A reduction of the spectrum problem for sun systems

Anita Pasotti anita.pasotti@unibs.it

Università degli Studi di Brescia, Italy

Joint work with Marco Buratti and Tommaso Traetta

- M. Buratti, A. Pasotti, T. Traetta, A reduction of the spectrum problem for odd sun systems and the prime case, J. Combin. Des. 29 (2021), 5–37.
- A. Pasotti, T. Traetta, *Even sun systems of the complete graph*, in preparation.

 (t_1, t_2, \ldots, t_k) -unicycle = k-cycle (v_1, v_2, \ldots, v_k) with t_i pendant edges attached to v_i , for $1 \le i \le k$.

-

 (t_1, t_2, \ldots, t_k) -unicycle = k-cycle (v_1, v_2, \ldots, v_k) with t_i pendant edges attached to v_i , for $1 \le i \le k$.

Figure: (0,0,0,0)-unicycle

 (t_1, t_2, \ldots, t_k) -unicycle = k-cycle (v_1, v_2, \ldots, v_k) with t_i pendant edges attached to v_i , for $1 \le i \le k$.

Figure: (1,0,0,2)-unicycle

-

 (t_1, t_2, \ldots, t_k) -unicycle = k-cycle (v_1, v_2, \ldots, v_k) with t_i pendant edges attached to v_i , for $1 \le i \le k$.

Figure: (1,2,1,2)-unicycle

Problem [M. Buratti (2018)]

Given a sequence (t_1, t_2, \ldots, t_k) of nonnegative integers, find the set of all values v for which there exists a decomposition of K_v into copies of the (t_1, t_2, \ldots, t_k) -unicycle.

$$(\underbrace{(0,0,\ldots,0)}_{k})$$
-unicycle = C_k = cycle of length k

Trivial necessary conditions

If there exists a k-cycle system of K_v then

- $v \ge k$;
- v odd;
- $v(v-1) \equiv 0 \pmod{2k}$.

-

Theorem

There exists a k-cycle system of K_v for every admissible v if and only if there exists a k-cycle system of K_v for every admissible v with $k \le v < 3k$.

- k even, J.C. Bermond, C. Huang, D. Sotteau (1978);
- k odd, D.G. Hoffman, C.C. Lindner, C.A. Rodger (1989).

Theorem

There exists a k-cycle system of K_v for every admissible v if and only if there exists a k-cycle system of K_v for every admissible v with $k \le v < 3k$.

- k even, J.C. Bermond, C. Huang, D. Sotteau (1978);
- k odd, D.G. Hoffman, C.C. Lindner, C.A. Rodger (1989).

Theorem

Let $k \ge 3$. There exists a k-cycle system of K_v for every admissible v.

• *k* even, M. Sajna (2002);

 k odd, B. Alspach, H. Gavlas (2001); M. Buratti (2003).

Sun systems

Figure: (1,1,1,1,1)-unicycle = S_5

э

Sun systems

Figure: (1, 1, 1, 1, 1)-unicycle = S_5

Trivial necessary conditions

If there exists a k-sun system of K_v then

- $v \ge 2k$;
- $v(v-1) \equiv 0 \pmod{4k}$.

There exists a k-sun system of K_v , for every admissible v, when

- k = 3, C.M. Fu, N.H. Jhuang, Y.L. Lin, H.M. Sung (2012);
- k = 5, C.M. Fu, M.H. Huang, Y.L. Lin (2013);
- *k* = 4,6,8, Z. Liang, J. Guo (2010);
- $k = 10, 14, 2^t$, C.M. Fu, N.H. Jhuang, Y.L. Lin, H.M. Sung (2012).

There exists a k-sun system of K_v , for every admissible v, when

- *k* = 3, C.M. Fu, N.H. Jhuang, Y.L. Lin, H.M. Sung (2012);
- k = 5, C.M. Fu, M.H. Huang, Y.L. Lin (2013);
- *k* = 4,6,8, Z. Liang, J. Guo (2010);
- $k = 10, 14, 2^t$, C.M. Fu, N.H. Jhuang, Y.L. Lin, H.M. Sung (2012).

Conjecture 1 [M. Buratti, A.P., T. Traetta (2021)]

Let $k \ge 3$. There exists a k-sun system of K_v if and only if the trivial necessary conditions hold.

Theorem

Let $k \ge 3$. Conjecture 1 is true if and only if there exists a k-sun system of K_v for every admissible v with 2k < v < 6k.

- k odd, M. Buratti, A.P., T. Traetta (2021);
- k even, A.P., T. Traetta (202?).

Theorem [M. Buratti, A.P., T. Traetta (2021)]

For every odd prime k, there exists a k-sun system of K_v for every admissible v.

Theorem [A.P., T. Traetta (202?)]

For every prime k, there exists a 2k-sun system of K_v for every admissible v.

Let $k \ge 3$ be a prime.

It is sufficient to construct a k-sun system of K_v for

•
$$v = 4k, 4k+1,$$

- v = 3k + 1, 5k if $k \equiv 1 \pmod{4}$,
- v = 3k, 5k+1 if $k \equiv 3 \pmod{4}$,

to have a k-sun system of K_v for every admissible v.

Let k be a prime.

It is sufficient to construct a 2k-sun system of K_v for

•
$$v = 8k, 8k+1$$
,

•
$$v = 7k + 1, \ 9k$$
 if $k \equiv 1 \pmod{8}$,

•
$$v = 5k + 1$$
, $11k$ if $k \equiv 3 \pmod{8}$,

•
$$v = 5k, \ 11k + 1$$
 if $k \equiv 5 \pmod{8}$,

•
$$v = 7k, \ 9k + 1$$
 if $k \equiv 7 \pmod{8}$,

to have a 2k-sun system of K_v for every admissible v.

Why is it sufficient to consider v in the interval 2k - 6k?

3 x 3

For every $k \ge 4$ even we prove that:

 $\exists a k-sun system of K_{v} \\ \downarrow \\ \exists a k-sun system of K_{v+4k}$

then we get the existence of a k-sun system of $K_{\nu+4kg}$ by induction on g.

Idea of the proof when k is even

Case 1: $v \text{ even} \Rightarrow v \equiv 0 \pmod{4}$.

If there exist:

- a k-sun system of K_v
- a k-sun system of K_{4k}
- a k-sun system of $K_{v,4k}$

Case 1: $v \text{ even} \Rightarrow v \equiv 0 \pmod{4}$.

If there exist:

- a k-sun system of K_v
- a k-sun system of K_{4k}
- a k-sun system of $K_{v,4k}$

Idea of the proof when k is even

Case 1: $v \text{ even} \Rightarrow v \equiv 0 \pmod{4}$.

If there exist:

- a k-sun system of K_v
- a k-sun system of K_{4k}
- a k-sun system of $K_{v,4k}$

Case 1: $v \text{ even} \Rightarrow v \equiv 0 \pmod{4}$.

If there exist:

- a k-sun system of K_v
- a k-sun system of K_{4k}
- a k-sun system of $K_{v,4k}$

Case 1: $v \text{ even} \Rightarrow v \equiv 0 \pmod{4}$.

If there exist:

- a k-sun system of K_v
- a k-sun system of K_{4k}
- a k-sun system of $K_{v,4k}$

Idea of the proof when k is even

Case 2: $v \text{ odd} \Rightarrow v \equiv 1 \pmod{4}$.

If there exist:

- a k-sun system of K_v
- a k-sun system of K_{4k+1}
- a k-sun system of $K_{v-1,4k}$

If there exist:

- a k-sun system of K_v
- a k-sun system of K_{4k+1}
- a k-sun system of $K_{v-1,4k}$

If there exist:

- a k-sun system of K_v
- a k-sun system of K_{4k+1}
- a k-sun system of $K_{v-1,4k}$

If there exist:

- a k-sun system of K_v
- a k-sun system of K_{4k+1}
- a k-sun system of $K_{v-1,4k}$

If there exist:

- a k-sun system of K_v
- a k-sun system of K_{4k+1}
- a k-sun system of $K_{v-1,4k}$

To conclude (k even)

 $\exists a k-sun system of K_{v} \\ \Downarrow \\ \exists a k-sun system of K_{v+4k}$

By induction on g we get:

Let 2k < v < 6k. \exists a *k*-sun system of K_v \Downarrow \exists a *k*-sun system of K_{v+4kg} for every $g \ge 1$

$$K_{4k} + v = K_{4k+v} \setminus K_v$$

A.Pasotti A reduction of the spectrum problem for sun systems

◆□> ◆□> ◆三> ◆三> ・三 ・ 少へ⊙

$$K_{4k} + v = K_{4k+v} \setminus K_v$$

Figure: K₄

<ロ> (四) (四) (三) (三) (三) (三)

 $K_{4k} + v$

$$K_{4k} + v = K_{4k+v} \setminus K_v$$

Figure: $K_4 + 3 = K_7 \setminus K_3$

<ロ> <四> <四> <日> <日> <日> <日> <日</p>

2

- a k-sun system of either K_v or K_{v+4k}
- a k-sun system of $K_{4k} + v$
- a k-sun system of $K_{g imes 4k}$ for every $g \geq 3$

- a k-sun system of either K_v or K_{v+4k}
- a k-sun system of $K_{4k} + v$
- a k-sun system of $K_{g imes 4k}$ for every $g \geq 3$

- a k-sun system of either K_v or K_{v+4k}
- a k-sun system of $K_{4k} + v$
- a k-sun system of $K_{g imes 4k}$ for every $g\geq 3$

- a k-sun system of either K_v or K_{v+4k}
- a k-sun system of $K_{4k} + v$
- a k-sun system of $K_{g \times 4k}$ for every $g \geq 3$

- a k-sun system of either K_v or K_{v+4k}
- a k-sun system of $K_{4k} + v$
- a k-sun system of $K_{g imes 4k}$ for every $g \geq 3$

- a k-sun system of either K_v or K_{v+4k}
- a k-sun system of $K_{4k} + v$
- a k-sun system of $K_{g imes 4k}$ for every $g \geq 3$

- a k-sun system of either K_v or K_{v+4k}
- a k-sun system of $K_{4k} + v$
- a k-sun system of $K_{g imes 4k}$ for every $g \geq 3$

- a k-sun system of either K_v or K_{v+4k}
- a k-sun system of $K_{4k} + v$
- a k-sun system of $K_{g imes 4k}$ for every $g \geq 3$

- a k-sun system of either K_v or K_{v+4k}
- a k-sun system of $K_{4k} + v$
- a k-sun system of $K_{g \times 4k}$ for every $g \ge 3$

- a k-sun system of either K_v or K_{v+4k}
- a k-sun system of $K_{4k} + v$
- a k-sun system of $K_{g \times 4k}$ for every $g \ge 3$

- a k-sun system of either K_v or K_{v+4k}
- a k-sun system of $K_{4k} + v$
- a k-sun system of $K_{g \times 4k}$ for every $g \ge 3$

- a k-sun system of either K_v or K_{v+4k}
- a k-sun system of $K_{4k} + v$
- a k-sun system of $K_{g \times 4k}$ for every $g \ge 3$

- a k-sun system of either K_v or K_{v+4k}
- a k-sun system of $K_{4k} + v$
- a k-sun system of $K_{g \times 4k}$ for every $g \ge 3$

Let 2k < v < 6k.

If there exists:

- a k-sun system of either K_v or K_{v+4k}
- a k-sun system of $K_{4k} + v$
- a k-sun system of K_{g×4k} for every g ≥ 3

then there exists a k-sun system of K_{v+4kg} for every $g \neq 2$.

Case v + 8k: can be done in a similar way.

・ロト ・回ト ・ヨト

2