Analytic properties of the complete formal normal form for the Bogdanov-Takens singularity

Ewa Stróżyna, Warsaw University of Technology (with Henryk Żołạdek, University of Warsaw)

Portorož, Slovenia, 20-26 June 2021

Introduction

Recall that a singularity of a planar vector field is elementary if at least one eigenvalue of the linearization matrix is nonzero. We can write

$$
\boldsymbol{V}=\boldsymbol{V}_{0}+\cdots=\lambda_{1} x \frac{\partial}{\partial x}+\lambda_{2} y \frac{\partial}{\partial y}+\ldots
$$

where $\lambda_{1} \neq 0$. The normal form and its analytic properties depend on the ratio

$$
\lambda:=\lambda_{2} / \lambda_{1}
$$

of the eigenvalues.
In the focus case, $\lambda \in \mathbb{C} \backslash \mathbb{R}$ the formal normal form (which is linear) is analytic.

In the node case, $\lambda \in \mathbb{R}_{>0}$, the normal form (which is polynomial) is also analytic.

In the non-resonant saddle case, $\lambda \in \mathbb{R}_{<0} \backslash \mathbb{Q}$, the (linear) normal form can be analytic or non-analytic, depending on the approximation properties of the number λ by rationals; but for dense set of λ 's one can show that for general nonlinear terms the normal form is non-analytic.

In the resonant saddle case, $\lambda \in \mathbb{Q} \leq 0$ (we include into this class also the saddle-node case $\lambda=0$), the formal normal form is generally non-analytic.

In the case of the Bogdanov-Takens singularity, i.e., with nonzero nilpotent linear part, the complete formal normal form (orbital and non-orbital) was obtained only recently. Using the Takens result we can assume that we deal with vector fields of the form

$$
\boldsymbol{V}_{H}+\boldsymbol{W},
$$

where

$$
\boldsymbol{V}_{H}=\left(y+(\lambda+1) x^{r}\right) \frac{\partial}{\partial x}-\lambda r x^{2 r-1} \frac{\partial}{\partial y}
$$

is a quasi-homogeneous vector field with respect to the grading deg $_{H}$ such that

$$
\operatorname{deg}_{H} x=1, \quad \operatorname{deg}_{H} y=r
$$

and \boldsymbol{W} contains higher degree terms. Above $r \in \frac{1}{2} \mathbb{Z}$ and $\lambda=-1$ when $r \notin \mathbb{Z}$ (we have the so-called generalized cusp).

The relation with elementary singularities follows from the fact that, after putting $z=x^{r}$ and dividing by $r x^{r-1}$, one arrives at the linear vector field

$$
(y+(\lambda+1) z) \frac{\partial}{\partial z}-\lambda z \frac{\partial}{\partial y}
$$

such that λ is the ratio of its eigenvalues.
The BT singularities were divided into three types. Type I includes the cases with $\lambda \notin \mathbb{Q}$ (nonresonant) and $\lambda=\frac{k}{l} \in \mathbb{Q}>0, k, l>1, \operatorname{gcd}(k, l)=1$ (analogues to the $k: l$ resonant nodes). Type II includes analogues to resonant nodes with $l=1(\lambda=k>0)$ and Type III includes the cases corresponding to the $k:-l$ resonant saddles $\left(\lambda=-\frac{k}{l} \in \mathbb{Q}<0, \operatorname{gcd}(k, l)=1\right.$ (including $\lambda=0$).

The general normal form looks as follows:

$$
\Psi(x)\left\{\boldsymbol{V}_{H}+\Phi(x) \boldsymbol{E}_{H}\right\}
$$

where

$$
\boldsymbol{E}_{H}=x \frac{\partial}{\partial x}+r y \frac{\partial}{\partial y}
$$

is the quasi-homogeneous Euler vector field and $\Phi(x)=x^{p} \varphi(x)=\sum_{i \in \mathcal{I}(\Phi)} a_{i} x^{i}$, $\Psi(x)=1+x^{q} \psi(x)=\sum_{i \in \mathcal{I}(\Psi)} b_{i} x^{i}$ are formal power series with specified sets of powers $\mathcal{I}(\Phi)$ and $\mathcal{I}(\Psi)$.

Above $\boldsymbol{V}_{H}+\Phi(x) \boldsymbol{E}_{H}$ is the orbital normal form and $\Psi(x)$ is the orbital factor.

In particular, for Type I we have $\mathcal{I}(\Phi)=\mathbb{Z}_{\geq r} \backslash I_{1}$ and $\mathcal{I}(\Psi)=\mathbb{Z}_{\geq 0} \backslash I_{1}$, where

$$
I_{k}=\{j: j+k=0 \bmod r\} .
$$

For other types the indices sets $\mathcal{I}(\Phi)$ and $\mathcal{I}(\Psi)$ are more complicated and for Type II the normal form is slightly different.

But sometimes this choice is not the best ones from the point of view of its analyticity; some estimates turn out too complicated. In those cases we choose other versions of the normal forms.

Theorem 1. In the case $\lambda \in \mathbb{C} \backslash \mathbb{R}$ the corresponding normal form is analytic.

Theorem 2. In the case $\lambda>0$ the corresponding normal form is analytic.

Theorem 3. In the case $\lambda \in \mathbb{R}_{<0} \backslash \mathbb{Q}$, for λ from a dense set and generic perturbation \boldsymbol{W}, the normal form is non-analytic.

Theorem 4. In the case of the $k:-l$ resonance and $p<\infty$, in $\Phi=x^{p} \varphi(x)$, the normal form is non-analytic in general and for $p=\infty$ it is analytic.

Koszul complexes and homological operators

Let

$$
\begin{aligned}
& \mathcal{F}_{d}=\{f \in \mathbb{C}[x, y]: \operatorname{deg} f=d\}, \\
& \mathcal{Z}_{d}=\{\boldsymbol{Z} \in \mathcal{Z}: \operatorname{deg} \boldsymbol{Z}=d\}
\end{aligned}
$$

denote spaces of quasi-homogeneous polynomials and of quasi-homogeneous vector fields of degree d.

We consider vector fields of the form $\boldsymbol{V}=\boldsymbol{V}_{0}+\ldots$, where \boldsymbol{V}_{0} is as above in the case of elementary singularity, and $\boldsymbol{V}_{0}=\boldsymbol{V}_{H}$ in the case of the BT singularity. Introduce the operators

$$
\begin{aligned}
& A(\boldsymbol{V}) f=f \cdot \boldsymbol{V}, \\
& B(\boldsymbol{V}) \boldsymbol{Z}=\boldsymbol{V} \wedge \boldsymbol{Z} / \partial_{x} \wedge \partial_{y}, \\
& C(\boldsymbol{V}) f=\boldsymbol{V}(f), \\
& D(\boldsymbol{V}) f=\boldsymbol{V}(f)-\operatorname{div}(\boldsymbol{V}) f .
\end{aligned}
$$

Consider the following diagram, with rows that form the so-called Koszul complexes:

The operators $C(\boldsymbol{V})$, ad $_{V}$ and $D(\boldsymbol{V})$ are called the homological operators.
In the elementary case we have $r=1$ and $\operatorname{deg}=\operatorname{deg}_{H}$.
The above diagram is commutative.
If $\lambda \neq 0$, i.e., when $x=y=0$ is an isolated singularity, then the Koszul complexes are exact. If $\lambda=0$ then the situation is only slightly more complicated.
$\operatorname{ker} C(\boldsymbol{V})$ consists of the first integrals (FIs) F of \boldsymbol{V}.
ker $D(\boldsymbol{V})$ consists of the inverse integrating multipliers (IIMs) M for \boldsymbol{V}, i.e., $\operatorname{div} M^{-1} \boldsymbol{V}=0$.

For the non-resonant singularities $(\lambda \notin \mathbb{Q}$ or Type I) we have:
$\operatorname{ker} C\left(\boldsymbol{V}_{0}\right)=0$ and $\operatorname{ker} D\left(\boldsymbol{V}_{0}\right)=0$.
For singularities of Type II (with $\lambda=k \in \mathbb{Z}_{>0}$) we have:
$\operatorname{ker} C\left(\boldsymbol{V}_{0}\right)=0$ and $\operatorname{ker} D\left(\boldsymbol{V}_{0}\right)=\mathbb{C} \cdot x^{k+1}$ or $=\mathbb{C} \cdot\left(y+x^{r}\right)^{k+1}$.
For the $k:-l$ resonant singularities (Type III) we have:
$\operatorname{ker} C\left(\boldsymbol{V}_{0}\right)=\mathbb{C}[[F]], F=x^{k} y^{l}$, or $F=\left(y+x^{r}\right)^{k}\left(y+\lambda x^{r}\right)^{l}$ and
$\operatorname{ker} D\left(\boldsymbol{V}_{0}\right)=x y \cdot \mathbb{C}[[F]]$ or $=\left(y+x^{r}\right)\left(y+\lambda x^{r}\right) \cdot \mathbb{C}[[F]]$.
Remark. In our previous work the images of the above homological operators are described explicitly in terms of periods of certain Schwarz-Christoffel functions. This was next used in the derivation of the normal forms.

Elementary singularities

The homological operators, after restriction to the spaces \mathcal{F}_{d} of homogeneous polynomials of degree d, become endomorphisms of these spaces. We denote them by $C_{d}\left(\boldsymbol{V}_{0}\right)$ and $D_{d}\left(\boldsymbol{V}_{0}\right)$.

In the monomial basis they become diagonal:

$$
\begin{aligned}
& C\left(\boldsymbol{V}_{0}\right) x^{i} y^{j}=\left(\lambda_{1} i+\lambda_{2} j\right) x^{i} y^{j} \\
& D\left(\boldsymbol{V}_{0}\right) x^{i} y^{j}=\left(\lambda_{1}(i-1)+\lambda_{2}(j-1)\right) x^{i} y^{j} .
\end{aligned}
$$

We use the following norm

$$
\|f\|=\|f\|_{\rho}=\sum\left|a_{i, j}\right| \rho^{i+j}
$$

of the series $f=\sum a_{i, j} x^{i} y^{j}$.

The focus case

Recall that in this case, $\lambda \notin \mathbb{R}$, the normal form is linear, because the operators $C_{d}\left(\boldsymbol{V}_{0}\right)$ and $D_{d}\left(\boldsymbol{V}_{0}\right)$ are isomorphisms. So, we can assume $\boldsymbol{V}=\boldsymbol{V}_{0}+\boldsymbol{W}$, where $\boldsymbol{W}=O\left(|(x, y)|^{D}\right)$ is of high order.

To prove the analyticity of the reduction to the normal form it is enough to show that the operators $C(\boldsymbol{V})$ and $D(\boldsymbol{V})$ are invertible and that their inverses are bounded.

We have $C(\boldsymbol{V})=C\left(\boldsymbol{V}_{0}\right)(I-K), K=-C\left(\boldsymbol{V}_{0}\right)^{-1} C(\boldsymbol{W})$, and hence

$$
C(\boldsymbol{V})^{-1}=\left(\sum K^{n}\right) C\left(\boldsymbol{V}_{0}\right)^{-1}
$$

We show that the series $\sum K^{n}$ is absolutely convergent. Similar estimates hold for $D(\boldsymbol{V})$. This is sufficient to prove the convergence of the reduction process.

The nonresonant saddle case

There exist two analytic separatrices, which can be assumed equal $\{x=0\}$ and $\{y=0\}$. Thus we can assume that the perturbation part of $\boldsymbol{V}=\boldsymbol{V}_{0}+\boldsymbol{W}$ equals

$$
\boldsymbol{W}=f_{1} \boldsymbol{V}_{0}+f_{2} \boldsymbol{E}
$$

where

$$
\boldsymbol{E}=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}
$$

is the standard Euler vector field. We have

$$
f_{1} \boldsymbol{V}_{0}=A\left(\boldsymbol{V}_{0}\right) f_{1}, \quad B\left(\boldsymbol{V}_{0}\right) \boldsymbol{W}=\left(\lambda_{1}-\lambda_{2}\right) x y f_{2} .
$$

The operators $C\left(\boldsymbol{V}_{0}\right)$ and $D\left(\boldsymbol{V}_{0}\right)$ are (formally) invertible, but we do not have good estimates for their inverses. One expects that for dense set of λ 's and generic perturbation the normalizing series is divergent.

Yu. Ilyashenko proposed to consider the following 1-parameter family of perturbed vector fields

$$
\boldsymbol{V}_{\zeta}=\boldsymbol{V}_{0}+\zeta \boldsymbol{W}, \quad \zeta \in \mathbb{C}
$$

It turns out that: either
(1) the normalizing series converges for all $\zeta \in \mathbb{C}$ in some domain D_{ρ}, $\rho=\rho(\zeta)>0$, or
(2) this series diverges for all ζ except a set K_{W} of capacity zero.

The Bogdanov-Takens singularity with nonreal λ

We want to split our homological operators into a diagonal type part and a small nilpotent type part.

To this aim we introduce new variables (x, z) such that

$$
y=\varepsilon z-x^{r}
$$

where $\varepsilon \neq 0$ is a small constant. Then vector field \boldsymbol{V}_{H} takes the form

$$
\boldsymbol{U}_{H}=x^{r-1}\left(\lambda x \frac{\partial}{\partial x}+r z \frac{\partial}{\partial z}\right)+\varepsilon z \frac{\partial}{\partial x}=x^{r-1} \boldsymbol{U}_{0}+\varepsilon \boldsymbol{U}_{1}
$$

Since the vector field \boldsymbol{V}_{H} has invariant curves $F_{1}=y+x^{r}=0$ and $F_{2}=$ $y+\lambda x^{r}=0$, the vector field \boldsymbol{U}_{H} has the invariant curves

$$
F_{1}=z=0 \text { and } F_{2}=\varepsilon z+(\lambda-1) x^{r}=0
$$

The normal form for Type I

We study the operators

$$
C_{d}\left(\boldsymbol{U}_{H}\right), D_{d}\left(\boldsymbol{U}_{H}\right): \mathcal{F}_{d} \longmapsto \mathcal{F}_{d+r-1} .
$$

For $d=d_{0}+r d_{1}, d_{0}=0, \cdots, r-1$, we have $\mathcal{F}_{d}=\operatorname{span}\left\{x^{d}, x^{d-r} z, \ldots, x^{d_{0}} z^{d_{1}}\right\} \simeq$ $\mathbb{C}^{d_{1}+1}$. Therefore, these operators act between:
(i) $\mathbb{C}^{d_{1}+1}$ and $\mathbb{C}^{d_{1}+2}$ if $d_{0} \neq 0$, and
(ii) $\mathbb{C}^{d_{1}+1}$ and $\mathbb{C}^{d_{1}+1}$ otherwise.

Assume firstly that $\lambda>1$ and $\lambda \notin \mathbb{N}$ (the Type I).
In Case (i) the subspace complementary to $\operatorname{Im} C_{d}\left(\operatorname{or} \operatorname{Im} D_{d}\right)$ is 1 -dimensional, previously it was chosen as $\mathbb{C} \cdot x^{d+r-1}$; in Case (ii) these operators are isomorphisms.

We have

$$
C_{d}\left(x^{r-1} \boldsymbol{U}_{0}\right) x^{i} z^{j}=(\lambda i+r j) x^{r-1} \cdot x^{i} z^{j}
$$

(so, they are diagonal like), and the operators associated with \boldsymbol{U}_{1} are rather off-diagonal.

In Case (ii) we have a easier situation, diagonal plus nilpotent. In case (i) the situation is not that clear, because the 'small' contribution in the image in \mathcal{F}_{d+r-1} is associated with $x^{\gamma} z^{\delta}$ for maximal δ.

This suggests a change in the shape of the normal form; we choose it as follows:

$$
\begin{gathered}
\Psi(x, z)\left\{\boldsymbol{U}_{H}+\Phi(x, z) \boldsymbol{E}_{H}\right\} \\
\Phi=\varphi_{0}(z)+x \varphi_{1}(z)+\ldots+x^{r-2} \varphi_{r-2}(z) \\
\Psi= \\
\psi_{0}(z)+x \psi_{1}(z)+\ldots+x^{r-2} \psi_{r-2}(z)
\end{gathered}
$$

$\boldsymbol{E}_{H}=x \frac{\partial}{\partial x}+r z \frac{\partial}{\partial z}$ (as before).

The analyticity

Introduce the projection operator P as follows. P, restricted to $\mathcal{F}_{d_{0}+r d_{1}}$, has the kernel $\mathbb{C} \cdot x^{d_{0}} z^{d_{1}}$ and the image spanned by the remaining monomials.

The homological operator associated with $\varepsilon \boldsymbol{U}_{1}$ (and its restriction to $\operatorname{Im} P$) is small with respect to the one associated with $x^{r-1} \boldsymbol{U}_{0}$.

In order to prove the analyticity of the normal form it is enough to estimate the norms of the operators

$$
C_{d}^{\text {res }}\left(\boldsymbol{U}_{H}\right)^{-1}
$$

We obtain that these norm are bounded by

$$
\text { const/d } d \rho^{r-1}
$$

The BT singularity with negative irrational λ

Here we stick to the standard coordinates x, y.
Let $F_{1}=y+x^{r}$ and $F_{2}=y+\lambda x^{r}$, where the curves $F_{1}=0$ and $F_{2}=0$ are invariant for \boldsymbol{V}_{H} with the 'cofactors' $r x^{r-1}$ and $\lambda r x^{r-1}$ respectively.

We have

$$
\begin{aligned}
& C\left(\boldsymbol{V}_{H}\right) F_{1}^{i} F_{2}^{j}=(i+\lambda j) \cdot r x^{r-1} F_{1}^{i} F_{2}^{j}, \\
& D\left(\boldsymbol{V}_{H}\right) F_{1}^{i} F_{2}^{j}=(i-1+\lambda(j-1)) \cdot r x^{r-1} F_{1}^{i} F_{2}^{j} .
\end{aligned}
$$

We want to apply the arguments about nonresonant saddle singularities to our case. Therefore, we consider vector fields of the form $\boldsymbol{V}_{H}+\boldsymbol{W}$ and take the family

$$
\boldsymbol{V}_{\zeta}=\boldsymbol{V}_{H}+\zeta \boldsymbol{W}, \quad \zeta \in \mathbb{C} .
$$

The perturbation W should satisfy some conditions. The first level normal form should be trivial, i.e.,

$$
\boldsymbol{W}=f \boldsymbol{V}_{H}+\boldsymbol{W}_{1}, \quad B\left(\boldsymbol{V}_{H}\right) \boldsymbol{W}_{1}=g
$$

and $f=P f, g=Q g$, where P and Q are projections onto $\operatorname{Im} C\left(\boldsymbol{V}_{H}\right)$ and $\operatorname{Im} D\left(\boldsymbol{V}_{H}\right)$ respectively.

Thus, the first level reduction relies upon applying the operators $C^{\text {res }}\left(\boldsymbol{V}_{H}\right)^{-1}$ and $D^{\text {res }}\left(\boldsymbol{V}_{H}\right)^{-1}$ to f and g. We write

$$
f=\sum f_{d}, \quad g=\sum g_{d}
$$

where $f_{d}, g_{d} \in \mathcal{F}_{d}$.

We expand some summands in f and $g,\left(d=d_{1} r\right)$:

$$
\begin{aligned}
& f_{d_{1} r+r-1}=\sum_{i+j=d_{1}} a_{i, j} \cdot x^{r-1} F_{1}^{i} F_{2}^{j} \\
& g_{d_{1} r+r-1}=\sum_{i+j=d_{1}} b_{i, j} \cdot x^{r-1} F_{1}^{i} F_{2}^{j}
\end{aligned}
$$

and assume that

$$
a_{i, j} \neq 0, \quad b_{i, j} \neq 0 \text { for all } i, j
$$

Our assumption about λ states that

$$
\sum_{i, j} \frac{x^{i} y^{j}}{i+\lambda j} \text { is divergent for all }(x, y) \neq(0,0)
$$

The sequel proof is like in the elementary case.

References

1. M. Canalis-Durand and R. Schäfke, Divergence and summability of normal forms of systems of differential equations with nilpotent linear part, Ann. Fac. Sci. Toulouse Math. 13 (2004), 493-513.
2. Yu. Ilyashenko, Divergence of series that reduce an analytic differential equation to linear normal form at a singular point, Funkts. Anal. Prilozh. 13 (1979), No 3, 87-88 [Russian].
3. Yu. Ilyashenko and S. Yakovenko, " Lectures on Analytic Differential Equations", Graduate Studies in Math., v. 86, Amer. Math. Soc., Providence, 2008.
4. F. Loray, Preparation theorem for codimension one foliations, Ann. Math. 163 (2006), 709-722.
5. R. Pérez-Marco, Total convergence or general divergence in small divisors, Commun. Math. Phys. 223 (2001), 451-464.
6. E. Stróżyna and H. Żołạdek, The analytic and formal normal form for the nilpotent singularity, J. Diff. Equations 179 (2002), 479-537.
7. E. Stróżyna and H. Żołạdek, The complete normal form for the BogdanovTakens singularity, Moscow Math. J. 15 (2015), 141-178.
8. E. Stróżyna and H. Żołạdek, Analytic properties of the complete normal form for the Bogdanov-Takens singularity, Nonlinearity 34 (2021), 30463082.
9. F. Takens, Singularities of vector fields, Publ. Math. IHES 43 (1974), 47-100.

Thank you for your attention!

