Erdős-Rademacher Problem

Oleg Pikhurko
University of Warwick

8ECM, 23 June 2021

Some definitions

- Turán graph $T_{r}(n)$: balanced r-partite order- n
- $t_{r}(n)=e\left(T_{r}(n)\right)$
- Turán'41: Max size of K_{r+1}-free order- n graph is $t_{r}(n)$
- Rademacher'41: $e\left(G_{n}\right) \geq t_{2}(n)+1 \Rightarrow \geq\left\lfloor\frac{n}{2}\right\rfloor K_{3}$'s
- Erdős-Rademacher Problem:

$$
g_{r}(n, m)=\min \left\{\# K_{r}\left(G_{n}\right): e\left(G_{n}\right)=m\right\}
$$

- Maximising $\# K_{r}$ is easy (Kruskal'63, Katona'68)

g_{3} just above $t_{2}(n)$

- When is $g_{3}\left(n, t_{2}(n)+q\right)=q \cdot\left\lfloor\frac{n}{2}\right\rfloor$?
- Erdős'55: $q \leq 3$
- Erdős'62: $q \leq \varepsilon n$
- Erdős'55: True for $q<n / 2$?
- $K_{k, k}+q$ edges versus $K_{k+1, k-1}+(q+1)$ edges
- $q k$ versus $(q+1)(k-1)$ triangles
- Lovász-Simonovits'75: $q<n / 2$
- Arbitrary $r \geq 3$:
- Lovász-Simonovits'75,83:

Solved g_{r}-problem for $t_{k}(n) \leq m \leq t_{k}(n)+\varepsilon_{k, r} n^{2}$

General m

- Conjecture (Lovász-Simonovits'75): If $n \geq n_{0}(r)$ then $g_{r}(n, m)$ is attained by a graph in \mathcal{H}
- $\mathcal{H}:=\left\{\right.$ complete partite $+K_{3}$-free inside a part $\}$

Asymptotic Version

- $g_{r}(a):=\lim _{n \rightarrow \infty} \frac{g_{r}\binom{n, a\binom{n}{2}}{\binom{n}{r}}}{}$
- Conjecture + calculations
- $g_{r}(a)=K_{r}$-density in $K_{c n, \ldots, c n, c^{\prime} n}$ with $c \geq c^{\prime}$
- Partial results: Goodman'59, Moon-Moser'62, Nordhaus-Stewart'63, Bollobás'76, Lovász-Simonovits'83
- Fisher'89: Determined $g_{3}(a)$ for $\frac{1}{2} \leq a \leq \frac{2}{3}$
- Razborov'08: Determined $g_{3}(a)$ for all a
- Nikiforov'11: Determined $g_{4}(a)$ for all a
- Reiher'16: Determined $g_{r}(a)$ for all r and a

Possible Edge-Triangle Densities in Limit

Stability

- Stability: Are all graphs with $m>t_{r-1}(n)$ edges and $g_{r}(n, m)+o\left(n^{r}\right) r$-cliques $o\left(n^{2}\right)$-close to each other ?
- Graph family $\mathcal{H}^{\prime} \subseteq \mathcal{H}$:
- Take $K\left(A_{2}, \ldots, A_{k+1}\right),\left|A_{1}\right|=\ldots=\left|A_{k}\right| \geq\left|A_{k+1}\right|$
- Move edges inside $A_{k} \cup A_{k+1}$ keeping it K_{3}-free
- No stability
- P.-Razborov'17: \forall almost g_{3}-extremal G_{n} is $o\left(n^{2}\right)$-close in the edit distance to \mathcal{H}^{\prime}
- Kim-Liu-P.-Sharifzadeh'20: $\forall r \geq 4 \forall$ almost g_{r}-extremal G_{n} is $o\left(n^{2}\right)$-close to $\mathcal{H}^{\prime} \cup\left\{K_{r}\right.$-free $\}$

Exact Values of $g_{r}(n, m)$

- Previously known exact values for $n \rightarrow \infty$:
- Goodman'59, Nordhaus-Stewart'63: $m=t_{k}(n)$
- Lovász-Simonovits'83: $t_{k}(n) \leq m \leq t_{k}(n)+\varepsilon_{k} n^{2}$
- Asymptotic result $\Rightarrow m=e\left(K_{a, \ldots, a, b}\right)$ for $a \geq b$
- Liu-P.-Staden'20: $r=3 \& m<\binom{n}{2}-o\left(n^{2}\right)$
- at least one $g_{3}(n, m)$-extremal graph is complete partite + K_{3}-free
- $\left\{g_{3}\right.$-extremal graphs $\}=\mathcal{H}_{0} \cup \mathcal{H}_{1} \cup \mathcal{H}_{2}$

Asymptotic Structure for K_{r}-Minimisation

- Kim-Liu-P.-Sharifzadeh'20: $\forall r \geq 4 \forall$ almost g_{r}-extremal G_{n} is $o\left(n^{2}\right)$-close to $\mathcal{H}^{\prime} \cup\left\{K_{r}\right.$-free $\}$
- $\mathcal{H}^{\prime}=\left\{K_{c n, \ldots, c n, c^{\prime} n}\right.$ with the last two parts modified $\}$

Graphons

- Graphon: Measurable function $W:[0,1]^{2} \rightarrow[0,1]$ st $W(x, y)=W(y, x)$
- $G \mapsto W^{G}$, the adjacency function of G
- (Homomorphism) density of $F=([k], E)$ in G :

$$
t(F, G):=\frac{1}{|V(G)|^{k}} \#\{f:[k] \rightarrow V(G) \text { st } f(E) \subseteq E(G)\}
$$

- (Homomorphism) density of $F=([k], E)$ in W :

$$
t(F, W):=\int_{[0,1]^{k}} \prod_{i j \in E} W\left(x_{i}, x_{j}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{k}
$$

- $t(F, G)=t\left(F, W^{G}\right)$
- G_{n} converge to W if $\forall F t\left(F, G_{n}\right) \rightarrow t(F, W)$

Limit Version

- $\mathcal{W}:=\{$ graphons $/ \sim\}$ is compact
- $t(H, \cdot): \mathcal{W} \rightarrow[0,1]$ is continuous
- $\Rightarrow g_{r}(a)=\min \left\{t\left(K_{r}, W\right): t\left(K_{2}, W\right)=a\right\}$
- W is g_{r}-extremal if $t\left(K_{r}, W\right)=g_{r}\left(t\left(K_{2}, W\right)\right)$
- $\mathcal{H}^{\prime}=\left\{K_{c n, \ldots, c n, c^{\prime} n}\right.$ with the last two parts modified $\}$
- $\operatorname{LIM}\left(\mathcal{H}^{\prime}\right):=\left\{\right.$ limits of convergent sequences from $\left.\mathcal{H}^{\prime}\right\}$
- Kim-Liu-P.-Sharifzadeh'20: $\forall r \geq 4$ $\left\{g_{r}\right.$-extremal graphons $\}=\operatorname{LIM}\left(\mathcal{H}^{\prime}\right) \cup\left\{W: t\left(K_{r}, W\right)=0\right\}$
- Implies the discrete theorem

Starting proof

- Fix any g_{r}-extremal W with $t\left(K_{r}, W\right)>0$.
- $a:=t\left(K_{2}, W\right)$
- $k \in \mathbb{N}: 1-\frac{1}{k} \leq a<1-\frac{1}{k+1}$
- $c \in\left(\frac{1}{k+1}, \frac{1}{k}\right]: t\left(K_{2}, K_{c, \ldots, c,(1-k c)}\right)=a$
- P.-Razborov'17: $t\left(K_{3}, W\right)=g_{3}(a) \Rightarrow W \in \operatorname{LIM}\left(\mathcal{H}^{\prime}\right)$
- Done unless $t\left(K_{3}, W\right)>g_{3}(a)$
- Lovász-Simonovits'83:
$a=1-\frac{1}{k} \Rightarrow W=k$-partite Turan graphon
- $\Rightarrow a \neq 1-\frac{1}{k}$

Razborov's Differential Calculus I

- g_{r} is differentiable at a
- $g_{r}^{\prime}(a)=(k-1)^{(r-2)} c^{r-2}$
- $t_{x_{1}, \chi_{2}}\left(K_{t}^{-}, W\right):=\int_{[0,1]^{r-2}} \prod_{i j \in\binom{[t]}{2} \backslash\{12\}} W\left(x_{j}, x_{j}\right) \mathrm{d} x_{3} \ldots \mathrm{~d} x_{t}$
- $t_{x y}\left(K_{3}^{-}, W\right):=\int W(x, z) W(y, z) \mathrm{d} z$
- $t_{x y}\left(K_{3}^{-}, G_{n}\right):=\frac{1}{n} \#\{2$-paths between $x, y \in V\}$
- Razborov'07: For r-extremal W and a.e. $x y \in[0,1]^{2}$ $\left(W(x, y)>0 \Rightarrow t_{x y}\left(K_{r}^{-}, W\right) \leq g_{r}^{\prime}(a)\right)$

Razborov's Differential Calculus II

- $t_{x_{1}}\left(K_{t}, W\right):=\int_{[0,1]^{t-1}} \prod_{i j \in\binom{[t]}{2}} W\left(x_{j}, x_{j}\right) \mathrm{d} x_{2} \ldots \mathrm{~d} x_{t}$
- Degree $d(x):=\int_{0}^{1} W(x, y) \mathrm{d} y=t_{x}\left(K_{2}, W\right)$
- Add measure- ε copies of x. Changes:
- $\partial t\left(K_{2}, W\right)=\frac{2 \varepsilon d(x)+a}{(1+\varepsilon)^{2}}-a=2(d(x)-a) \varepsilon+O\left(\varepsilon^{2}\right)$
- $\partial t\left(K_{r}, W\right)=r\left(t_{x}\left(K_{r}, W\right)-g_{r}(a)\right) \varepsilon+O\left(\varepsilon^{2}\right)$ $\geq \partial g_{r}=g_{r}^{\prime}(a) \cdot 2(d(x)-a) \varepsilon+O\left(\varepsilon^{2}\right)$
$\Rightarrow \Rightarrow t_{x}\left(K_{r}, W\right)-g_{r}(a) \geq \frac{1}{r} g_{r}^{\prime}(a) \cdot 2(d(x)-a)$
- "Remove" $x \Rightarrow \leq$ holds a.e.
$\Rightarrow \Rightarrow f_{r}(x):=C_{1} d(x)+C_{2}-t_{x}\left(K_{r}, W\right)$ is 0 a.e.

Properties of f_{t}

- Arbitrary $t \in \mathbb{N}$
- $f_{t}(x):=C_{1, t} d(x)+C_{2, t}-t_{x}\left(K_{t}, W\right)$
- $C_{1, t}=(t-1)(k-1)^{(t-2)} c^{t-2}$
- $C_{2, t}=-(t-2)(k-1)(k-1)^{(t-2)} c^{t-1}$
- Lemma: $\int f_{t}(x) \mathrm{d} x=g_{t}(a)-t\left(K_{t}, W\right)$, any $t \geq 3$
- $t\left(K_{3}, W\right)>g_{3}(a) \Rightarrow f_{3}<0$ on positive measure
- Pick x with $f_{3}(x)<0, d(x)>0$ and $f_{r}(x)=0$
- W^{\prime} : graphon "induced" by neighbourhood of x in W
- $t\left(K_{t-1}, W^{\prime}\right)=t_{x}\left(K_{t}, W\right) / d^{t-1}(x)$
- $\Rightarrow W^{\prime}$ has too large edge density given K_{r-1}-density

Concluding Remarks

- Open: exact result for $r \geq 4$
- Open: exact result for $r=3$ and remaining m
- Conjecture (Lovász-Simonovits'75): If $n \geq n_{0}(r)$ then $g_{r}(n, m)$ is attained by a graph in \mathcal{H}
- $\mathcal{H}:=$ \{complete partite $+K_{3}$-free inside a part $\}$
- Liu-P.-Staden'20: One counterexample to $g_{3}(n, m)=h_{3}(n, m) \quad \Rightarrow$ false for every large n

Thank you!

