Factorizations of infinite graphs

Simone Costa University of Brescia

Joint work with Tommaso Traetta

Let Λ be a graph of order \aleph and let $\mathcal{F} = \{F_{\alpha} : \alpha \in \mathcal{A}\}$ be a family of (non-empty) infinite graphs, each of which has order \aleph .

Problem

The Factorization Problem $FP(\mathcal{F}, \Lambda)$ asks for a factorization, that is a decomposition into spanning subgraphs, $\mathcal{G} = \{\Gamma_{\alpha} : \alpha \in \mathcal{A}\}$ of Λ such that Γ_{α} is isomorphic to F_{α} , for every $\alpha \in \mathcal{A}$.

• If Λ is the complete graph of order \aleph , we simply write $FP(\mathcal{F})$.

• If in addition each F_{α} is isomorphic to a given graph F and $|\mathcal{A}| = \aleph$, we write FP(F).

(日)

Let Λ be a graph of order \aleph and let $\mathcal{F} = \{F_{\alpha} : \alpha \in \mathcal{A}\}$ be a family of (non-empty) infinite graphs, each of which has order \aleph .

Problem

The Factorization Problem $FP(\mathcal{F}, \Lambda)$ asks for a factorization, that is a decomposition into spanning subgraphs, $\mathcal{G} = \{\Gamma_{\alpha} : \alpha \in \mathcal{A}\}$ of Λ such that Γ_{α} is isomorphic to F_{α} , for every $\alpha \in \mathcal{A}$.

- If Λ is the complete graph of order \aleph , we simply write $FP(\mathcal{F})$.
- If in addition each F_{α} is isomorphic to a given graph F and $|\mathcal{A}| = \aleph$, we write FP(F).

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・ ・

Theorem (Kőhler 1977)

There exists a (cyclic) resolvable 2-(v, k, 1) design whenever $v = \aleph_0$ and k is finite.

Theorem (Danziger, Horsley, Webb 2014)

Every infinite 2-(v, k, 1) design with k < v is necessarily resolvable.

Theorem (Bonvicini, Mazzuoccolo 2010; SC, Traetta 2021⁺) There exists a G-regular 1-factorization of K_{\aleph} whenever $|G| = \aleph$.

Theorem (SC 2020)

Let F be a graph whose order is the cardinal number \aleph . FP(F) has a G-regular solution whenever the following two conditions hold:

- F is locally finite;
- G is an involution free group of order ℵ.

The Rado graph

Definition

The Rado graph R, is defined as follows:

- $V(R) = \mathbb{N};$
- a pair {i, j} with i < j is an edge of R if and only if the i-th bit of the binary representation of j is one.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Known results for the Rado graph

Theorem (Cameron 1997)

Let \mathcal{F} be a countable family of locally finite countable graphs. Then $FP(\mathcal{F}, R)$ has a solution.

Lemma

Let F be a locally finite countable graph. Then, for any factor Γ of R that is isomorphic to F, $R \setminus \Gamma$ is isomorphic to R.

Known results for the Rado graph

Theorem (Cameron 1997)

Let \mathcal{F} be a countable family of locally finite countable graphs. Then $FP(\mathcal{F}, R)$ has a solution.

Lemma

Let F be a locally finite countable graph. Then, for any factor Γ of R that is isomorphic to F, $R \setminus \Gamma$ is isomorphic to R.

• • • • • • • • • • • •

Factorizations of the Rado graph

The domination number of a graph is defined as the minimum cardinality of a dominating set.

```
Theorem (SC, Traetta 2021+)
```

Let \mathcal{F} be a countable family of countable graphs. Then $FP(\mathcal{F}, R)$ has a solution if and only if the domination number of each graph of \mathcal{F} is infinite.

Lemma

Let F be a countable graph whose domination number is infinite. Then there exists a factor Γ of R such that:

- Γ is isomorpic to F;
- $R \setminus \Gamma$ is isomorphic to R.

Factorizations of the Rado graph

The domination number of a graph is defined as the minimum cardinality of a dominating set.

```
Theorem (SC, Traetta 2021+)
```

Let \mathcal{F} be a countable family of countable graphs. Then $FP(\mathcal{F}, R)$ has a solution if and only if the domination number of each graph of \mathcal{F} is infinite.

Lemma

Let F be a countable graph whose domination number is infinite. Then there exists a factor Γ of R such that:

- Γ is isomorpic to F;
- $R \setminus \Gamma$ is isomorphic to R.

From R to $K_{\mathbb{N}}$

Corollary

Let \mathcal{F} be a countable family of countable graphs. $FP(\mathcal{F})$ has a solution whenever the domination number of each graph in \mathcal{F} is infinite.

Proof.

- *R* is self-complementary and thus there exist R_1 and R_2 that are copies of *R* which factorize $K_{\mathbb{N}}$.
- We partition \mathcal{F} into two countable families \mathcal{F}_1 and \mathcal{F}_2 .
- Because of the previous theorem there is a solution G_i to $FP(\mathcal{F}_i, R_i)$, for i = 1, 2.
- $\mathcal{G}_1 \cup \mathcal{G}_2$ provides a solution to $FP(\mathcal{F})$.

Corollary

Let \mathcal{F} be a countable family of countable graphs. $FP(\mathcal{F})$ has a solution whenever the domination number of each graph in \mathcal{F} is infinite.

Proof.

- *R* is self-complementary and thus there exist R_1 and R_2 that are copies of *R* which factorize $K_{\mathbb{N}}$.
- We partition \mathcal{F} into two countable families \mathcal{F}_1 and \mathcal{F}_2 .
- Because of the previous theorem there is a solution G_i to $FP(\mathcal{F}_i, R_i)$, for i = 1, 2.
- $\mathcal{G}_1 \cup \mathcal{G}_2$ provides a solution to $FP(\mathcal{F})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generalized Rado graphs

For $\aleph = |\mathbb{N}|$, the following property characterizes *R*.

★_№ For every disjoint sets of vertices *U* and *W* whose cardinality is smaller than \aleph , there exists a vertex *z* adjacent to all the vertices of *U* and non-adjacent to all the vertices of *V*.

Proposition (Cameron 1997)

Any two graphs of order \aleph that satisfy property \star_{\aleph} are pairwise isomorphic.

Problem

Does a graph R_{\aleph} that satisfies \star_{\aleph} exist?

It exists for any infinite cardinal \aleph if and only if we assume the generalized continuum hypothesis!

Generalized Rado graphs

For $\aleph = |\mathbb{N}|$, the following property characterizes *R*.

★_№ For every disjoint sets of vertices *U* and *W* whose cardinality is smaller than \aleph , there exists a vertex *z* adjacent to all the vertices of *U* and non-adjacent to all the vertices of *V*.

Proposition (Cameron 1997)

Any two graphs of order \aleph that satisfy property \star_{\aleph} are pairwise isomorphic.

Problem

Does a graph R_{\aleph} that satisfies \star_{\aleph} exist?

It exists for any infinite cardinal \aleph if and only if we assume the generalized continuum hypothesis!

Theorem (SC, Traetta 2021+)

Let \mathcal{F} be a family of graphs, each of which has order \aleph . $FP(\mathcal{F})$ has a solution whenever the following two conditions hold:

1) $|\mathcal{F}| = \aleph;$

2) the domination number of each graph in \mathcal{F} is \aleph .

The proof is based on the following methods:

- Transfinite induction (it requires the axiom of choice).
- A variation of the Cantor back and forth method.

A (10) A (10) A (10)

Theorem (SC, Traetta 2021+)

Let \mathcal{F} be a family of graphs, each of which has order \aleph . $FP(\mathcal{F})$ has a solution whenever the following two conditions hold:

- 1) $|\mathcal{F}| = \aleph;$
- 2) the domination number of each graph in \mathcal{F} is \aleph .

The proof is based on the following methods:

- Transfinite induction (it requires the axiom of choice).
- A variation of the Cantor back and forth method.

A (10) × A (10) × A (10) ×

From K_{\aleph} to R_{\aleph}

Let \aleph be such that R_{\aleph} exists.

Theorem (SC, Traetta 2021⁺)

Let \mathcal{F} be a family of graphs of order \aleph and $|\mathcal{F}| = \aleph$. $FP(\mathcal{F}, R_{\aleph})$ has a solution if and only if the domination number of each graph in \mathcal{F} is \aleph .

Proof.

• Since the domination number of the ℵ-Rado graph is ℵ, the same must hold for each graph of *F*.

Now we prove that this condition is also sufficient.

- $\mathcal{F}' := \mathcal{F} \cup \{ R_{\aleph} \}$ satisfies the hypothesis of previous theorem.
- Therefore $FP(\mathcal{F}')$ admits a solution and \mathcal{F} factorizes $K_{\aleph} \setminus R_{\aleph}$.
- Since R_{\aleph} is self-complementary, \mathcal{F} factorizes the \aleph -Rado graph.

From K_{\aleph} to R_{\aleph}

Let \aleph be such that R_{\aleph} exists.

Theorem (SC, Traetta 2021⁺)

Let \mathcal{F} be a family of graphs of order \aleph and $|\mathcal{F}| = \aleph$. $FP(\mathcal{F}, R_{\aleph})$ has a solution if and only if the domination number of each graph in \mathcal{F} is \aleph .

Proof.

 Since the domination number of the ℵ-Rado graph is ℵ, the same must hold for each graph of *F*.

Now we prove that this condition is also sufficient.

- $\mathcal{F}' := \mathcal{F} \cup \{\mathbf{R}_{\aleph}\}$ satisfies the hypothesis of previous theorem.
- Therefore *FP*(*F*') admits a solution and *F* factorizes *K*_ℵ \ *R*_ℕ.
- Since R_{\aleph} is self-complementary, \mathcal{F} factorizes the \aleph -Rado graph.

Necessity of condition 2?

Problem

Is it necessary to require that the domination number of each graph in \mathcal{F} is \aleph to have a solution of $FP(\mathcal{F})$?

The answer is no!

A (10) A (10) A (10)

Necessity of condition 2?

Problem

Is it necessary to require that the domination number of each graph in \mathcal{F} is \aleph to have a solution of $FP(\mathcal{F})$?

The answer is no!

The k-star problem

Definition

Let us consider the k-star S_k , defined as follows.

- the star S₁ is the graph with vertex-set N and whose edges are of the form {0, i} for every i ∈ N \ {0};
- the k-star S_k is the vertex-disjoint union of k stars.

Note that S_k has a dominating set of size k.

Theorem (SC, Traetta 2021⁺)

 $FP(S_k)$ has no solution for $k \in \{1,2\}$ but it has whenever $k \ge 4$.

The case k = 3 is left open.

The k-star problem

Definition

Let us consider the k-star S_k , defined as follows.

- the star S₁ is the graph with vertex-set N and whose edges are of the form {0, i} for every i ∈ N \ {0};
- the k-star S_k is the vertex-disjoint union of k stars.

Note that S_k has a dominating set of size k.

Theorem (SC, Traetta 2021⁺)

 $FP(S_k)$ has no solution for $k \in \{1,2\}$ but it has whenever $k \ge 4$.

The case k = 3 is left open.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

- S. Bonvicini and G. Mazzuoccolo. Abelian 1-factorizations in infinite graphs, *European J. Combin.*, 31 (2010), 1847–1852.
- 2 P. J. Cameron, The random graph, The mathematics of Paul Erdős, II, *Algorithms Combin.*, 14 (1997), Berlin: Springer, pp. 333-351.
- 3 S. Costa. A complete solution to the infinite Oberwolfach problem, *J. Combin. Des.*, 28 (2020), 366–383.
- 4 S. Costa and T. Traetta. Factorizing the Rado graph and infinite complete graphs, *Submitted (arXiv:2103.11992)*.
- 5 S. Costa and T. Traetta. Vertex-regular 1-factorizations in infinite graphs, *Submitted (arXiv:2106.09468)*.
- 6 P. Danziger, D. Horsley and B. S. Webb. Resolvability of infinite designs, *J. Combin. Theory Ser. A*, 123 (2014), 73–85.
- 7 E. Köhler, Unendliche gefaserte Steiner systeme, *J. Geom.*, 9 (1977), 73–77.