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Abstract

Some properties of C0-Semigroup are investigated and used to derive proper-

ties of ω-Order Preserving and Reversing Partial Contraction Mapping where

homogeneous, inhomogeneous and regularity of mild solution for analytic

semigroups are engaged. Furthermore, the subclasses performed like semi-

group of linear operators. Moreover, semigroup of linear operator generated

by ω-order reversing partial contraction mapping (ω-ORCPn) as the infinites-

imal generator of a C0-semigroup is discussed. It is an attempt to obtain

results on evolution systems and stable families of generators considering the

homogeneous and inhomogeneous initial value problem.

1 Introduction

Recently, ω-Order semigroup was introduced and was established as subset

of C0-semigroup. Let X be a Banach space and K be a linear operator such

that K : D(K) ⊆ X → X. Given x ∈ X, the abstract Cauchy problem for

operator K with initial data x comprised of finding a solution u(t) to the

homogeneous, inhomogeneous and regularity of mild solution for analytic

semigroups.
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The homogeneous Initial Value Problem (IVP)
du(t)

dt
= Au(t) t > 0

u(0) = x

 (1.1)

where the solution means an X valued function u(t) such that u(t) is con-

tinuous for t ≥ 0, continuously differentiable and u(t) ∈ D(K) for t > 0 such

that (1.1) is valid. Obviously, u(t) ∈ D(K) for t > 0 and u is continuous at

t = 0, (1.1) can not have a solution for x /∈ D(K). It was proved that if oper-

ator K in ω-Order preserving (OCPn) or ω-Order reversing (ORCPn) partial

Contraction mapping then K is the infinitesimal generator of a C0-semigroup

{T (t), t ≥ 0} which is a semigroup of linear operator. The abstract Cauchy

problem for K has a solution u(t) = T (t)x, for every x ∈ D(K).

In the case of inhomogeneous IVP,
du(t)

dt
= Au(t) + f(t) t > 0

u(0) = x

(1.2)

where f : [0, T ]→ X. In this article, K is assumed to be infinitesimal genera-

tor of a C0-semigroup {T (t), t ≥ 0} such that the corresponding homogeneous

equation (equation with f ≡ 0) contains a unique solution for every initial

value x ∈ D(K) and f ∈ L1([0, T ];X). Furthermore, we shall take the regu-

larity of the mild solutions for analytic semigroups except otherwise stated.

The mild solution of the IVP (1.2) is the continuous function

u(t) = T (t)x+

∫ t

0

T (t− s)(s)ds. (1.3)

By imposing further conditions on f ( f ∈ C1([0, T ];X)), the mild solu-

tion (1.3) becomes the classical solution, hence, a continuously differentiable
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solution of (1.2). Suppose K is the infinitesimal generator of an analytic

semigroup, then the results imply that T (t) is an analytic semigroup with

f ∈ Lp([0, T ];X) and p > 1, hence (1.3) is Hölder continuous. The theory of

stability is very important since stable C0-semigroup correspond one-to-one

to asymptotically stable (in the sense of Lyapunov) in a well-posed abstract

linear Cauchy problems. The resolvent of K can be used to describe the rela-

tionship between the spectrum of K and that of semigroup operator (T (t)t≥0)

and to establish the relationship between a semigroup operator, its generator

and its resolvent.

A significant aspect of C0-semigroup is dual properties of a semigroup of

linear operator because of the emphasis on weakly topologies of operator

that makes it to obtain a weak generator of a semigroup (T (t)∗)t≥0.

Several authors established results on the theory of semigroups of operator,

see [1]-[11] and the reference therein. This paper consists of results on ho-

mogeneous, inhomogeneous and the regularity of mild solution for analytic

semigroups of bounded linear operator. Let X be a Banach space, Xn ⊆ X

be a finite set, (T (t))t≥0 the C0-semigroup, ω − ORCPn the ω-order revers-

ing partial contraction mapping, Mm be a matrix, L(X) be a bounded linear

operator on X, Pn a partial transformation semigroup, ρ(A) a resolvent set,

σ(A) be the spectrum and A ∈ ω −ORCPn is a generator of C0-semigroup.

This paper consist of results of evolution system considering the homogeneous

and inhomogeneous initial value problem of bounded linear operator. Balakr-

ishnan [1], obtained an operator calculus for infinitesimal generators of semi-

group. Agmon et al. [2], estimated some boundary problems for solutions of

elliptic partial differential equation. Banach [3], established and introduced
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the concept of Banach spaces. Brezis and Gallouet [4], investigated nonlin-

ear Schrodinger evolution equation. Chill and Tomilov [5], deduced some

analytic functions and stability of operator semigroups and in [6] established

some resolvent approach to stability operator semigroup. Engel and Nagel

[7], obtained one-parameter semigroup for linear evolution equations. Pazy

[8], introduced asymptotic behavior of the solution of an abstract evolution

and some applications and also in [9], established a class of semi-linear equa-

tions of evolution. Prüss [10], proves some semilinear evolution equations

in Banach spaces. Rauf and Akinyele [11], obtained ω-order-preserving par-

tial contraction mapping and established its properties, also in [12], Rauf et

al. established some results of stability and spectra properties on semigroup

of linear operator. Vrabie [13], deduced some results of C0-semigroup and

its applications. Walker [14], presented some dynamical systems and evo-

lution. Yosida [15], established and proved some results on differentiability

and representation of one-parameter semigroup of linear operators.

2 Preliminaries

We recall the following definitions, provide some examples and present an

elementary prove of a known result.

Definition 2.1 (C0-Semigroup) [13]: A C0-Semigroup is a strongly continu-

ous one parameter semigroup of bounded linear operator on Banach space.

Definition 2.2 (ω-OCPn ) [11]: A transformation α ∈ Pn is called ω-order-

preserving Partial Contraction Mapping if ∀x, y ∈Domα : x ≤ y =⇒ αx ≤

αy and at least one of its transformation must satisfy αy = y such that
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T (t+ s) = T (t)T (s) whenever t, s > 0 and otherwise for T (0) = I.

Definition 2.3 (ω-ORCPn) [11]: A transformation α ∈ Pn is called ω-order-

reversing partial contraction mapping if ∀x, y ∈Domα : x ≤ y =⇒ αx ≥

αy and at least one of its transformation must satisfy αy = y such that

T (t+ s) = T (t)T (s) whenever t, s > 0 and otherwise for T (0) = I.

Definition 2.4 (Analytic Semigroup) [13]: We say that a C0-semigroup

{T (t); t ≥ 0} is analytic if there exists 0 < θ ≤ π, and a mapping S : C̄θ →

L(X) such that:

(i) T (t) = S(t) for each t ≥ 0;

(ii) S(z1 + z2) = S(z1)S(z2) for z1, z2 ∈ C̄θ;

(iii) limz1∈C̄θ,z1→0S(z1)x = x for x ∈ X; and

(iv) the mapping z1 → S(z1) is analytic from C̄θ to L(X). In addition, for

each 0 < δ < θ, and if the mapping z1 → S(z1) is bounded from Cδ to

L(X), then the C0-semigroup {T (t); t ≥ 0} is called analytic and uniformly

bounded.

Definition 2.5 (Classical Solution) [7]: A function u : [0, T ]→ X is a classi-

cal solution of (1.2) on [0, T ] if u is continuous and continuously differentiable

on [0, T ], u(t) ∈ D(A) for 0 < t < T and (1.2) is satisfied on [0, T ].

Definition 2.6 (Compact Semigroup) [7]: A C0-semigroup is compact if for

each t > 0, T (t) is a compact operator.

Definition 2.7 (Dissipative) [13]: A linear operator (A,D(A)) is dissipative

if each x ∈ X there exists x∗ ∈ F (x) such that Re(Ax, x∗) ≤ 0.

Definition 2.8 (Hölder Continuity) [13]: A real or complex-valued function

f on d-dimensional Euclidean space satisfies a Hölder condition, or is Hölder
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continuous, when there are non-negative real constants C, α > 0, such that

|f(x)− f(y)| ≤ C‖x− y‖α

for all x and y in the domain of f . More generally, the condition can be

formulated for functions between any two metric spaces. The number α

is called the exponent of the Hölder condition. A function on an interval

satisfying the condition with α > 1 is constant. If α = 1, then the function

satisfies a Lipschitz condition. For any α > 0, the condition implies that the

function is uniformly continuous.

Definition 2.9 (Locally Hölder Continuous) [7]: Let I be an interval. A

function f : I → X is Hölder continuous with exponent ζ : 0 < ζ < 1 on I if

there is a constant L such that

‖f(t)− f(s)‖ ≤ L|t− s|ζ for s, t ∈ I. (2.1)

It is locally Hölder continuous if every t ∈ I has a neighborhood in which

f is Hölder continuous. It is easy to check that if I is compact, then f is

Hölder continuous and locally Hölder continuous on I. We denote the family

of all Hölder function with exponent ζ on I by Cζ(I : X).

Definition 2.4 (Evolution System) [7]

A two parameter family of bounded of a bounded linear operators U(t, s),

0 ≤ s ≤ t ≤ T on X is called an evolution system if the following conditions

are satisfied:

(i) U(s, s) = I, U(t, r)U(r, s) = U(t, s) for 0 ≤ s ≤ r ≤ t ≤ T ; and

(ii) (t, s)→ U(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T .

Definition 2.5 (Stable) [7]
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Let X be a Banach space. A family (A(t)∗)t∈[0,T ] of infinitesimal generators

of C0-semigroup on X is called stable if there exists a constant M ≥ 1 and

ω (called the stability constants) such that

ρ(A(t)) ⊃ (ω,∞) for t ∈ [0, T ] (2.2)

and ∥∥∥ k∏
i=1

R(λ;A1)
∥∥∥ ≤M(λ− ω)−k forλ > ω (2.3)

and every finite sequence 0 ≤ t1 ≤ t2, ..., tk ≤ T , k = 1, 2, ...

Example 1: For any 3 × 3 matrix [Mm(C)] and for each λ > 0 such that

λ ∈ ρ(K) where ρ(K) is a resolvent set on X, if

K =


1 2 3

1 2 2

2 2 3

 then T (t) =


etλ e2tλ e3tλ

etλ e2tλ e2tλ

e2tλ e2tλ e3tλ

 = etKλ.

Example 2: By the translation semigroup starting from Kf = f
′
on C0(R+)

or Lp(R+), 1 ≤ p <∞, the operator K2f = f
′′

generates a bounded analytic

semigroup. A slightly more involved case of several space dimensions is the

spaces C0(R+) or Lp(R+), 1 ≤ p <∞. Denoted by (∪i(t))t∈R+ is the strongly

continuous semigroup (∪i(t)f)(x) = f(x1, · · · , xi−1, xi + t, · · · , xn),

where x ∈ Rn, t ∈ R+ and 1 ≤ i ≤ n, where Ki is its generator and

K ∈ ω − OCPn. Obviously, these semigroups commutes as the resolvent of

Ki and hence of K2i.

Example 3: Suppose K : D(K) ⊆ X → X is an unbounded generator of a

strongly continuous semigroup and take an isomorphism S ∈ L(X) such that
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D(K)∩S(D(K)) = {0}. Then B = SKS−1 is a generator as well, but K+B

is defined only on D(K +B) = D(K) ∩D(B) = D(K) ∩ S(D(K)) = {0}.

A tangible example for this circumstances is on X = C0(R+) by Kf = f
′

with its canonical domain D(K) = C
′
0(R+) and Sf = q.f for some con-

tinuous, positive function q such that q and q−1 are bounded and nowhere

differentiable. Defining the operator B as Bf = q.(q1.f)
′

on D(B) = {f ∈

X : q−1.f ∈ D(K)}, we obtain that the sum K +B is defined only on {0}.

2.1 Theorem [15]

A linear operator A : D(A) ⊆ X → X is the infinitesimal generator for a

C0-semigroup of contraction if and only if

i. A is densely defined and closed; and

ii. (0,+∞) ⊆ ρ(A) and for each λ > 0, we have

‖R(λ,A)‖L(X) ≤
1

λ
. (2.4)

2.2 Theorem [7]

Let A : D(A) ⊆ X → X be a densely defined operator. Then A generates a

C0-semigroup of contractions on X if and only if

i. A is dissipatives; and

ii. there exists λ > 0 such that λI − A is surjective.

Moreover, if A generates a C0-semigroup of contractions, then λI − A is

surjective for any λ > 0, and we have Re(Ax, x∗) ≤ 0 for each x ∈ D(A) and

each x∗ ∈ F (x).

8



2.3 Lemma [13]

Let u(t) be a continuous X valued function on [0, T ], if∥∥∥∫ T

0

ensu(s)ds
∥∥∥ ≤Mforn = 1, 2, · · · (2.5)

then, u(t) = 0 on [0, T ].

Proof:

Let x∗ ∈ X∗ and set ϕ =< x∗, u(t) > 0, then, ϕ is clearly continuous on

[0, T ] and∣∣∣ ∫ T

0

ensϕ(s)ds
∣∣∣ =

∣∣∣ < x∗,

∫ T

0

ensu(s)ds >
∣∣∣ ≤ ‖x∗‖.M = M1 for n = 1, 2, · · ·

(2.6)

We show that (2.5) implies that ϕ(t) ≡ 0 on [0, T ] and since x∗ ∈ X∗ was

arbitrary, it follows that u(t) ≡ 0 on [0, T ].

Consider the series
∑∞

k=1
(−1)k−1

k!
eknτ = 1− exp{−enτ}. This series converges

uniformly to τ on bounded intervals. Therefore,∣∣∣ ∫ T

0

∞∑
k=1

(−1)k−1

k!
ekn(1−T+s)ϕ(s)ds

∣∣∣
≤

∞∑
k=1

1

k!
ekn(1−T )

∣∣∣ ∫ T

0

eknsϕ(s)ds
∣∣∣ ≤M1 (exp{en(1−t)} − 1)

(2.7)

For t < T , the right - hand side of (2.4) tends to zero as n → ∞. On the

other hand, we have∫ T

0

∞∑
k=1

(−1)k−1

k!
ekn(1−T+s)ϕ(s)ds =

∫ T

0

(1− exp{−en(1−T+s)}ϕ(s))ds. (2.8)

Using Lebesque’s dominated convergence theorem, we noticed that the right

hand side of (2.5) converges to
∫ T
T−1

ϕ(s)ds as n → ∞. Combining this

together with (2.4), we found out that for every 0 ≤ t ≤ T , we have∫ T
T−1

ϕ(s)ds = 0, which implies ϕ(t) ≡ 0 on [0, T ].
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3 Main Results

This section presents homogeneous, inhomogeneous and the regularity of

mild solution for analytic semigroups IVP on ω-OCPn and ω-ORCPn.

Theorem 3.1

Let K ∈ OCPn be densely defined linear operator. If R(λ;K) exists for all

real λ ≥ λ0 and

lim
λ→∞

Supλ−1log‖R(λ;K)‖ = 0, (3.1)

then, system (1.1) has at most one solution for every x ∈ X.

Proof:

We noted that u(t) is a solution of (1.1) if and only if e2tu(t) is a solution of

the IVP.
dv

dt
= (K + zI)v, V (0) = x.

Thus, K ∈ OCPn can be translated by a constant multiple of the identity

and assume that R(λ;K) exists for all real λ, λ ≥ 0 and that (3.1) is satisfied.

Let u(t) be a solution of (1.1) satisfying u(0) = 0. We need to show that

u(t) = 0, to this end, consider the function t→ R(λ;K)u(t) for λ > 0. Since

u(t) is a solution of (1.1), then, we have

d

dt
R(λ;K)u(t) = R(λ;K)Ku(t) = λR(λ;K)u(t)− u(t),

which implies

R(λ;K)u(t) = −
∫ 1

0

eλ(t−τ)(τ)dτ. (3.2)

From the assumption (3.1) it follows that for every σ > 0, we have

lim
λ→∞

e−σλ‖R(λ;K)‖ = 0,
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and therefore it follows from (3.2) that

lim
λ→∞

∫ t−σ

0

eλ(t−σ−τ)u(τ)dτ = 0. (3.3)

From Lemma 2.1, we deduce that u(τ) ≡ 0 for 0 ≤ τ ≤ t− σ. Since t and σ

are arbitrary, then u(t) ≡ 0 for t ≥ 0. The proof is complete.

Theorem 3.2

Let K ∈ ORCPn be densely defined linear operator with nonempty resolvent

set ρ(K). Then, the initial value problem (1.1) has a unique solution u(t)

which is continuously differentiable on [0,∞] for every initial value x ∈ D(K)

if and only if K is the infinitesimal generator of a C0-semigroup {T (t); t ≥ 0}.

Proof:

If K is the infinitesimal generator of a C0-semigroup {T (t); t ≥ 0}, then

it follows that T (t)x is the unique solution of (1.1) with the initial value

x ∈ D(K). Moreover, T (t)x is continuously differentiable for 0 ≤ t < ∞.

On the other hand, if (1.1) has a unique continuously differentiable solution

on [0,∞] for every initial data x ∈ D(K), then we see that K ∈ ORCPn is

the infinitesimal generator of C0-semigroup {T (t); t ≥ 0}. We now assume

that (1.1) has a unique continuously differentiable solution on [0,∞] which

is denoted by u(t, x). Otherwise, for x ∈ D(K), we define the graph norm by

|x|G = ‖x‖ + ‖Kx‖. Since ρ(K) 6= φ, then K is closed and therefore D(K)

endowed with graph norm is a Banach space which we denote by [D(K)].

Let Xt0 be a Banach space of continuous functions from [0, t0] onto [D(K)]

with the usual supremum norm. We consider the mapping S : [D(K)]→ Xt0

defined by Sx = u(t;x) for 0 ≤ t ≤ t0. From the linearity of (1.1) and the

uniqueness of the solutions, it is clear that S is a linear operator defined on

all of [D(K)]. Then, the operator S is closed. Indeed, if xn → x in [D(K)]
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and Sxn → v in Xt0 , then from the closeness of K and

u(t;xn) = xn +

∫ t

0

Ku(τ ;xn)dτ,

it follows that as n→∞, we have

v(t) = x+

∫ t

0

Kv(τ)dτ,

which implies that v(t) = u(t;x) and S is closed. Therefore, by the closed

graph theorem, S is bounded and

sup0≤t≤t0|u(t;x)|G ≤ C|x|G. (3.4)

We now define a mapping T (t) : [D(K)]→ [D(K)] by T (t)x = u(t;x).

From the uniqueness of the solutions of (1.1), it follows that T (t) has the

semigroup property. From (3.4) and for 0 ≤ t ≤ t0, then, T (t) is uni-

formly bounded. This implies that T (t) can be extended by T (t)x = T (t −

nt0)T (t0)nx for nt0 ≤ t < (n0 + 1)t to a semigroup on [D(K)] satisfying

|T (t)x|G ≤Meωt|x|G. (3.5)

We now need to show that

T (t)Ky = KT (t)y. (3.6)

for all y ∈ D(K2) and K ∈ ω-ORCPn. By putting

v(t) = y +

∫ t

0

u(s;Ky)ds, (3.7)

then we have

v
′
(t) = u(t;Ky) = Ky +

∫ t

0

d

ds
(s;Ky)ds = K(y +

∫ t

0

u(s;Ky)ds) = Kv(t).

(3.8)
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Since v(0) = y we have by uniqueness of the solution (1.1), v(t) = u(t; y)

and Kx(t; y) = v
′
(t) = u(t;Ky) which is the same as (3.6). Since D(K) is

dense in X and by our assumption, ρ(K) = φ, also D(K2) is dense in X.

Let λ0 ∈ ρ(K), λ0 = 0 be fixed and let y ∈ D(K2). Assume x = (λ0I −K)y,

then by (3.6), we have

T (t)x = (λ0I −K)T (t)y (3.9)

therefore

‖T (t)x‖ = ‖(λ0I −K)T (t)y‖ ≤ C|T (t)y|G ≤ C1e
ωt|y|G. (3.10)

But

|y|G = ‖y‖+ ‖Ky‖ ≤ C2‖x‖, (3.11)

which implies that

‖T (t)x‖ ≤ C2e
ωt‖x‖. (3.12)

Therefore T (t) can be extended to all of X by Continuity. After this exten-

sion, T (t) becomes a C0-semigroup on X. To complete the proof, we have to

show that K is the infinitesimal generator of T (t). Let denote the infinitesi-

mal generator of T (t) by K1 ∈ ω-ORCPn. Assume x ∈ D(K) by definition

of T (t), we have T (t)x = x(t;x) and by assumption that

d

dt
T (t)x = AT (t)x, for t ≥ 0, (3.13)

which implies, in particular, that (d/dt)T (t)x|t=0 = Kx, therefore K1 ⊃ K.

Let Reλ > ω and y ∈ D(K2). It follows from (3.6) and K1 ⊃ K that

e−λtAT (t)y = e−λtT (t)Ay = e−λtT (t)Aty. (3.14)
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Integrating (3.14) from 0 to ∞ yields

KR(λ;K1)y = R(λ;K1)K1y. (3.15)

But K1R(λ;K1)y = R(λ;K1)K1y. Hence, KR(λ;K1)y = R(λ;K1)K1y for

every y ∈ D(K2). Since K1R(λ;K1) is uniformly bounded, then K is closed

and D(K) is dense in X, and it follows that KR(λ;K1)y = R(λ;K1)K1y for

every y ∈ X andK ∈ ω-ORCPn. This means thatD(K) ⊃ Range R(λ;K1) =

D(K1) and K ⊃ K1. Hence, K = K1 and this complete the proof.

Theorem 3.3

Suppose K ∈ ω-OCPn is the infinitesimal generator of a C0-semigroup

{T (t); t ≥ 0}, let f ∈ L′(0, T ;X) be continuous on [0, T ] and assume

v(t) =

∫ t

0

T (t− s)f(s)ds, 0 ≤ t ≤ T. (3.16)

System (1.2) has a solution x on [0, T ] for every x ∈ D(K) if one of the

following conditions is satisfied:

(i) v(t) is continuously differentiable on [0, T ]; and

(ii) v(t) ∈ D(K) for 0 < t < T and Kv(t) is continuous on [0, T ].

If (1.2) has a solution u on [0, T ] for some x ∈ D(K) then v satisfies both (i)

and (ii).

Proof:

Assume (1.2) has a solution u for some x ∈ D(K), then this solution is given

by (1.3). Consequently v(t) = u(t) − T (t)x is differentiable for t > 0 as the

difference of two such differentiable functions and v
′
(t) = u

′
(t) − T (t)Kx is

obviously continuous on [0, T ]. Therefore (i) is satisfied. Also, if x ∈ D(K),

T (t)x ∈ D(K) for t ≥ 0, therefore v(t) = u(t)− T (t)x ∈ D(K) for t > 0 and

Kv(t) = Ku(t)−KT (t)x = u
′
(t)− f(t)− T (t)Kx
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is continuous on [0, T ]. Thus, (ii) is satisfied. On the other hand, it is easy

to verify for h > 0, the identity

T (h)− I
h

v(t) =
v(t+ h)− v(t)

h
= −1

h

∫ t+h

t

T (t+ h− s)f(s)ds. (3.17)

From the continuity of f , it is clear that the second term on the right-hand of

(3.17) has a limit f(t) as h→ 0. Suppose v(t) is continuously differentiable

on [0.T ], then it follows from (3.17) that v(t) ∈ D(K) for 0 < t < T so that

Kv(t) = v
′
(t)− f(t), (3.18)

since v(0) = 0, it implies that

u(t) = T (t) + v(t)

is the solution of (1.2) for x ∈ D(K) and A ∈ ω-OCPn. Assume v(t) ∈ D(K),

then it follows from (3.17) that v(t) is differentiable from the right at t ≥ 0

and the right derivative D+v(t) of v satisfies

D+v(t) = Kv(t) + f(t).

Since D+v(t) is continuous, then v(t) is continuously differentiable and

v
′
(t) = Kv(t) + f(t).

if v(0) = 0, then u(t) = T (t)x + v(t) is the solution of (1.2) for x ∈ D(K)

and the proof is complete.

Proposition 3.4

LetK ∈ ω-ORCPn be the infinitesimal generator of a C0-semigroup {T (t); t ≥

0}, suppose f(s) is continuously differentiable on [0, T ], then :
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(i) The Initial Value Problem (1.2) has a unique solution u on [0, T ] for ev-

ery x ∈ D(K). (ii) Assume f ∈ L
′
(0, T ;X) be continuous on [0, T ] and

f(s) ∈ D(K) for 0 < s < T so that Kf(s) ∈ L′(0, T ;X) for every x ∈ D(K)

and K ∈ ω-ORCPn, then system (1.2) has a unique solution on [0, T ].

Proof:

To prove (i), Assume

v(t) =

∫ t

0

T (t− s)f(s)ds =

∫ t

0

T (s)f(t− s)ds. (3.19)

It is clear from (3.19) that v(t) is differentiable for t > 0 and that its derivative

v
′
(t) = T (t)f(0) +

∫ t

0

T (s)f(t− s)ds = T (t)f(0) +

∫ t

0

T (t− s)f ′(s)ds

is continuous on [0, T ]. The results follow from Theorem 3.3 and this complete

the proof of (i).

To prove (ii), from the conditions of the proposition, it follows that for s > 0,

A ∈ ω-ORCPn, T (t−s)f(s) ∈ D(K) and thatKT (t−s)f(s) = T (t−s)Kf(s)

is integrable. Therefore v(t) defined by (3.16) satisfies v(t) ∈ D(K) for t > 0,

K ∈ ω-ORCPn and

Kv(t) = K

∫ t

0

T (t− s)f(s)ds =

∫ t

0

T (t− s)Kf(s)ds. (3.20)

is continuous. Then, the result follows from Theorem 3.3 which completes

the proof.

Theorem 3.5

Let K ∈ ω-OCPn be the infinitesimal generator of an analytic semigroup

{T (t); t ≥ 0} and let f ∈ Lp(0, T ;X) with 1 < p <∞. Suppose u is the mild

solution of (1.2), then u is Hölder Continuous with exponent (p − 1)/p on

[ε, T ] for every ε > 0. Assume x ∈ D(K), then u is Hölder Continuous with
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same exponent on [0, T ].

Proof:

Assume ‖T (t)‖ ≤ M on [0, T ]. Since T (t) is an analytic semigroup, then

there is constant C such that ‖KT (t)‖ ≤ Ct−1 on [0, T ]. This implies that

T (t)x is Lipschitz continuous on [ε, T ] for any given ε > 0. If x ∈ D(K),

K ∈ ω-OCPn, and T (t) is Lipschitz continuous on [0, T ]. It suffices therefore

to show that if f ∈ LP (0, T ;X), 1 < p <∞ then v(t) =
∫ t

0
T (t− s)f(s)ds is

Hölder Continuous with the same exponent (p − 1)/p on [0, T ]. For h > 0,

we have

v(t+h)−v(t) =

∫ t+h

t

T (t+h−s)f(s)ds+

∫ t

0

(T (t+h−s)−T (t−s))f(s)ds = I1+I2.

We estimate I1 and I2 separately. For I1, we use Hölder’s inequality to obtain,

‖I1‖ ≤M

∫ t+h

t

‖f(s)‖ds ≤Mh(p−1)/p
(∫ t+h

t

‖f(s)‖pds
) 1
p ≤M |f |ph(p−1)/p,

(3.21)

where |f |p = (
∫ T

0
‖f(s)‖pds)

1
p is the norm of f in Lp(0, T ;X). In order to

estimate I2, for h > 0, we have

‖T (t+ h)− T (t)‖ ≤ 2M for t, t+ h ∈ [0, T ]

and

‖T (t+ h)− T (t)‖ ≤ C
h

t
for t, t+ h ∈ [0, T ].

Therefore

‖T (t+h)−T (t)‖ ≤ C1µ(h, t) = C1 min
(

1,
h

t

)
for t, t+h ∈ [0, T ], (3.22)

where C1 is a constant satisfying C1 ≥ max(2M1C). Using (3.22) and
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Hölder’s inequality, we have

‖I2‖ ≤ C1

∫ t

0

µ(h, t− s)‖f(s)‖ds ≤ C1|f |p
(∫ t

0

µ(h, t− s)p/(p−1)ds
)(p−1)/p

.

(3.23)

Since µ ≥ 0, we have∫ t

0

µ(h, t− s)p/(p−1)ds =

∫ t

0

µ(h, τ)p/(p−1)dτ ≤
∫ ∞

0

µ(h, τ)p/(p−l)dτ = ph,

(3.24)

by combining (3.23) with (3.24), we find that

‖I2‖ ≤ Const.h(p−1)/p.

Hence the proof of the theorem.

Theorem 3.6

Let K ∈ ω-ORCPn be the infinitesimal generator of an analytic semigroup

{T (t); t ≥ 0}. Assume f ∈ L1(0, T ;X) and suppose that for every 0 < t < T ,

there exists a δ1 > 0 and a continuous real value function

Ωt(τ) : [0,∞]→ [0,∞]

such that

‖f(t)− f(s)‖ ≤ Ωt(|t− s|), (3.25)

and ∫ δ1

0

Ωt(τ)

τ
dτ <∞. (3.26)

Then, for every x ∈ X, the mild solution of (1.2) is a classical solution.

Proof:
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Since T (t) is an analytic semigroup, then T (t)x is the solution of the ho-

mogeneous equation with initial data x for every x ∈ X. To show that the

theorem is sufficient, by Theorem 3.3, we need to prove that

v(t) =

∫ t

0

T (t− s)f(s)ds ∈ D(K) for 0 < t < T

and that Kv(t) is continuous on this interval. To this end, we have

v(t) = v1(t) + v2(t)

=

∫ t

0

T (t− s)(f(s)− f(t))ds+

∫ t

0

T (t− s)f(t)ds.
(3.27)

Suppose v2(t) ∈ D(K) and that Kv2(t) = (T (t)− I)f(t). By assumption of

the theorem, its implies that f is continuous on [0, T ], it follows that Kv2(t)

is continuous on [0, T ]. To prove the same conclusion for v1, we define

v1.ε(t) =

∫ t−ε

0

T (t− s)(f(s)− f(t))ds for t ≥ ε (3.28)

and

v1.ε(t) = 0 for t < ε. (3.29)

From (3.28) and (3.29), it is clear that v1.ε(t) → v1(t) as ε → 0. It is also

clear that v1.ε ∈ D(K) and for t ≥ ε, we have

Kv1.ε(t) =

∫ t−ε

0

KT (t− s)(f(s)− f(t))ds. (3.30)

From (3.25) and (3.26), it follows that for t > 0, Kv1.ε(t) converges as ε→ 0

and that

lim
ε→0

Kv1.ε(t) =

∫ t−ε

0

KT (t− s)(f(s)− f(t))ds. (3.31)

The closeness of K then implies that v1(t) ∈ D(K) for t > 0, we have

Kv1(t) =

∫ t

0

KT (t− s)(f(s)− f(t))ds. (3.32)
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To conclude the proof, we have to show that Kv1(t) is continuous on [0, T ]

for 0 < δ < t, hence

Kv1(t) =

∫ δ

0

KT (t−s)(f(s)−f(t))ds+

∫ t

δ

KT (t−s)(f(s)−f(t))ds. (3.33)

For fixed δ > 0, the second integral on the right of (3.33) is a continuous

function of t while the first integrals is of O(δ) uniformly in t. Thus, K1(t)

is continuous and the proof is complete.

Theorem 3.7

Let K ∈ ω-OCPn be the infinitesimal generator of an analytic semigroup

{T (t); t ≥ 0} and suppose f ∈ Cζ([0, T ];X), if

v1(t) =

∫ t

0

T (t− s)(f(s)− f(t))ds, (3.34)

then v1 ∈ D(K) for 0 ≤ t ≤ T and Kv1(t) ∈ Cζ([0;T ] : X).

Proof:

The fact that v1 ∈ D(K) for 0 ≤ t ≤ T is an immediate consequence of the

proof of Theorem 3.6, hence, we only need to prove the Hölder Continuity of

Kv1(t). Suppose that ‖T (t)‖ ≤M on [0, T ] and that

‖KT (t)‖ ≤ Ct−1 for 0 < t ≤ T. (3.35)

Thus, for every 0 < s < t ≤ T , we have

‖KT (t)−KT (s)‖ =
∥∥∥∫ t

s

K2T (τ)dτ
∥∥∥ ≤ ∫ t

s

‖K2T (τ)‖dτ

≤ 4C

∫ t

s

τ−2dτ = 4Ct−1s−1(t− s).
(3.36)
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Let t ≥ 0 and h > 0, then

Kv1(t+ h)−Kv1(t) = K

∫ t

0

(T (t+ h− s)− T (t− s))(f(s)− f(t))ds

+K

∫ t

0

T (t+ h− s)(f(t)− f(t+ h))ds

+K

∫ t+h

t

T (t+ h− s)(f(s)− f(t+ h))ds

= I1 + I2 + I3.

(3.37)

We estimate each of the the three terms separately, first from (2.1) and (3.36),

‖I1‖ ≤
∫ t

0

‖KT (t+ h− s)−KT (t− s)‖‖f(s)− f(t)‖ds

≤ 4CLh

∫ t

0

ds

(t− s+ h)(t− s)1−ζ ≤ C1h
ζ .

(3.38)

To estimate I2, we refer to Definition 2.8 and Definition 2.9 so that

‖I2‖ = ‖(T (t+ h)− T (h))(f(t)− f(t+ h))‖

≤ ‖T (t+ h)− T (h)‖‖f(t)− f(t+ h)‖ < 2MIhζ .
(3.39)

Finally, to estimate I3, we use (3.35) and (2.1) to get

‖I3‖ ≤
∫ t+h

t

‖KT (t+ h− s)‖‖f(s)− f(t+ h)‖ds

≤ CL

∫ t+h

t

(t+ h− s)ζ−1ds ≤ C2h
ζ .

(3.40)

Combining (3.37) with estimates (3.38) and (3.39), we observe that Kv1(t)

is Hölder continuous with exponent ζ on [0, T ]. The proof is complete.

Theorem 3.8

Suppose K ∈ ω-ORCPn is the infinitesimal generator of an analytic semi-

group {T (t); t ≥ 0} and let f ∈ Cζ([0, T ];X). If u is the solution of IVP
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(1.3) on [0, T ] then:

(i) for every δ > 0, Ku ∈ Cζ([δ, T ] : X), hence du/dt ∈ ζ([δ, T ] : X);

(ii) if x ∈ D(K), hence Ku and du/dt are continuous on [0, T ]; and

(iii) if x = 0 and f(0) = 0, hence T (t)f(t) ∈ Cζ([δ, T ] : X).

Proof:

Since

u(t) = T (t)x+

∫ t

0

T (t− s)f(s)ds = T (t− s)f(s)ds = T (t)x+ v(t). (3.41)

and by (3.36), KT (t)x is Lipschitz continuous on δ ≤ t ≤ T , for every δ > 0,

it suffices to show that Kv(t) ∈ Cζ([δ, T ] : X). To this end, we decompose v

as

v(t) = v1(t) + v2(t) =

∫ t

0

T (t− s)(f(s)− f(t))ds+

∫ t

0

T (t− s)f(t)ds.

From Theorem 3.7, it follows that Kv(t) ∈ C([0, T ];X), it remains to show

that Kv2(t) ∈ Cζ([δ, T ] : X) for δ > 0. But Kv2(t) = (T (t)−I)f(t) and since

f ∈ Cζ([0, T ];X), then we only have to show that T (t)f(t) ∈ Cζ([δ, T ] : X)

for every δ > 0. Let t ≥ δ and h > 0, then

‖T (t+ h)f(t+ h)− T (t)f(t)‖

≤ ‖T (t+ h)‖‖f(t+ h)− f(t)‖+ ‖T (t+ h)− T (t)‖‖f(t)‖

≤MLhζ +
C

δ
h‖f‖∞ ≤ C1h

ζ ,

(3.42)

here we used (3.22) and (2.1). Define

‖f‖∞ = max0≤t≤T‖F (t)‖,

this complete the proof of (i). To prove (ii), we noted that if x ∈ D(K), then

KT (t)x ∈ C([0, T ];X). By Theorem 3.7, Kv1(t) ∈ Cζ([0, T ];X) and since
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f is continuous on [0, T ], it remains to show that T (t)f(t) is continuous on

[0, T ]. From (i) it is clear that T (t)f(t) is continuous on [0, T ]. The continuity

at t = 0 follows readily from

‖T (t)f(t)− f(0)‖ ≤ ‖T (t)f(0)− f(0)‖+M‖f(t)− f(0)‖

and the proof of (ii) is complete. Finally, to prove (iii), in the case T (t)f(t) ∈

Cζ([0, T ];X), it follows that

‖T (t+ h)f(t+ h)− T (t)f(t)‖

≤ ‖T (t+ h)‖‖f(t+ h)− f(t)‖+ ‖T (t+ h)− T (t)f(t)‖

≤MLhζ + ‖
∫ t+h

t

KT (τ)f(t)dτ‖

≤MLhζ +

∫ t+h

t

‖KT (τ)(f(t)− f(0))‖dτ

≤MLhζ + CL

∫ t+h

t

τ−1tζdτ ≤MLhζ + CL

∫ t+h

t

τ ζ−1dτ ≤ Chζ .

(3.43)

which complete the proof.

Theorem 3.9

Let X be a Banach space and for every t, 0 ≤ t ≤ T , A(t) is a bounded linear

operator on X where A ∈ ω-ORCPn. If the function t→ A(t) is continuous

in the uniform operator then for every x ∈ X, the initial value problem
du(t)

dt
= A(t)u(t) 0 ≤ s ≤ t ≤ T

u(s) = x

(3.44)

has a unique classical solution u.

Proof:

To proof this problem, we need to use the Picard’s iterations method. Let
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α = max0≤t≤T‖A(t)‖ and define a mapping S from C([s, T ] : X) into itself

by

(Su)(t) = x+

∫ t

s

A(τ)u(τ)dτ. (3.45)

Denoting ‖u‖∞ = maxs≤t≤T‖u(t)‖, then it is easy to check that

‖Su(t)− Sv(t)‖ ≤ α(t− s)‖u− v‖∞, s ≤ t ≤ T. (3.46)

Using (3.45) and (3.46), it follows by induction that

‖Snu(t)− Snv(t)‖ ≤ αn(t− s)n

n!
‖u− v‖∞, s ≤ t ≤ T.

and therefore,

‖Snu− Snv‖ ≤ αn(T − S)n

n!
‖u− v‖∞.

For n large enough αn(T−S)n

n!
< 1 and by a well known generalization of the

Banach contraction principle, S has a unique fixed point u in C([s, T ] : X)

for which

u(t) = x+

∫ t

s

A(τ)u(τ)dτ. (3.47)

Since u is continuous, then the right hand side of (3.47) is differentiable.

Thus u is differentiable and its derivative obtained by differentiating (3.47)

satisfies u
′
(t) = A(t)u(t). So u is a solution of the initial value problem

(3.44). Since every solution of (3.44) is also a solution of (3.47), then the

solution of (3.44) is unique and this complete the proof.

Theorem 3.10

Let the solution solution operator of the initial value problem
du(t)

dt
= A(t)u(t) 0 ≤ s ≤ t ≤ T

u(s) = x
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be defined by

u(t, s)x = u(t) (3.48)

for every 0 ≤ s ≤ t ≤ T , U(t, s) is a bounded linear operator and

(i) ‖u(t, s)‖ ≤ exp(
∫ t
s
‖A(τ)‖dτ)∀A ∈ ω-ORCPn;

(ii) U(t, t) = I, U(t, s) = U(t, r)U(r, s) for 0 ≤ s ≤ r ≤ t ≤ T ;

(iii) (t, s) → U(t, s) is continuous in the uniform operator topology for 0 ≤

s ≤ t ≤ T ;

(iv) ∂u(t, s)/∂t = A(t)U(t, s) for 0 ≤ s ≤ t ≤ T ; and

(v) ∂u(t, s)/∂s = −U(t, s)A(s) for 0 ≤ s ≤ t ≤ T .

Proof:

Since the problem (1.4) is linear, then it is obvious that U(t, s) is an operator

on all of X. From (3.47) its follows that

‖u(t)‖ ≤ ‖x‖+

∫ t

s

‖A(τ)‖‖u(τ)‖dτ

which by Gronwall’s inequality implies

‖u(t, s)x‖ = ‖u(t)‖ ≤ ‖x‖exp
(∫ t

s

‖A(τ)‖dτ
)

(3.49)

and so U(t, s) is bounded and satisfies (i). From (3.48) it follows readily

that U(t, t) = I and from the uniqueness of the solution of (1.4), the relation

U(t, s) = U(t, r)U(r, s) for 0 ≤ s ≤ r ≤ t ≤ T , follows by combining (i)

and (ii), then (iii) follows. Finally from (3.47) and (iii), then it follows that

U(t, s) is the unique solution of the integral equation

U(t, s) = I +

∫ t

s

A(τ)U(τ, s)dτ (3.50)

in B(X)(space of all bounded linear operator on X). Differentiating (3.50)
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with respect to t yields (iv). Differentiating (3.50) with respect to s, we get

∂

∂s
U(t, s) = −A(s) +

∫ t

s

A(τ)
∂

∂s
U(τ, s)dτ. (3.51)

From the uniqueness of the solution of (3.50), it follows that

∂

∂s
U(t, s) = −U(t, s)A(s) (3.52)

and this complete the proof.

Theorem 3.11

Let A(t) ∈ ω-ORCPn be the infinitesimal generator of a C0-semigroup T (t)

on the Banach space X for t ∈ [0, T ]. The family family of generators

(A(t))t∈[0,T ] is stable if and only if there are constants M ≥ 1 and ω such

that ρ(A(t)) ⊃ (ω,∞) for t ∈ [0, T ] and either one of the following conditions

is satisfied:

(i)
∥∥∥ k∏
i=1

Tti(si)

∥∥∥ ≤Mexp
{
ω

k∑
i=1

si

}
for si ≥ 0 (3.53)

and any finite sequence 0 ≤ t1 ≤ t2 ≤ ... ≤ tk ≤ T , k = 1, 2, ...

or

(ii)
∥∥∥ k∏
i=1

R(λi;A(ti))
∥∥∥ ≤M

k∏
i=1

(λi − ω)−1 for λi > ω (3.54)

and any finite sequence 0 ≤ t1 ≤ t2 ≤ ... ≤ tk ≤ T , k = 1, 2, ...

Proof:

From the statement of the theorem, it is clear that its suffices to prove that for

a family (A(t))t∈[0,T ] of infinitesimal generators for which ρ(A(t)) ⊃ (ω,∞),

the estimates (2.2), (3.10) and (3.11) are equivalent. Assume (2.2) holds

and si, 1 ≤ i ≤ k be positive rational numbers. Let λ = N be positive
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integer such that Nsi = mi is a positive integer for 1 ≤ i ≤ k. In (2.2), we

take m =
∑k

i=1mi terms and subdivided them into k subsets containing mi,

1 ≤ i ≤ k, terms. All values of t in the i− th subset are taken to be equal to

ti. Dividing both sides of inequality by Nm we get

∥∥∥ k∏
i=1

[
mi

si
R(
mi

si
;A(ti))]

mi

∥∥∥ ≤M
(

1− ω

N

)−m
. (3.55)

Letting N →∞, such that Nsi, 1 ≤ i ≤ k, and suppose each of the integers

of mi tends to infinity and by the exponential formula, then we obtain

∥∥∥ k∏
i=1

Ti(si)
∥∥∥ ≤Mexp

{
ω

k∑
i=1

si

}
and that proved (i) for all positive rationals si. To prove (ii), let consider

the general case of non-negative real si follows from the strong continuity of

Tt(s) and thus (2.2) implies (3.53). Assume

R(λi;A(ti))x =

∫ ∞
0

e−λisTt(s)xds for λi > ω (3.56)

Iterating (3.56) a finite number of times yields

k∏
i=1

R(λi;A(ti))x =

∫ ∞
0

...

∫ ∞
0

exp
{
−

k∑
i=1

λisi

} k∏
i=1

Tt(si)xds1...dsk. (3.57)

Using (3.53) to estimates the norm of the right-hand side of (3.57), we have

∥∥∥ k∏
i=1

R(λi;A(ti))x
∥∥∥ ≤M‖x‖

k∏
i=1

∫ ∞
0

e(ω−λi)sidsi = M‖x‖
k∏
i=1

(λi − ω)−1

and therefore (3.53) implies (3.54). Finally, choosing all λi equal to λ, then

(3.54) shows that (3.55) implies (1.14) and this complete the proof.
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Conclusion

The study presented some properties of w−order preserving and w−order

reversing partial contraction mapping in semigroup of linear operators.It

have been established that ω-order reversing partial contraction mapping

(ω-ORCPn) is a semigroup of linear operator that generates an evolution

systems.
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