Universal sequences and Euler tours in hypergraphs

Deryk Osthus

joint work with Stefan Glock, Felix Joos and Daniela Kühn University of Birmingham

June 2021

Deryk Osthus

Euler tours

A universal cycle for [n] and k is a cyclic sequence with elements in [n], such that every k-subset of [n] appears exactly once consecutively.

Example: 1234524135 is a universal cycle for [5] and 2.

Conjecture (Chung, Diaconis and Graham, 1989 (\$100))

For any k and any sufficiently large n, universal cycles for [n] and k exist if and only if $k \mid {\binom{n-1}{k-1}}$.

Divisibility condition is necessary: every element is contained in $\binom{n-1}{k-1}$ many *k*-sets, every time an element appears in the sequence, it appears in *k* consecutive *k*-sets A tight Euler tour in a 3-uniform hypergraph G:

- cyclic sequence of vertices
- every 3 consecutive vertices span a hyperedge of G
- every hyperedge of G occurs exactly once in this way

Definition naturally generalizes to k-uniform hypergraphs

Conjecture (Chung, Diaconis and Graham, 1989 (\$100))

For sufficiently large n, the complete n-vertex k-uniform hypergraph K_n^k has a tight Euler tour if and only if $k \mid \binom{n-1}{k-1}$.

Equivalent to conjecture on universal sequences

Conjecture (Chung, Diaconis and Graham, 1989 (\$100))

For sufficiently large n, K_n^k has a tight Euler tour if and only if $k \mid \binom{n-1}{k-1}$.

- Jackson: true for $k \leq 5$ (1993)
- Curtis, Hines, Hurlbert, Moyer (2009): approximate solution

Conjecture (Chung, Diaconis and Graham, 1989 (\$100))

For sufficiently large n, K_n^k has a tight Euler tour if and only if $k \mid {n-1 \choose k-1}$.

- Jackson: true for $k \leq 5$ (1993)
- Curtis, Hines, Hurlbert, Moyer (2009): approximate solution

CHHM: At the 2004 Banff Workshop ... it was suggested.. that a modest inflationary rate should revalue the prize near 250.04.... Due to our proof that near-universal cycles exist, we believe that we deserve asymptotically much of the prize money, or (1 - o(1))(250.04). Since we do not know the speed of the o(1) term, we have made a conservative estimate of 249.99.

Conjecture (Chung, Diaconis and Graham, 1989 (\$100))

For sufficiently large n, K_n^k has a tight Euler tour if and only if $k \mid \binom{n-1}{k-1}$.

Theorem (Glock, Joos, Kühn, Osthus, 2020)

The conjecture is true.

based on existence of *F*-designs (Glock, Lo, Kühn, Osthus, 17⁺)

Hypergraph decompositions

G has an *F*-decomposition if there exist pairwise edge-disjoint copies of *F* in *G* which cover all (hyper)edges of *G*.

If $G = K_n$ and $F = K_3$ this is a Steiner triple system of order n.

If G is complete, then this is an F-design

Hypergraph decompositions

G has an *F*-decomposition if there exist pairwise edge-disjoint copies of *F* in *G* which cover all (hyper)edges of *G*.

If $G = K_n$ and $F = K_3$ this is a Steiner triple system of order n.

If G is complete, then this is an F-design

F-designs exist for any F:

Theorem (Glock, Kühn, Lo, Osthus 2017⁺)

Suppose F is a k-uniform hypergraph and suppose that the complete n-vertex k-uniform hypergraph $K_n^{(k)}$ is F-divisible, where $n \gg |V(F)|$. Then $K_n^{(k)}$ has an F-decomposition.

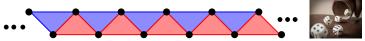
- clique case (ie F is complete) is due to Keevash
- graph case k = 2 is due to Wilson
- can replace $\mathcal{K}_n^{(k)}$ by 'almost complete' host hypergraph G
- proof is combinatorial and is based on iterative absorption

Proof strategy I: Random walk

Theorem (Glock, Joos, Kühn, Osthus, 2020)

For sufficiently large n, K_n^k has a tight Euler tour if and only if $k \mid \binom{n-1}{k-1}$.

Consider random walk on the vertex set [n] which does not 'revisit' k-sets:



Lemma (Universality lemma)

Almost surely, after $n^{k-1}(\log n)^2$ steps, the random walk W has traversed every k-1-element ordered set.

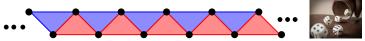
So $K_n^k - W$ is still almost complete!

Proof strategy I: Random walk

Theorem (Glock, Joos, Kühn, Osthus, 2020)

For sufficiently large n, K_n^k has a tight Euler tour if and only if $k \mid \binom{n-1}{k-1}$.

Consider random walk on the vertex set [n] which does not 'revisit' k-sets:



Lemma (Universality lemma)

Almost surely, after $n^{k-1}(\log n)^2$ steps, the random walk W has traversed every k-1-element ordered set.

So $K_n^k - W$ is still almost complete! This still holds if we turn W into a closed walk by adding a few more steps

Proof strategy II: Completion via F-designs

Let F be a tight cycle (ie no repeated vertices) of length 2k

We have:

- $G = K_n^k W$ is *F*-divisible!
- G is also almost complete
- \Rightarrow by GKLO-theorem, G has an F-decomposition

Proof strategy II: Completion via F-designs

Let F be a tight cycle (ie no repeated vertices) of length 2k

We have:

- $G = K_n^k W$ is *F*-divisible!
- G is also almost complete

 \Rightarrow by GKLO-theorem, G has an F-decomposition

Let C_1, \ldots, C_m be the cycles of the *F*-decomposition. For each *i*, let T_i be an ordered k - 1-set traversed by C_i .

Insert C_i into W when W visits T_i . Since W visits every ordered k-1-set, we eventually insert every cycle in this way.

 \Rightarrow the resulting walk is an Euler tour

Recall main result:

Theorem (Glock, Joos, Kühn, Osthus, 2020)

For sufficiently large n, K_n^k has a tight Euler tour if and only if $k \mid \binom{n-1}{k-1}$.

What about Euler tours in noncomplete hypergraphs?

- Decision problem is NP-complete
- our result holds for almost complete hypergraphs

Conjecture

Every k-uniform hypergraph G with $\delta_{k-1}(G) \ge (\frac{k-1}{k} + o(1))n$ has a tight Euler tour if all vertex degrees are divisible by k.

True for k = 3 (Piga and Sanhueza-Matamala 2021⁺)

Open problems: Oberwolfach problem

The Oberwolfach problem has a solution for all sufficiently large n.

Theorem (Glock, Joos, Kim, Kühn, Osthus, 18⁺)

 $\exists n_0$ such that for all odd $n \ge n_0$ and any cycle factor F on n vertices, K_n has an F-decomposition.

What about Oberwolfach decompositions of graphs of large degree?

Conjecture

 $\exists n_0 \text{ such that for } n \ge n_0 \text{ and any cycle factor } F \text{ on } n \text{ vertices, any even-regular graph } G \text{ with } \delta(G) \ge 3n/4 \text{ has an } F\text{-decomposition.}$

Deryk Osthus Euler tours