Factorizations of infinite graphs

Simone Costa University of Brescia

Joint work with Tommaso Traetta

The Factorization Problem

Let Λ be a graph of order \aleph and let $\mathcal{F}=\left\{F_{\alpha}: \alpha \in \mathcal{A}\right\}$ be a family of (non-empty) infinite graphs, each of which has order \aleph.

Problem
The Factorization Problem $\operatorname{FP}(\mathcal{F}, \Lambda)$ asks for a factorization, that is a decomposition into spanning subgraphs, $\mathcal{G}=\left\{\Gamma_{\alpha}: \alpha \in \mathcal{A}\right\}$ of Λ such that Γ_{α} is isomorphic to F_{α}, for every $\alpha \in \mathcal{A}$.

- If \wedge is the complete graph of order \aleph, we simply write $F P(\mathcal{F})$.

The Factorization Problem

Let Λ be a graph of order \aleph and let $\mathcal{F}=\left\{F_{\alpha}: \alpha \in \mathcal{A}\right\}$ be a family of (non-empty) infinite graphs, each of which has order \aleph.

Problem

The Factorization Problem $\operatorname{FP}(\mathcal{F}, \Lambda)$ asks for a factorization, that is a decomposition into spanning subgraphs, $\mathcal{G}=\left\{\Gamma_{\alpha}: \alpha \in \mathcal{A}\right\}$ of Λ such that Γ_{α} is isomorphic to F_{α}, for every $\alpha \in \mathcal{A}$.

- If Λ is the complete graph of order \aleph, we simply write $F P(\mathcal{F})$.
- If in addition each F_{α} is isomorphic to a given graph F and $|\mathcal{A}|=\aleph$, we write $F P(F)$.

Theorem (Kőhler 1977)

There exists a (cyclic) resolvable $2-(v, k, 1)$ design whenever $v=\aleph_{0}$ and k is finite.

Theorem (Danziger, Horsley, Webb 2014)
Every infinite $2-(v, k, 1)$ design with $k<v$ is necessarily resolvable.

Theorem (Bonvicini, Mazzuoccolo 2010; SC, Traetta 2021^{+})
There exists a G-regular 1-factorization of K_{\aleph} whenever $|G|=\aleph$.

Theorem (SC 2020)
Let F be a graph whose order is the cardinal number $\aleph . ~ F P(F)$ has a G-regular solution whenever the following two conditions hold:

- F is locally finite;
- G is an involution free group of order \aleph.

The Rado graph

Definition

The Rado graph R, is defined as follows:

- $V(R)=\mathbb{N}$;
- a pair $\{i, j\}$ with $i<j$ is an edge of R if and only if the i-th bit of the binary representation of j is one.

Known results for the Rado graph

Theorem (Cameron 1997)
Let \mathcal{F} be a countable family of locally finite countable graphs. Then $F P(\mathcal{F}, R)$ has a solution.

```
Lemma
Let F be a locally finite countable graph. Then, for any factor }\Gamma\mathrm{ of R
that is isomorphic to F,R\\Gamma is isomorphic to R.
```


Known results for the Rado graph

Theorem (Cameron 1997)
Let \mathcal{F} be a countable family of locally finite countable graphs. Then $F P(\mathcal{F}, R)$ has a solution.

Lemma

Let F be a locally finite countable graph. Then, for any factor Γ of R that is isomorphic to $F, R \backslash \Gamma$ is isomorphic to R.

Factorizations of the Rado graph

The domination number of a graph is defined as the minimum cardinality of a dominating set.

Theorem (SC, Traetta 2021^{+})
Let \mathcal{F} be a countable family of countable graphs. Then $\operatorname{FP}(\mathcal{F}, R)$ has a solution if and only if the domination number of each graph of \mathcal{F} is infinite.

Factorizations of the Rado graph

The domination number of a graph is defined as the minimum cardinality of a dominating set.

Theorem (SC, Traetta 2021^{+})
Let \mathcal{F} be a countable family of countable graphs. Then $\operatorname{FP}(\mathcal{F}, R)$ has a solution if and only if the domination number of each graph of \mathcal{F} is infinite.

Lemma

Let F be a countable graph whose domination number is infinite. Then there exists a factor Γ of R such that:

- 「 is isomorpic to F;
- $R \backslash \Gamma$ is isomorphic to R.

From R to $K_{\mathbb{N}}$

Corollary
Let \mathcal{F} be a countable family of countable graphs. $\operatorname{FP}(\mathcal{F})$ has a solution whenever the domination number of each graph in \mathcal{F} is infinite.

From R to $K_{\mathbb{N}}$

Corollary

Let \mathcal{F} be a countable family of countable graphs. $\operatorname{FP}(\mathcal{F})$ has a solution whenever the domination number of each graph in \mathcal{F} is infinite.

Proof.

- R is self-complementary and thus there exist R_{1} and R_{2} that are copies of R which factorize $K_{\mathbb{N}}$.
- We partition \mathcal{F} into two countable families \mathcal{F}_{1} and \mathcal{F}_{2}.
- Because of the previous theorem there is a solution \mathcal{G}_{i} to $F P\left(\mathcal{F}_{i}, R_{i}\right)$, for $i=1,2$.
- $\mathcal{G}_{1} \cup \mathcal{G}_{2}$ provides a solution to $\operatorname{FP}(\mathcal{F})$.

Generalized Rado graphs

For $\aleph=|\mathbb{N}|$, the following property characterizes R.
\star_{\aleph} For every disjoint sets of vertices U and W whose cardinality is smaller than \aleph, there exists a vertex z adjacent to all the vertices of U and non-adjacent to all the vertices of V.

Proposition (Cameron 1997)
Any two graphs of order \aleph that satisfy property \star_{κ} are pairwise isomorphic.

It exists for any infinite cardinal \aleph if and only if we assume the generalized continuum hypothesis!

Generalized Rado graphs

For $\aleph=|\mathbb{N}|$, the following property characterizes R.
\star_{\aleph} For every disjoint sets of vertices U and W whose cardinality is smaller than \aleph, there exists a vertex z adjacent to all the vertices of U and non-adjacent to all the vertices of V.

Proposition (Cameron 1997)

Any two graphs of order \aleph that satisfy property \star_{\aleph} are pairwise isomorphic.

Problem

Does a graph R_{\aleph} that satisfies \star_{\aleph} exist?
It exists for any infinite cardinal \aleph if and only if we assume the generalized continuum hypothesis!

Existence results

Theorem (SC, Traetta 2021+)
Let \mathcal{F} be a family of graphs, each of which has order $\aleph . F P(\mathcal{F})$ has a solution whenever the following two conditions hold:

1) $|\mathcal{F}|=\aleph$;
2) the domination number of each graph in \mathcal{F} is \aleph.

The proof is based on the following methods:
 - Transfinite induction (it requires the axiom of choice).
 - A variation of the Cantor back and forth method.

Existence results

Theorem (SC, Traetta 2021+ ${ }^{+}$

Let \mathcal{F} be a family of graphs, each of which has order $\aleph . ~ F P(\mathcal{F})$ has a solution whenever the following two conditions hold:

1) $|\mathcal{F}|=\aleph$;
2) the domination number of each graph in \mathcal{F} is \aleph.

The proof is based on the following methods:

- Transfinite induction (it requires the axiom of choice).
- A variation of the Cantor back and forth method.

From K_{\aleph} to R_{\aleph}

Let \aleph be such that R_{\aleph} exists.
Theorem (SC, Traetta 2021^{+})
Let \mathcal{F} be a family of graphs of order \aleph and $|\mathcal{F}|=\aleph . ~ F P\left(\mathcal{F}, R_{\aleph}\right)$ has a solution if and only if the domination number of each graph in \mathcal{F} is \aleph.

- Since the domination number of the \aleph-Rado graph is \aleph, the same must hold for each graph of \mathcal{F}.
Now we prove that this condition is also sufficient.
- $\mathcal{F}^{\prime}:=\mathcal{F} \cup\left\{R_{\aleph}\right\}$ satisfies the hypothesis of previous theorem.
- Therefore $\operatorname{FP}\left(\mathcal{F}^{\prime}\right)$ admits a solution and \mathcal{F} factorizes $K_{\aleph} \backslash R_{\aleph}$
- Since $R_{\mathbb{N}}$ is self-complementary, \mathcal{F} factorizes the \aleph-Rado graph.

From K_{\aleph} to R_{\aleph}

Let \aleph be such that R_{\aleph} exists.
Theorem (SC, Traetta 2021+)
Let \mathcal{F} be a family of graphs of order \aleph and $|\mathcal{F}|=\aleph . F P\left(\mathcal{F}, R_{\aleph}\right)$ has a solution if and only if the domination number of each graph in \mathcal{F} is \aleph.

Proof.

- Since the domination number of the \aleph-Rado graph is \aleph, the same must hold for each graph of \mathcal{F}.
Now we prove that this condition is also sufficient.
- $\mathcal{F}^{\prime}:=\mathcal{F} \cup\left\{R_{\aleph}\right\}$ satisfies the hypothesis of previous theorem.
- Therefore $F P\left(\mathcal{F}^{\prime}\right)$ admits a solution and \mathcal{F} factorizes $K_{\aleph} \backslash R_{\aleph}$.
- Since R_{\aleph} is self-complementary, \mathcal{F} factorizes the \aleph-Rado graph.

Necessity of condition 2 ?

Problem

Is it necessary to require that the domination number of each graph in \mathcal{F} is \aleph to have a solution of $F P(\mathcal{F})$?

Necessity of condition 2 ?

Problem

Is it necessary to require that the domination number of each graph in \mathcal{F} is \aleph to have a solution of $\operatorname{FP}(\mathcal{F})$?

The answer is no!

The k-star problem

Definition
Let us consider the k-star S_{k}, defined as follows.

- the star S_{1} is the graph with vertex-set \mathbb{N} and whose edges are of the form $\{0, i\}$ for every $i \in \mathbb{N} \backslash\{0\}$;
- the k-star S_{k} is the vertex-disjoint union of k stars.

Note that S_{k} has a dominating set of size k.
\square
The case $k=3$ is left open.

The k-star problem

Definition
Let us consider the k-star S_{k}, defined as follows.

- the star S_{1} is the graph with vertex-set \mathbb{N} and whose edges are of the form $\{0, i\}$ for every $i \in \mathbb{N} \backslash\{0\}$;
- the k-star S_{k} is the vertex-disjoint union of k stars.

Note that S_{k} has a dominating set of size k.
Theorem (SC, Traetta 2021^{+})
$F P\left(S_{k}\right)$ has no solution for $k \in\{1,2\}$ but it has whenever $k \geq 4$.
The case $k=3$ is left open.

References

1 S. Bonvicini and G. Mazzuoccolo. Abelian 1-factorizations in infinite graphs, European J. Combin., 31 (2010), 1847-1852.
2 P. J. Cameron, The random graph, The mathematics of Paul Erdős, II, Algorithms Combin., 14 (1997), Berlin: Springer, pp. 333-351.
3 S. Costa. A complete solution to the infinite Oberwolfach problem, J. Combin. Des., 28 (2020), 366-383.

4 S. Costa and T. Traetta. Factorizing the Rado graph and infinite complete graphs, Submitted (arXiv:2103.11992).
5 S. Costa and T. Traetta. Vertex-regular 1-factorizations in infinite graphs, Submitted (arXiv:2106.09468).
6 P. Danziger, D. Horsley and B. S. Webb. Resolvability of infinite designs, J. Combin. Theory Ser. A, 123 (2014), 73-85.
7 E. Köhler, Unendliche gefaserte Steiner systeme, J. Geom., 9 (1977), 73-77.

