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Introduction

Recall that a singularity of a planar vector field is elementary if at least one
eigenvalue of the linearization matrix is nonzero. We can write

V = V 0 + · · · = λ1x
∂

∂x
+ λ2y

∂

∂y
+ . . . ,

where λ1 6= 0. The normal form and its analytic properties depend on the
ratio

λ := λ2/λ1

of the eigenvalues.

In the focus case, λ ∈ C�R the formal normal form (which is linear) is
analytic.

In the node case, λ ∈ R>0, the normal form (which is polynomial) is also
analytic.

In the non-resonant saddle case, λ ∈ R<0�Q, the (linear) normal form can
be analytic or non-analytic, depending on the approximation properties of the
number λ by rationals; but for dense set of λ’s one can show that for general
nonlinear terms the normal form is non-analytic.



In the resonant saddle case, λ ∈ Q≤0 (we include into this class also the
saddle-node case λ = 0), the formal normal form is generally non-analytic.

In the case of the Bogdanov–Takens singularity , i.e., with nonzero nilpo-
tent linear part, the complete formal normal form (orbital and non-orbital)
was obtained only recently. Using the Takens result we can assume that we
deal with vector fields of the form

V H + W ,

where

V H = (y + (λ+ 1)xr)
∂

∂x
− λrx2r−1 ∂

∂y

is a quasi-homogeneous vector field with respect to the grading degH such
that

degH x = 1, degH y = r,

and W contains higher degree terms. Above r ∈ 1
2
Z and λ = −1 when r 6∈ Z

(we have the so-called generalized cusp).



The relation with elementary singularities follows from the fact that, after
putting z = xr and dividing by rxr−1, one arrives at the linear vector field

(y + (λ+ 1) z)
∂

∂z
− λz

∂

∂y
,

such that λ is the ratio of its eigenvalues.

The BT singularities were divided into three types. Type I includes the cases
with λ 6∈ Q (nonresonant) and λ = k

l
∈ Q>0, k, l > 1, gcd(k, l) = 1 (analogues

to the k : l resonant nodes). Type II includes analogues to resonant nodes
with l = 1 (λ = k > 0) and Type III includes the cases corresponding to the
k : −l resonant saddles (λ = −k

l
∈ Q<0, gcd(k, l) = 1 (including λ = 0).

The general normal form looks as follows:

Ψ(x) {V H + Φ(x)EH} ,
where

EH = x
∂

∂x
+ ry

∂

∂y



is the quasi-homogeneous Euler vector field and Φ(x) = xpϕ(x) =
∑

i∈I(Φ) aix
i,

Ψ(x) = 1 + xqψ(x) =
∑

i∈I(Ψ) bix
i are formal power series with specified sets

of powers I (Φ) and I (Ψ) .

Above V H + Φ(x)EH is the orbital normal form and Ψ(x) is the orbital
factor.

In particular, for Type I we have I (Φ) = Z≥r�I1 and I (Ψ) = Z≥0�I1, where

Ik = {j : j + k = 0 mod r} .
For other types the indices sets I (Φ) and I (Ψ) are more complicated and
for Type II the normal form is slightly different.

But sometimes this choice is not the best ones from the point of view of
its analyticity; some estimates turn out too complicated. In those cases we
choose other versions of the normal forms.

Theorem 1. In the case λ ∈ C�R the corresponding normal form is analytic.

Theorem 2. In the case λ > 0 the corresponding normal form is analytic.



Theorem 3. In the case λ ∈ R<0�Q, for λ from a dense set and generic
perturbation W , the normal form is non-analytic.

Theorem 4. In the case of the k : −l resonance and p < ∞, in Φ = xpϕ(x),
the normal form is non-analytic in general and for p =∞ it is analytic.



Koszul complexes and homological operators

Let
Fd = {f ∈ C[x, y] : deg f = d} ,
Zd = {Z ∈ Z : degZ = d} ,

denote spaces of quasi-homogeneous polynomials and of quasi-homogeneous
vector fields of degree d.

We consider vector fields of the form V = V 0 + . . ., where V 0 is as above
in the case of elementary singularity, and V 0 = V H in the case of the BT
singularity. Introduce the operators

A(V )f = f · V ,
B(V )Z = V ∧Z/∂x ∧ ∂y,
C(V )f = V (f),
D(V )f = V (f)− div(V )f.



Consider the following diagram, with rows that form the so-called Koszul
complexes:

0 −→ F≥d−r+1
A(V )−→ Z≥d

B(V )−→ F≥d+2r −→ 0
↓ C(V ) ↓ adV ↓ D(V )

0 −→ F≥d
A(V )−→ Z≥d+r−1

B(V )−→ F≥d+3r−1 −→ 0

The operators C(V ), adV and D(V ) are called the homological operators.

In the elementary case we have r = 1 and deg = degH.

The above diagram is commutative.

If λ 6= 0, i.e., when x = y = 0 is an isolated singularity, then the Koszul com-
plexes are exact. If λ = 0 then the situation is only slightly more complicated.

kerC (V ) consists of the first integrals (FIs) F of V .

kerD (V ) consists of the inverse integrating multipliers (IIMs) M for V ,
i.e., divM−1V = 0.



For the non-resonant singularities (λ 6∈ Q or Type I) we have:

kerC(V 0) = 0 and kerD(V 0) = 0.

For singularities of Type II (with λ = k ∈ Z>0) we have:

kerC (V 0) = 0 and kerD (V 0) = C · xk+1 or = C · (y + xr)k+1 .

For the k : −l resonant singularities (Type III) we have:

kerC (V 0) = C [[F ]] , F = xkyl, or F = (y + xr)k (y + λxr)l and

kerD (V 0) = xy · C [[F ]] or = (y + xr) (y + λxr) · C [[F ]] .

Remark. In our previous work the images of the above homological operators
are described explicitly in terms of periods of certain Schwarz–Christoffel
functions. This was next used in the derivation of the normal forms.



Elementary singularities

The homological operators, after restriction to the spaces Fd of homogeneous
polynomials of degree d, become endomorphisms of these spaces. We denote
them by Cd (V 0) and Dd (V 0) .

In the monomial basis they become diagonal:

C (V 0)xiyj = (λ1i+ λ2j)xiyj,
D (V 0)xiyj = (λ1 (i− 1) + λ2 (j − 1))xiyj.

We use the following norm

‖f‖ = ‖f‖ρ =
∑
|ai,j| ρi+j

of the series f =
∑
ai,jxiyj.

The focus case

Recall that in this case, λ 6∈ R, the normal form is linear, because the operators
Cd (V 0) and Dd (V 0) are isomorphisms. So, we can assume V = V 0 + W ,

where W = O
(
|(x, y)|D

)
is of high order.



To prove the analyticity of the reduction to the normal form it is enough to
show that the operators C (V ) and D (V ) are invertible and that their inverses
are bounded.

We have C (V ) = C (V 0) (I −K) , K = −C (V 0)−1C (W ) , and hence

C (V )−1 =
(∑

Kn
)
C (V 0)−1 .

We show that the series
∑
Kn is absolutely convergent. Similar estimates

hold for D (V ). This is sufficient to prove the convergence of the reduction
process.

The nonresonant saddle case

There exist two analytic separatrices, which can be assumed equal {x = 0}
and {y = 0} . Thus we can assume that the perturbation part of V = V 0 +W
equals

W = f1V 0 + f2E,

where

E = x
∂

∂x
+ y

∂

∂y



is the standard Euler vector field. We have

f1V 0 = A(V 0)f1, B(V 0)W = (λ1 − λ2)xyf2.

The operators C (V 0) and D (V 0) are (formally) invertible, but we do not
have good estimates for their inverses. One expects that for dense set of λ’s
and generic perturbation the normalizing series is divergent.

Yu. Ilyashenko proposed to consider the following 1–parameter family of
perturbed vector fields

V ζ = V 0 + ζW , ζ ∈ C.
It turns out that: either

(1) the normalizing series converges for all ζ ∈ C in some domain Dρ,
ρ = ρ(ζ) > 0, or

(2) this series diverges for all ζ except a set KW of capacity zero.



The Bogdanov–Takens singularity with nonreal λ

We want to split our homological operators into a diagonal type part and a
small nilpotent type part.

To this aim we introduce new variables (x, z) such that

y = εz − xr,
where ε 6= 0 is a small constant. Then vector field V H takes the form

UH = xr−1

(
λx

∂

∂x
+ rz

∂

∂z

)
+ εz

∂

∂x
= xr−1U0 + εU1.

Since the vector field V H has invariant curves F1 = y + xr = 0 and F2 =
y + λxr = 0, the vector field UH has the invariant curves

F1 = z = 0 and F2 = εz + (λ− 1)xr = 0.



The normal form for Type I

We study the operators

Cd (UH) , Dd (UH) : Fd 7−→ Fd+r−1.

For d = d0 + rd1, d0 = 0, · · · , r − 1, we have Fd = span
{
xd, xd−rz, . . . , xd0zd1

}
'

Cd1+1. Therefore, these operators act between:

(i) Cd1+1 and Cd1+2 if d0 6= 0, and

(ii) Cd1+1 and Cd1+1 otherwise.

Assume firstly that λ > 1 and λ 6∈ N (the Type I).

In Case (i) the subspace complementary to ImCd (or ImDd) is 1−dimensional,
previously it was chosen as C ·xd+r−1; in Case (ii) these operators are isomor-
phisms.

We have

Cd
(
xr−1U0

)
xizj = (λi+ rj)xr−1 · xizj,

(so, they are diagonal like), and the operators associated with U1 are rather
off-diagonal.



In Case (ii) we have a easier situation, diagonal plus nilpotent. In case (i)
the situation is not that clear, because the ’small’ contribution in the image
in Fd+r−1 is associated with xγzδ for maximal δ.

This suggests a change in the shape of the normal form; we choose it as
follows:

Ψ (x, z) {UH + Φ (x, z)EH} ,

Φ = ϕ0(z) + xϕ1(z) + . . .+ xr−2ϕr−2(z),
Ψ = ψ0(z) + xψ1(z) + . . .+ xr−2ψr−2(z),

EH = x ∂
∂x

+ rz ∂
∂z

(as before).

The analyticity

Introduce the projection operator P as follows. P , restricted to Fd0+rd1
, has

the kernel C · xd0zd1 and the image spanned by the remaining monomials.

The homological operator associated with εU1 (and its restriction to ImP ) is
small with respect to the one associated with xr−1U0.



In order to prove the analyticity of the normal form it is enough to estimate
the norms of the operators

Cres
d (UH)−1 .

We obtain that these norm are bounded by

const/dρr−1.

The BT singularity with negative irrational λ

Here we stick to the standard coordinates x, y.

Let F1 = y + xr and F2 = y + λxr, where the curves F1 = 0 and F2 = 0 are
invariant for V H with the ‘cofactors’ rxr−1 and λrxr−1 respectively.

We have

C (V H)F i
1F

j
2 = (i+ λj) · rxr−1F i

1F
j
2,

D (V H)F i
1F

j
2 = (i− 1 + λ (j − 1)) · rxr−1F i

1F
j
2.



We want to apply the arguments about nonresonant saddle singularities to
our case. Therefore, we consider vector fields of the form V H + W and take
the family

V ζ = V H + ζW , ζ ∈ C.

The perturbation W should satisfy some conditions. The first level normal
form should be trivial, i.e.,

W = fV H + W 1, B (V H)W 1 = g,

and f = Pf, g = Qg, where P and Q are projections onto ImC (V H) and
ImD (V H) respectively.

Thus, the first level reduction relies upon applying the operators Cres (V H)−1

and Dres (V H)−1 to f and g. We write

f =
∑

fd, g =
∑

gd,

where fd, gd ∈ Fd.



We expand some summands in f and g, (d = d1r):

fd1r+r−1 =
∑

i+j=d1

ai,j · xr−1F i
1F

j
2

gd1r+r−1 =
∑

i+j=d1

bi,j · xr−1F i
1F

j
2

and assume that

ai,j 6= 0, bi,j 6= 0 for all i, j.

Our assumption about λ states that∑
i,j

xiyj

i+ λj
is divergent for all (x, y) 6= (0,0) .

The sequel proof is like in the elementary case.
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