Pointwise convergence for the Schrödinger equation with orthonormal initial data

Neal Bez
Saitama University

Harmonic Analysis and Partial Differential Equations 8ECM Minisymposium

Portoroz

23 June 2021

The Hartree equation

$$
\begin{aligned}
i \partial_{t} u & =\left(-\Delta_{x}+w *|u|^{2}\right) u \\
u(0, x) & =f(x)
\end{aligned}
$$

on $\mathbb{R} \times \mathbb{R}^{n}$ models dynamics of a Bose-Einstein condensate in \mathbb{R}^{n} in which all quantum particles occupy the same state $u(t, x)$

Well-posedness fairly well understood (Strichartz estimates,...)
Taking the interaction potential w as δ_{0} yields cubic NLS In this case, Compaan-Lucà-Staffilani (2019) showed

$$
\lim _{t \rightarrow 0} u(t, x)=f(x) \quad \text { for a.e. } x
$$

whenever $f \in H^{s}\left(\mathbb{R}^{n}\right)$ and $s>\max \left(\frac{n}{2(n+1)}, \frac{n-2}{2}\right)$

§1 Carleson's problem

When $w=0$ the pointwise convergence problem is known as
Carleson's problem i.e. identifying minimal s such that

$$
\lim _{t \rightarrow 0} e^{i t \Delta} f(x)=f(x) \quad \text { for a.e. } x \in \mathbb{R}^{n}
$$

whenever $f \in H^{s}\left(\mathbb{R}^{n}\right)$
Critical exponent is $s=s(n)=\frac{n}{2(n+1)}$
E.g. $s(1)=\frac{1}{4}$ and $\lim _{n \rightarrow \infty} s(n)=\frac{1}{2}$

Carleson, Dahlberg-Kenig $(n=1)$, Bourgain, Du-Guth-Li $(n=2)$, Bourgain, Du-Zhang ($n \geq 3$)

$\S 2$ Fermions

Unlike bosons, fermions cannot occupy the same state (Pauli exclusion principle)

Described by N orthonormal functions u_{1}, \ldots, u_{N} in $L^{2}\left(\mathbb{R}^{n}\right)$
Dynamics modelled by system of N Hartree equations

$$
\begin{aligned}
i \partial_{t} u_{j} & =\left(-\Delta_{x}+w * \rho\right) u_{j} \\
u_{j}(0, x) & =f_{j}(x) \quad(j=1, \ldots, N)
\end{aligned}
$$

where

$$
\rho(t, x)=\sum_{k=1}^{N}\left|u_{k}(t, x)\right|^{2}
$$

is the total density of particles at time t, and f_{1}, \ldots, f_{N} are orthonormal

Well-posedness when $N=\infty$?

Density matrices

Define operator $\gamma(t)=\sum_{j=1}^{N} \Pi_{u_{j}(t)}$ by

$$
\gamma(t) f:=\sum_{j=1}^{N}\left\langle f, u_{j}(t)\right\rangle u_{j}(t)
$$

System of N Hartree equations is equivalent to

$$
\begin{aligned}
i \partial_{t} \gamma & =\left[-\Delta+w * \rho_{\gamma}, \gamma\right] \\
\gamma(0) & =\sum_{j=1}^{N} \Pi_{f_{j}}
\end{aligned}
$$

where

$$
\rho_{\gamma}(t, x)=K_{\gamma}(t, x, x)
$$

and K_{γ} is the integral kernel of $\gamma(t)$
Quick calculation reveals $\rho_{\gamma}=\rho$

Density matrices

$N=\infty$ can be formulated through

$$
\begin{aligned}
i \partial_{t} \gamma & =\left[-\Delta+w * \rho_{\gamma}, \gamma\right] \\
\gamma(0) & =\gamma_{0}
\end{aligned}
$$

where γ_{0} is a more general (non-negative) operator
If $\gamma_{0}=\sum_{j} \lambda_{j} \Pi_{f_{j}}$ is trace class $\left(\lambda \in \ell^{1}\right)$, solution can be written
$\gamma(t)=\sum_{j} \lambda_{j} \Pi_{u_{j}(t)}$ where

$$
\begin{aligned}
i \partial_{t} u_{j} & =\left(-\Delta_{x}+w * \rho\right) u_{j} \\
u_{j}(0, x) & =f_{j}(x)
\end{aligned} \quad(j=1, \ldots, N)
$$

and the density $\rho_{\gamma}=\sum_{j} \lambda_{j}\left|u_{j}\right|^{2}$ is well-defined since

$$
\left\|\rho_{\gamma(t)}\right\|_{1} \leq \sum_{j}\left|\lambda_{j}\right|\left\|u_{j}(t, \cdot)\right\|_{2}^{2}=\|\lambda\|_{\ell^{1}}<\infty
$$

§3 Carleson's problem for fermions

Consider the density matrix equation with $w=0$ (von Neumann Schrödinger equation)

$$
\begin{aligned}
i \partial_{t} \gamma & =[-\Delta, \gamma] \\
\gamma(0) & =\gamma_{0}
\end{aligned}
$$

Solution is $\gamma(t)=e^{i t \Delta} \gamma_{0} e^{-i t \Delta}$
It seems natural to pose the problem: For which γ_{0} do we have

$$
\lim _{t \rightarrow 0} \rho_{\gamma(t)}(x)=\rho_{\gamma_{0}}(x) \quad \text { for a.e. } x
$$

A more precise version: Given an appropriate Hilbert space \mathcal{H} (such as \dot{H}^{s} or H^{s}), what is the largest $\beta=\beta(s, n)$ for which

$$
\lim _{t \rightarrow 0} \rho_{\gamma(t)}(x)=\rho_{\gamma_{0}}(x) \quad \text { for a.e. } x \in \mathbb{R}^{n}
$$

whenever γ_{0} belongs to the Schatten space $\mathcal{C}^{\beta}(\mathcal{H})$?

Finite-rank case corresponds to classical Carleson's problem
To extend to the infinite-rank case, it suffices to prove maximal-in-time estimates of the form

$$
\left\|\sum_{j} \lambda_{j}\left|e^{i t \Delta} f_{j}\right|^{2}\right\|_{L_{x}^{q / 2} L_{t}^{\infty}} \lesssim\|\lambda\|_{\ell}
$$

where $\left(f_{j}\right)$ is orthonormal in \mathcal{H}
Strichartz estimates in this framework take the form

$$
\left\|\sum_{j} \lambda_{j}\left|e^{i t \Delta} f_{j}\right|^{2}\right\|_{L_{t}^{q / 2} L_{\chi}^{r / 2}} \lesssim\|\lambda\|_{\ell^{\beta}}
$$

where $\left(f_{j}\right)$ is orthonormal in $\dot{H}^{s}\left(\mathbb{R}^{n}\right)$
Frank-Lewin-Lieb-Seiringer, Frank-Sabin, Chen-Hong-Pavlovic, B-Hong-Lee-Nakamura-Sawano, B-Lee-Nakamura,...
Certain endpoint cases open - back to this later

A result in 1D

Theorem (B-Lee-Nakamura)
The (weak-type) maximal-in-time estimate

$$
\left\|\sum_{j} \lambda_{j}\left|e^{i t \Delta} f_{j}\right|^{2}\right\|_{L_{\chi}^{2, \infty} L_{t}^{\infty}(\mathbb{R} \times \mathbb{R})} \lesssim\|\lambda\|_{\ell^{\beta}}
$$

holds for all $\left(f_{j}\right)$ orthonormal in $\dot{H}^{1 / 4}(\mathbb{R})$ if and only if $\beta<2$
Consequently

$$
\lim _{t \rightarrow 0} \rho_{\gamma(t)}(x)=\rho_{\gamma_{0}}(x) \quad \text { for a.e. } x \in \mathbb{R}
$$

holds whenever $\gamma_{0} \in \mathcal{C}^{\beta}\left(\dot{H}^{1 / 4}\right)$ and $\beta<2$

A problem of Frank-Sabin

Theorem (B-Lee-Nakamura)
Let $a>0$ and $a \neq 1$. If $\beta<2$, the (weak-type) maximal-in-space estimate

$$
\left\|\sum_{j} \lambda_{j}\left|e^{i t(-\Delta)^{a / 2}} f_{j}\right|^{2}\right\|_{L_{t}^{2, \infty} L_{x}^{\infty}(\mathbb{R} \times \mathbb{R})} \lesssim\|\lambda\|_{\ell^{\beta}}
$$

holds for all $\left(f_{j}\right)$ orthonormal in $\dot{H}^{\frac{1}{2}-\frac{a}{4}}(\mathbb{R})$
When $a=2$, Frank-Sabin obtained that $\beta=\frac{2 r}{r+2}$ is optimal for $L_{t}^{q / 2} L_{x}^{r / 2}(\mathbb{R} \times \mathbb{R})$ whenever $\frac{2}{q}+\frac{1}{r}=\frac{1}{2}$ and $r \in[2, \infty)$ But, for $r=\infty$, only the (trivial) case $\beta=1$ was known

In 1D, maximal-in-space imply maximal-in-time since we can switch the roles of space and time

$$
x \xi+t \xi^{2}=t \eta+x \sqrt{\eta}
$$

via the change of variables $\eta=\xi^{2}$
Minor snag: orthogonality of data breaks, but this can be recouped via some symmetrisation

