Pointwise convergence for the Schrödinger equation with orthonormal initial data

Neal Bez Saitama University

Harmonic Analysis and Partial Differential Equations 8ECM Minisymposium

Portoroz

23 June 2021

The Hartree equation

$$i\partial_t u = (-\Delta_x + w * |u|^2)u$$
$$u(0, x) = f(x)$$

on $\mathbb{R} \times \mathbb{R}^n$ models dynamics of a Bose–Einstein condensate in \mathbb{R}^n in which all quantum particles occupy the same state u(t, x)

Well-posedness fairly well understood (Strichartz estimates,...)

Taking the interaction potential w as δ_0 yields cubic NLS In this case, Compaan–Lucà–Staffilani (2019) showed

$$\lim_{t\to 0} u(t,x) = f(x) \qquad \text{for a.e. } x$$

whenever $f \in H^s(\mathbb{R}^n)$ and $s > \max(rac{n}{2(n+1)}, rac{n-2}{2})$

$\S1$ Carleson's problem

When w = 0 the pointwise convergence problem is known as Carleson's problem i.e. identifying minimal *s* such that

$$\lim_{t\to 0} e^{it\Delta}f(x) = f(x) \qquad \text{for a.e. } x \in \mathbb{R}^n$$

whenever $f \in H^{s}(\mathbb{R}^{n})$

Critical exponent is $s = s(n) = \frac{n}{2(n+1)}$ E.g. $s(1) = \frac{1}{4}$ and $\lim_{n \to \infty} s(n) = \frac{1}{2}$

Carleson, Dahlberg–Kenig (n = 1), Bourgain, Du–Guth–Li (n = 2), Bourgain, Du–Zhang ($n \ge 3$)

§2 Fermions

Unlike bosons, fermions cannot occupy the same state (Pauli exclusion principle)

Described by N orthonormal functions u_1, \ldots, u_N in $L^2(\mathbb{R}^n)$

Dynamics modelled by system of N Hartree equations

$$i\partial_t u_j = (-\Delta_x + w * \rho)u_j$$

$$u_j(0, x) = f_j(x) \qquad (j = 1, \dots, N)$$

where

$$\rho(t,x) = \sum_{k=1}^{N} |u_k(t,x)|^2$$

is the total density of particles at time t, and f_1, \ldots, f_N are orthonormal

Well-posedness when $N = \infty$?

Density matrices

Define operator
$$\gamma(t) = \sum_{j=1}^{N} \prod_{u_j(t)}$$
 by

$$\gamma(t)f := \sum_{j=1}^{N} \langle f, u_j(t) \rangle u_j(t)$$

System of N Hartree equations is equivalent to

$$i\partial_t \gamma = [-\Delta + w * \rho_\gamma, \gamma]$$

 $\gamma(0) = \sum_{j=1}^N \Pi_{f_j}$

where

$$\rho_{\gamma}(t,x) = K_{\gamma}(t,x,x)$$

and K_{γ} is the integral kernel of $\gamma(t)$ Quick calculation reveals $\rho_{\gamma} = \rho$

Density matrices

 $N = \infty$ can be formulated through

$$i\partial_t \gamma = [-\Delta + w * \rho_\gamma, \gamma]$$

$$\gamma(0) = \gamma_0$$

where γ_0 is a more general (non-negative) operator

If $\gamma_0 = \sum_j \lambda_j \prod_{f_j}$ is trace class $(\lambda \in \ell^1)$, solution can be written $\gamma(t) = \sum_j \lambda_j \prod_{u_j(t)}$ where

$$i\partial_t u_j = (-\Delta_x + w * \rho)u_j$$

 $u_j(0, x) = f_j(x)$ $(j = 1, ..., N)$

and the density $ho_\gamma = \sum_j \lambda_j |u_j|^2$ is well-defined since

$$\|\rho_{\gamma(t)}\|_{1} \leq \sum_{j} |\lambda_{j}| \|u_{j}(t,\cdot)\|_{2}^{2} = \|\lambda\|_{\ell^{1}} < \infty$$

$\S3$ Carleson's problem for fermions

Consider the density matrix equation with w = 0 (von Neumann Schrödinger equation)

$$i\partial_t \gamma = [-\Delta, \gamma]$$

 $\gamma(0) = \gamma_0$

Solution is $\gamma(t) = e^{it\Delta}\gamma_0 e^{-it\Delta}$ It seems natural to pose the problem: For which γ_0 do we have

$$\lim_{t \to 0} \rho_{\gamma(t)}(x) = \rho_{\gamma_0}(x) \qquad \text{for a.e. } x$$

A more precise version: Given an appropriate Hilbert space \mathcal{H} (such as \dot{H}^s or H^s), what is the largest $\beta = \beta(s, n)$ for which

$$\lim_{t \to 0} \rho_{\gamma(t)}(x) = \rho_{\gamma_0}(x) \qquad \text{for a.e. } x \in \mathbb{R}^n$$

whenever γ_0 belongs to the Schatten space $C^{\beta}(\mathcal{H})$?

Finite-rank case corresponds to classical Carleson's problem

To extend to the infinite-rank case, it suffices to prove maximal-in-time estimates of the form

$$\left\|\sum_{j}\lambda_{j}|e^{it\Delta}f_{j}|^{2}\right\|_{L_{x}^{q/2}L_{t}^{\infty}}\lesssim\|\lambda\|_{\ell^{\beta}}$$

where (f_j) is orthonormal in \mathcal{H}

Strichartz estimates in this framework take the form

$$\left\|\sum_{j}\lambda_{j}|e^{it\Delta}f_{j}|^{2}\right\|_{L_{t}^{q/2}L_{x}^{r/2}} \lesssim \|\lambda\|_{\ell^{\beta}}$$

where (f_j) is orthonormal in $\dot{H}^s(\mathbb{R}^n)$ Frank–Lewin–Lieb–Seiringer, Frank–Sabin, Chen–Hong–Pavlovic, B–Hong–Lee–Nakamura–Sawano, B–Lee–Nakamura,... Certain endpoint cases open – back to this later

A result in 1D

Theorem (B–Lee–Nakamura) The (weak-type) maximal-in-time estimate

$$\left\|\sum_{j}\lambda_{j}|e^{it\Delta}f_{j}|^{2}\right\|_{L^{2,\infty}_{x}L^{\infty}_{t}(\mathbb{R}\times\mathbb{R})}\lesssim\|\lambda\|_{\ell^{\beta}}$$

holds for all (f_j) orthonormal in $\dot{H}^{1/4}(\mathbb{R})$ if and only if $\beta < 2$ Consequently

$$\lim_{t\to 0} \rho_{\gamma(t)}(x) = \rho_{\gamma_0}(x) \qquad \text{for a.e. } x \in \mathbb{R}$$

holds whenever $\gamma_0 \in \mathcal{C}^{eta}(\dot{H}^{1/4})$ and eta < 2

A problem of Frank-Sabin

Theorem (B–Lee–Nakamura)

Let a > 0 and a \neq 1. If β < 2, the (weak-type) maximal-in-space estimate

$$\left\|\sum_{j}\lambda_{j}|e^{it(-\Delta)^{a/2}}f_{j}|^{2}\right\|_{L^{2,\infty}_{t}L^{\infty}_{x}(\mathbb{R}\times\mathbb{R})} \lesssim \|\lambda\|_{\ell^{\beta}}$$

holds for all (f_j) orthonormal in $\dot{H}^{rac{1}{2}-rac{a}{4}}(\mathbb{R})$

When a = 2, Frank–Sabin obtained that $\beta = \frac{2r}{r+2}$ is optimal for $L_t^{q/2} L_x^{r/2} (\mathbb{R} \times \mathbb{R})$ whenever $\frac{2}{q} + \frac{1}{r} = \frac{1}{2}$ and $r \in [2, \infty)$ But, for $r = \infty$, only the (trivial) case $\beta = 1$ was known In 1D, maximal-in-space imply maximal-in-time since we can switch the roles of space and time

$$x\xi + t\xi^2 = t\eta + x\sqrt{\eta}$$

via the change of variables $\eta=\xi^2$

Minor snag: orthogonality of data breaks, but this can be recouped via some symmetrisation