
This way one obtains
PNT $\Longleftrightarrow \sum_{n \leq x} \Lambda(n)=(1+o(1)) x \Longleftrightarrow \zeta(s) \neq 0$ when $\Re s=1$
$\mathrm{RH} \Longleftrightarrow \sum_{n \leq x} \Lambda(n)=x+O\left(x^{1 / 2+\varepsilon}\right)$ for all $\varepsilon>0$.

Infinitude of primes from zeta

- One can see the infinitude of the primes also from

$$
\zeta(s)=\sum_{n \in \mathbb{N}} \frac{1}{n^{s}}=\prod_{p \in \mathbb{P}}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\cdots\right)=\prod_{p \in \mathbb{P}}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

for $\Re s>1$: Taking logs and letting $s \rightarrow 1$ one actually sees that $\sum_{p \in \mathbb{P}} \frac{1}{p}$ diverges.

- One can see the infinitude of the primes also from

$$
\zeta(s)=\sum_{n \in \mathbb{N}} \frac{1}{n^{s}}=\prod_{p \in \mathbb{P}}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\cdots\right)=\prod_{p \in \mathbb{P}}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

for $\Re s>1$: Taking logs and letting $s \rightarrow 1$ one actually sees that $\sum_{p \in \mathbb{P}} \frac{1}{p}$ diverges.

- Analogously, if the number of buildings keeps tending to infinity, so must the number of bricks.

- One wants to know about primes in short intervals. Huxley's prime number theorem from 1972 gives

$$
\sum_{x<n \leq x+H} \Lambda(n)=(1+o(1)) H, \quad H \geq x^{7 / 12+\varepsilon}
$$

- One wants to know about primes in short intervals. Huxley's prime number theorem from 1972 gives

$$
\sum_{x<n \leq x+H} \Lambda(n)=(1+o(1)) H, \quad H \geq x^{7 / 12+\varepsilon}
$$

- This is based on Huxley's zero-density estimate
$N(\sigma, T)=O\left(T^{\left(\frac{12}{5}+\varepsilon\right)(1-\sigma)}\right) \quad$ for all $T \geq 2$ and $\sigma \in[1 / 2,1]$,
where $N(\sigma, T)$ is the number of zeros of the Riemann zeta function in the rectangle $\Re(s) \geq \sigma,|\Im(s)| \leq T$.
- One wants to know about primes in short intervals. Huxley's prime number theorem from 1972 gives

$$
\sum_{x<n \leq x+H} \Lambda(n)=(1+o(1)) H, \quad H \geq x^{7 / 12+\varepsilon}
$$

- This is based on Huxley's zero-density estimate
$N(\sigma, T)=O\left(T^{\left(\frac{12}{5}+\varepsilon\right)(1-\sigma)}\right) \quad$ for all $T \geq 2$ and $\sigma \in[1 / 2,1]$,
where $N(\sigma, T)$ is the number of zeros of the Riemann zeta function in the rectangle $\Re(s) \geq \sigma,|\Im(s)| \leq T$.
- This has resisted improvements, except Heath-Brown (1988) has shown $H \geq x^{7 / 12-o(1)}$.
- Baker-Harman-Pintz (2001) showed with a sieve method

$$
\sum_{x<n \leq x+H} \Lambda(n) \geq \varepsilon H, \quad H \geq x^{0.525}
$$

for some $\varepsilon>0$.

- For shorter intervals one does not even know existence of primes!
- Assuming RH one knows that $\left[x, x+x^{1 / 2} \log x\right]$ always contains primes.
- Baker-Harman-Pintz (2001) showed with a sieve method

$$
\sum_{x<n \leq x+H} \Lambda(n) \geq \varepsilon H, \quad H \geq x^{0.525}
$$

for some $\varepsilon>0$.

- For shorter intervals one does not even know existence of primes!
- Assuming RH one knows that $\left[x, x+x^{1 / 2} \log x\right]$ always contains primes.
- Cramer made a probabilistic model based on "probability of n being prime is $1 / \log n$ ". Based on this, one expects that intervals $\left[x, x+(\log x)^{2+\varepsilon}\right]$ contain primes for all large x.
- Huge gap between what's known and what's expected.

Primes in almost all short intervals

- Even under RH it is not known that $\left[x, x+x^{1 / 2}\right]$ always contains primes.
- What if one only requires that almost all intervals contain primes?
- Even under RH it is not known that $\left[x, x+x^{1 / 2}\right]$ always contains primes.
- What if one only requires that almost all intervals contain primes?
- A variant of Huxley's prime number theorem says that, for almost all $x \in[X, 2 X]$,

$$
\sum_{x<n \leq x+H} \Lambda(n)=(1+o(1)) H, \quad H \geq x^{1 / 6+\varepsilon}
$$

- This can be proved using the same zero-density estimates and has also resisted improvements.
- Even under RH it is not known that $\left[x, x+x^{1 / 2}\right]$ always contains primes.
- What if one only requires that almost all intervals contain primes?
- A variant of Huxley's prime number theorem says that, for almost all $x \in[X, 2 X]$,

$$
\sum_{x<n \leq x+H} \Lambda(n)=(1+o(1)) H, \quad H \geq x^{1 / 6+\varepsilon}
$$

- This can be proved using the same zero-density estimates and has also resisted improvements.
- A lower bound has been shown for $H \geq X^{1 / 20}$ by Jia.
- One expects that, for any $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x, x+h \log x]$ contains primes for almost all $x \in[X, 2 X]$.
- Even under RH it is not known that $\left[x, x+x^{1 / 2}\right.$] always contains primes.
- What if one only requires that almost all intervals contain primes?
- A variant of Huxley's prime number theorem says that, for almost all $x \in[X, 2 X]$,

$$
\sum_{x<n \leq x+H} \Lambda(n)=(1+o(1)) H, \quad H \geq x^{1 / 6+\varepsilon}
$$

- This can be proved using the same zero-density estimates and has also resisted improvements.
- A lower bound has been shown for $H \geq X^{1 / 20}$ by Jia.
- One expects that, for any $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x, x+h \log x]$ contains primes for almost all $x \in[X, 2 X]$.
- We mostly keep Legos only in one room, so fortunately no analogue with primes in almost all short intervals!!
- Conjecturally, for any $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x, x+h \log x]$ contains primes for almost all $x \in[X, 2 X]$.
- Heath-Brown (1982) has established this assuming both RH and the pair correlation conjecture for zeros of $\zeta(s)$.
- Conjecturally, for any $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x, x+h \log x]$ contains primes for almost all $x \in[X, 2 X]$.
- Heath-Brown (1982) has established this assuming both RH and the pair correlation conjecture for zeros of $\zeta(s)$.
- With Jori Merikoski we are working under the unlikely assumption of exceptional characters.

Primes in almost all short intervals, conditional results

Corollary (M.-Merikoski, provisional)

Fix $K>0$. Assume there is a sequence of moduli $q_{j} \rightarrow \infty$ of primitive quadratic characters χ_{j} with $q_{j+1}<\exp \left(\log ^{K} q_{j}\right)$ such that for all $j \geq 1$ either

$$
L\left(1, \chi_{j}\right)=o\left(\frac{1}{\log q_{j}}\right)
$$

or there exists a real zero β_{j} of $L\left(s, \chi_{j}\right)$ with

$$
1-\beta_{j}=o\left(\frac{1}{\log q_{j}}\right)
$$

Let $H / \log X \rightarrow \infty$ with $X \rightarrow \infty$. Then, for almost all $y \in[X, 2 X]$,

$$
\sum_{y<p \leq y+H} 1=(1+o(1)) \frac{H}{\log y}
$$

Almost primes

- One expects that, for any $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x, x+h \log x]$ contains primes for almost all $x \in[X, 2 X]$.
- One can ask similar questions about almost-primes, i.e. P_{k} numbers that have at most k prime factors or E_{k} numbers that have exactly k prime factors.

Almost primes

- One expects that, for any $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x, x+h \log x]$ contains primes for almost all $x \in[X, 2 X]$.
- One can ask similar questions about almost-primes, i.e. P_{k} numbers that have at most k prime factors or E_{k} numbers that have exactly k prime factors.
- Teräväinen has shown that almost intervals of length $(\log X)^{3.51}$ contain an E_{2}-number. Wu has shown that $\left(x-x^{101 / 232}, x\right]$ contains P_{2} numbers for all large x.
- Friedlander and Iwaniec sketched that if $h \rightarrow \infty$ with $X \rightarrow \infty$, almost all intervals of length $h \log X$ contain P_{3}-numbers.

Almost primes

- One expects that, for any $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x, x+h \log x]$ contains primes for almost all $x \in[X, 2 X]$.
- One can ask similar questions about almost-primes, i.e. P_{k} numbers that have at most k prime factors or E_{k} numbers that have exactly k prime factors.
- Teräväinen has shown that almost intervals of length $(\log X)^{3.51}$ contain an E_{2}-number. Wu has shown that $\left(x-x^{101 / 232}, x\right]$ contains P_{2} numbers for all large x.
- Friedlander and Iwaniec sketched that if $h \rightarrow \infty$ with $X \rightarrow \infty$, almost all intervals of length $h \log X$ contain P_{3}-numbers.

Theorem (M. (202?))

Let $h \rightarrow \infty$ with $X \rightarrow \infty$. Then the interval $(x-h \log X, x]$ contains P_{2} numbers for almost all $x \leq X$.

Almost primes

- One expects that, for any $h \rightarrow \infty$ with $X \rightarrow \infty$, the interval $(x, x+h \log x]$ contains primes for almost all $x \in[X, 2 X]$.
- One can ask similar questions about almost-primes, i.e. P_{k} numbers that have at most k prime factors or E_{k} numbers that have exactly k prime factors.
- Teräväinen has shown that almost intervals of length $(\log X)^{3.51}$ contain an E_{2}-number. Wu has shown that $\left(x-x^{101 / 232}, x\right]$ contains P_{2} numbers for all large x.
- Friedlander and Iwaniec sketched that if $h \rightarrow \infty$ with $X \rightarrow \infty$, almost all intervals of length $h \log X$ contain P_{3}-numbers.

Theorem (M. (202?))

Let $h \rightarrow \infty$ with $X \rightarrow \infty$. Then the interval $(x-h \log X, x]$ contains P_{2} numbers for almost all $x \leq X$.

- There are some almost Legos by other trademarks! I have no experience, so don't know how good approximations they are...

Möbius function

- Let $\mu(n)$ denote the Möbius function

$$
\mu(n)= \begin{cases}(-1)^{k} & \text { if } n=p_{1} \cdots p_{k} \text { with } p_{i} \text { distinct } \\ 0 & \text { otherwise }\end{cases}
$$

Möbius function

- Let $\mu(n)$ denote the Möbius function

$$
\mu(n)= \begin{cases}(-1)^{k} & \text { if } n=p_{1} \cdots p_{k} \text { with } p_{i} \text { distinct } \\ 0 & \text { otherwise }\end{cases}
$$

- Now, for $\Re s>1$,

$$
\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}=\frac{1}{\zeta(s)},
$$

so $\mu(n)$ is closely related to $\Lambda(n)$ whose generating Dirichlet series was $-\zeta^{\prime} / \zeta$.

- Let $\mu(n)$ denote the Möbius function

$$
\mu(n)= \begin{cases}(-1)^{k} & \text { if } n=p_{1} \cdots p_{k} \text { with } p_{i} \text { distinct } \\ 0 & \text { otherwise }\end{cases}
$$

- Now, for $\Re s>1$,

$$
\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}=\frac{1}{\zeta(s)}
$$

so $\mu(n)$ is closely related to $\Lambda(n)$ whose generating Dirichlet series was $-\zeta^{\prime} / \zeta$.

- In particular
$P N T \Longleftrightarrow \zeta(s)$ has no zeros with $\Re s=1 \Longleftrightarrow \sum_{n \leq x} \mu(n)=o(x)$

$$
R H \Longleftrightarrow \sum_{n \leq x} \mu(n)=O\left(x^{1 / 2+\varepsilon}\right) \text { for all } \varepsilon>0
$$

- Unfortunately, no more Lego analogues!
- Until 2014 the story for the Möbius function was exactly the same as for $\Lambda(n)$.
- Motohashi and Ramachandra independently adapted Huxley's proof in 1970s to show

$$
\sum_{x<n \leq x+H} \mu(n)=o(H), \quad H \geq x^{7 / 12+\varepsilon}
$$

- Analogously it was known that, for almost all $x \in(X, 2 X]$,

$$
\sum_{x<n \leq x+H} \mu(n)=o(H), \quad H \geq x^{1 / 6+\varepsilon}
$$

- Until 2014 the story for the Möbius function was exactly the same as for $\Lambda(n)$.
- Motohashi and Ramachandra independently adapted Huxley's proof in 1970s to show

$$
\sum_{x<n \leq x+H} \mu(n)=o(H), \quad H \geq x^{7 / 12+\varepsilon}
$$

- Analogously it was known that, for almost all $x \in(X, 2 X]$,

$$
\sum_{x<n \leq x+H} \mu(n)=o(H), \quad H \geq x^{1 / 6+\varepsilon}
$$

- This almost-all interval result was shown to hold for any $H \rightarrow \infty$ with $X \rightarrow \infty$ in my work with Radziwiłt (2016). We crucially used that a typical n has prime factors from certain convenient intervals - something that is certainly not true for $n \in \mathbb{P}$.

A natural question is whether one can do analogous thing for all intervals. Recently Teräväinen and I obtained such a result.

Theorem (M-Teräväinen (202?))

$$
\sum_{x<n \leq x+H} \mu(n)=o(H), \quad H \geq x^{0.55+\varepsilon}
$$

A natural question is whether one can do analogous thing for all intervals. Recently Teräväinen and I obtained such a result.

Theorem (M-Teräväinen (202?))

$$
\sum_{x<n \leq x+H} \mu(n)=o(H), \quad H \geq x^{0.55+\varepsilon}
$$

Note that $7 / 12=0.5833 \cdots$, and that even under RH one cannot get beyond $1 / 2$, so we get significantly closer to this natural barrier.

How to prove things related to primes, almost primes or Möbius

- Often there are two steps, a combinatorial and an analytic.
- In combinatorial step combinatorial identity or sieve reduces the problem to so-called type I and type II sums.
- In the analytic step these are estimated.
- For instance Vaughan's identity implies that, for any $\left(\alpha_{n}\right)$,

$$
\begin{aligned}
& \sum_{X<n \leq 2 X} \alpha_{n} \Lambda(n)=\sum_{\substack{X<b c \leq 2 X \\
b \leq X^{1 / 3}}} \alpha_{b c} \mu(b) \log c \\
& -\sum_{\substack{X<a b c \leq 2 X \\
b, c \leq X^{1 / 3}}} \alpha_{a b c} \mu(b) \wedge(c)+\sum_{\substack{X<a b c \leq 2 X \\
b, c>X^{1 / 3}}} \alpha_{a b c} \mu(b) \Lambda(c)
\end{aligned}
$$

- For instance Vaughan's identity implies that, for any $\left(\alpha_{n}\right)$,

$$
\begin{aligned}
& \sum_{X<n \leq 2 X} \alpha_{n} \Lambda(n)=\sum_{\substack{X<b c \leq 2 X \\
b \leq X^{1 / 3}}} \alpha_{b c} \mu(b) \log c \\
& -\sum_{\substack{x<a b c \leq 2 X \\
b, c \leq X^{1 / 3}}} \alpha_{a b c} \mu(b) \wedge(c)+\sum_{\substack{x<a b c \leq 2 X \\
b, c>X^{1 / 3}}} \alpha_{a b c} \mu(b) \wedge(c)
\end{aligned}
$$

- Thus $\sum_{X<n \leq 2 X} \alpha_{n} \Lambda(n)$ splits into type I and type II sums

$$
\sum_{\substack{X<m n \leq 2 X \\ m \leq X^{1 / 3}}} \alpha_{m n} a_{m} \text { and } \sum_{\substack{X<m n \leq 2 X \\ X^{1 / 3} \leq m \leq X^{2 / 3}}} \alpha_{m n} a_{m} b_{n}
$$

with certain bounded coefficients a_{m} and b_{n}.

- For instance Vaughan's identity implies that, for any $\left(\alpha_{n}\right)$,

$$
\begin{aligned}
& \sum_{X<n \leq 2 X} \alpha_{n} \Lambda(n)=\sum_{\substack{X<b c \leq 2 X \\
b \leq X^{1 / 3}}} \alpha_{b c} \mu(b) \log c \\
& -\sum_{\substack{x<a b c \leq 2 X \\
b, c \leq X^{1 / 3}}} \alpha_{a b c} \mu(b) \wedge(c)+\sum_{\substack{x<a b c \leq 2 X \\
b, c>X^{1 / 3}}} \alpha_{a b c} \mu(b) \wedge(c)
\end{aligned}
$$

- Thus $\sum_{X<n \leq 2 X} \alpha_{n} \Lambda(n)$ splits into type I and type II sums

$$
\sum_{\substack{X<m n \leq 2 X \\ m \leq X^{1 / 3}}} \alpha_{m n} a_{m} \text { and } \sum_{\substack{X<m n \leq 2 X \\ X^{1 / 3} \leq m \leq X^{2 / 3}}} \alpha_{m n} a_{m} b_{n}
$$

with certain bounded coefficients a_{m} and b_{n}.

- In type I sums we have a smooth variable n, whereas in type II sums we have genuine bilinear structure.
- In the analytic step one estimates these type I and type II sums.
- In the analytic step one estimates these type I and type II sums.
- For instance when studying short intervals, one can use Dirichlet polynomials through Perron's formula:

$$
\frac{1}{H} \sum_{x<m n \leq x+H} a_{m} b_{n} \approx \frac{1}{X} \sum_{x<m n \leq 2 X} a_{m} b_{n}
$$

essentially if

$$
\int_{(\log X)^{100}}^{x / H}\left|\sum_{m n \sim X} \frac{a_{m} b_{n}}{(m n)^{1+i t}}\right| d t=O\left(\frac{x^{1 / 2}}{(\log x)^{100}}\right) .
$$

- In the analytic step one estimates these type I and type II sums.
- For instance when studying short intervals, one can use Dirichlet polynomials through Perron's formula:

$$
\frac{1}{H} \sum_{x<m n \leq x+H} a_{m} b_{n} \approx \frac{1}{X} \sum_{x<m n \leq 2 X} a_{m} b_{n}
$$

essentially if

$$
\int_{(\log X)^{100}}^{x / H}\left|\sum_{m n \sim X} \frac{a_{m} b_{n}}{(m n)^{1+i t}}\right| d t=O\left(\frac{x^{1 / 2}}{(\log x)^{100}}\right) .
$$

- Such mean values can be estimated through mean and large value results for Dirichlet polynomials.
- In the problem for almost primes in almost all short intervals, the combinatorial tool is Richert's weighted sieve with β-sieve. This way one reduces to type I sums but can never catch primes.
- In the problem for Möbius in short intervals, in the combinatorial step we use Ramaré's identity and Heath-Brown's identity.
- In the analytic step we use respectively Kloostermania and Dirichlet polynomials.

Theorem (M. (202?))

Let $h \rightarrow \infty$ with $X \rightarrow \infty$. Then the interval $(x-h \log X, x]$ contains P_{2} numbers for almost all $x \leq X$.

Theorem (M. (202?))

Let $h \rightarrow \infty$ with $X \rightarrow \infty$. Then the interval $(x-h \log X, x]$ contains P_{2} numbers for almost all $x \leq X$.

Theorem (M-Teräväinen (202?))

$$
\sum_{x<n \leq x+H} \mu(n)=o(H), \quad H \geq x^{0.55+\varepsilon}
$$

Theorem (M. (202?))

Let $h \rightarrow \infty$ with $X \rightarrow \infty$. Then the interval $(x-h \log X, x]$ contains P_{2} numbers for almost all $x \leq X$.

Theorem (M-Teräväinen (202?))

$$
\sum_{x<n \leq x+H} \mu(n)=o(H), \quad H \geq x^{0.55+\varepsilon}
$$

Similar method works for other problems. E.g.

Theorem (M-Teräväinen (202?))

$$
\sum_{\substack{x<p_{1} p_{2} \leq x+H \\ p_{j} \in \mathbb{P}}} 1=H \frac{\log \log x}{\log x}+O\left(H \frac{\log \log \log x}{\log x}\right), \quad H \geq x^{0.55+\varepsilon} .
$$

Thank you!

