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“Whenever you have to do with a
structure-endowed entity Σ try to determine
its group of automorphisms, the group of
those element–wise transformations which
leave all structural relations undisturbed.
You can expect to gain a deep insight into
the constitution of Σ in this way.”

Hermann Weyl, 1952
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The set C (X ) of complex-valued continuous functions defined on a
compact Hausdorff space X is a structure-endowed entity.

It is an algebra over C when equipped with the usual point-wise operations

(λf )(x) = λf (x), (f + g)(x) = f (x) + g(x), (f · g)(x) = f (x) · g(x)

Furthermore, when equipped with the uniform norm

‖f ‖ = max{|f (x)| : x ∈ X},

the set C (X ) is a Banach algebra.

With so much structure, there are many preserver problems that can be
considered.
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Theorem (Banach1-Stone2)

Let T : C (X )→ C (Y ) be a surjective, linear, and

‖T (f )− T (g)‖ = ‖f − g‖

for all f , g ∈ C (X ). Then |T (1)| = 1 and there exists a homeomorphism
ψ : Y → X such that

T (f ) = T (1) · (f ◦ ψ)

for all f ∈ C (X ).

1S. Banach, “Théorie des opérations linéarse,” Chelsea, Warsaw, 1932

2M. Stone, “Applications of the theory of boolean rings in topology,” Trans. Amer.
Math. Soc., Vol. 41 (1937), pp. 375–481.
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Given an f ∈ C (X ), we denote the range of f by

Ran(f ) = {f (x) : x ∈ X}

Theorem (Molnár3)

Let T : C (X )→ C (Y ) be surjective and

Ran(T (f ) · T (g)) = Ran(f · g)

for all f , g ∈ C (X ). Then [T (1)]2 = 1 and there exists a homeomorphism
ψ : Y → X such that

T (f ) = T (1) · (f ◦ ψ)

for all f ∈ C (X ).

3L. Molnár, “Some Characterizations of the Automorphisms of B(H) and C(X ),”
Proc. Amer. Math. Soc., Vol. 130 (2001), pp. 111-120.

K. Lee (IAState) Meet Preservers 5 / 20



Given an f ∈ C (X ), we define

Ranπ(f ) = {λ ∈ Ran(f ) : |λ| = ‖f ‖}

Theorem (Hatori-Miura-Takagi4 and Luttman-Tonev5)

Let T : C (X )→ C (Y ) be surjective and

Ranπ(T (f ) · T (g)) = Ranπ(f · g)

for all f , g ∈ C (X ). Then [T (1)]2 = 1 and there exists a homeomorphism
ψ : Y → X such that

T (f ) = T (1) · (f ◦ ψ)

for all f ∈ C (X ).

4O. Hatori, T. Miura, and H. Takagi, “Characterization of Isometric Isomorphisms
Between Uniform Algebras via Non-linear Range Preserving Properties,” Proc. Amer.
Math. Soc., Vol. 134 (2006), pp. 2923-2930.

5A. Luttman and T. Tonev, “Uniform Algebra Isomorphisms and Peripheral
Multiplicativity,” Proc. Amer. Math. Soc., Vol. 135 (2007), pp. 3589-3598.
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Theorem (Hatori-Hirasawa-Miura6)

Let T : C (X )→ C (Y ) be surjective and

Ranπ(T (f ) + T (g)) = Ranπ(f + g)

for all f , g ∈ C (X ). Then there exists a homeomorphism ψ : Y → X such
that

T (f ) = f ◦ ψ

for all f ∈ C (X ).

6O. Hatori, G. Hirasawa, and T. Miura, “Additively spectral-radius preserving
surjections between unital semisimple commutative Banach algebras,” Cent. Eur. J.
Math., Vol. 8 (2010), pp. 59-601
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In light of the previous results, we can posit the following:

Question

Suppose that � is a binary operation for continuous functions. What can
be said about a surjective T : C (X )→ C (Y ) such that

Ranπ(T (f )� T (g)) = Ranπ(f � g)

for all f , g ∈ C (X )?
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The set CR(X ) of real-valued continuous functions is a real Banach
algebra with the usual point-wise operations and the uniform norm.

A partial ordering can be induced on CR(X ) by using the usual ordering ≤
of R as follows:

f ≤ g if and only if f (x) ≤ g(x) for all x ∈ X

Equipped with this ordering the set CR(X ) becomes a lattice, meaning
that {f , g} has a supremum and infimum for all f , g ∈ CR(X ). In
particular, the supremum of {f , g} is called the join and denoted by

f ∨ g

and the infimum is called the meet and is written as

f ∧ g

Note that

(f ∨ g)(x) = max{f (x), g(x)} and (f ∧ g)(x) = min{f (x), g(x)}
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The join ∨ and meet ∧ are associative and commutative binary operations
on CR(X ) and the set CR(X ) posses several structures related to its usual
ordering:

CR(X ) is a lattice group since f + h ≤ g + h whenever f ≤ g .

CR(X ) is a Riesz space as αf ≤ αg whenever f ≤ g and 0 ≤ α.

CR(X ) is a Banach lattice since ‖f ‖ ≤ ‖g‖ whenever |f | ≤ |g |.

CR(X ) is an f -ring as
I 0 ≤ f · g whenever 0 ≤ f and 0 ≤ g .
I given 0 ≤ f and g and h with g ∧ h = 0, then (f · g) ∧ h = 0.

With so much structure, there are many preserver problems that can be
considered.
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Theorem (Kaplansky7)

Let T : CR(X )→ CR(Y ) be bijective, continuous, and

T (f ∧ g) = T (f ) ∧ T (g) and T (f ∨ g) = T (f ) ∨ T (g)

for all f , g ∈ CR(X ). Then there exists a homeomorphism ψ : Y → X and
a continuous ϕ : X × R→ R such that

T (f )(x) = ϕ(x , f (ψ(x)))

for all f ∈ CR(X ) and x ∈ X.

7I. Kaplansky, “Lattices of continuous functions”, Bull. Amer. Math. Soc., Vol. 53
(1947), pp. 617-623.
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Theorem (Lee)

Let T : CR(X )→ CR(Y ) be surjective such that

Ranπ(T (f ) ∧ T (g)) = Ranπ(f ∧ g)

for all f , g ∈ CR(X ). Then there exists a homeomorphism ψ : Y → X such
that

T (f ) = f ◦ ψ

for all f ∈ CR(X ) such that 0 ≤ f .
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In order to construct the homeomorphism ψ, we need the following tools:

Given f ∈ CR(X ), we define the maximizing set of f by

M(f ) = {x ∈ X : |f (x)| = ‖f ‖}

Given α ∈ (0,∞), an h ∈ CR(X ) is said to be an α–peaking function
if

0 ≤ h and Ranπ(h) = {α}

We denote the collection of all such functions by

PX (α)

Given α ∈ (0,∞) and x ∈ X , we define

PX (α, x) = {h ∈ PX (α) : h(x) = α}
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Lemma

Let α ∈ (0,∞), and let h, k ∈ PX (α) be such that M(h) ⊂ M(k). Then
M(T (h)) ⊂ M(T (k))

Key ideas for the proof:

For α ∈ (0,∞), then h ∈ PX (α) if and only if T (h) ∈ PY (α). This
follows immediately from Ranπ(T (f ) ∧ T (g)) = Ranπ(f ∧ g) and the
fact that f ∧ 0 = 0 if and only if 0 ≤ f .

Given α ∈ (0,∞), an x ∈ X , and h ∈ PX (α), then h ∈ PX (α, x) if
and only if h ∧ k ∈ PX (α) for all k ∈ PX (α, x).
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Lemma

Let α ∈ (0,∞), and let x ∈ X. Then⋂
h∈PX (α,x)

M(T (h))

is a singleton.

Key idea for the proof: Combine the previous lemma with the finite
intersection property and with the fact that given α ∈ (0,∞) and
h1, . . . , hn ∈ PX (α) such that

n⋂
k=1

M(hk) 6= ∅

then
n∧

k=1

hk ∈ PX (α) and M

(
n∧

k=1

hk

)
=

n⋂
k=1

M(hk).
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Lemma

Let α, β ∈ (0,∞), and let x ∈ X. Then⋂
h∈PX (α,x)

M(T (h)) =
⋂

h∈PX (β,x)

M(T (h))

Key idea for the proof: Let

{y} =
⋂

h∈PX (α,x)

M(T (h)) and {z} =
⋂

h∈PX (β,x)

M(T (h))

If y 6= z , there is an open neighborhood U of z with y 6∈ U. Choosing
k ∈ PY (β, z) with M(k) ⊂ U and scaling the h ∈ PX (β, x) with T (h) = k
by α/β will then lead to the contradictory y ∈ U.
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We now have access to the mapping τ : X → Y such that⋂
h∈PX (α,x)

M(T (h)) = {τ(x)},

where α ∈ (0,∞).

Lemma

Let x ∈ X, and let f ∈ CR(X ) be such that 0 ≤ f . Then
T (f )(τ(x)) = f (x).

Key idea for the proof: Let ε > 0 and set δ = f (x) + ε. We can find an
h ∈ PX (δ, x) with ‖f ∧ h‖ < δ. Since

‖T (f ) ∧ T (h)‖ = ‖f ∧ h‖

and T (h) ∈ PY (δ, τ(x)), it follows that

T (f )(τ(x)) = min{T (f )(τ(x)),T (h)(τ(x))} < δ = f (x) + ε
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Lemma

The mapping τ : X → Y is a homeomorphism.

Key idea for injectivity: If τ(x) = τ(y) and x 6= y , take an open
neighborhood U of x with y 6∈ U. Choosing h ∈ PX (1, x) with M(h) ⊂ U
then yields the contradictory

h(y) = T (h)(τ(y)) = T (h)(τ(x)) = h(x) = 1

Key idea for continuity: Let V ⊂ Y be open, and let x ∈ τ−1[V ]. As
τ(x) ∈ V , we can find k ∈ PY (1, τ(x)) with M(k) ⊂ V . There is an
h ∈ PX (1, x) with T (h) = k , and it can be shown that

{t ∈ X : α < h(t)} ⊂ τ−1[V ]

where
α = max{k(y) : y ∈ Y \ V } < 1
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Key idea for surjectivity: Let y ∈ Y . Suppose that y 6∈ τ [X ]. As X is
compact and τ is continuous, it follows that U = Y \ τ [X ] is open. We
can then find a k ∈ PY (1, y) with M(k) ⊂ U. There is an h ∈ PX (1) with
T (h) = k and so any t ∈ M(h) then satisfies

1 = h(t) = T (h)(τ(t)) = k(τ(t)),

which gives the contradictory

τ(t) ∈ M(k) ⊂ U = Y \ τ [X ]

Proof of Theorem.

Let ψ : Y → X be the inverse of τ . Given f ∈ CR(X ) with 0 ≤ f , we have
f = T (f ) ◦ τ and so it follows that

T (f ) = f ◦ ψ
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Future Work

Does T (f ) = f ◦ ψ hold for all f ∈ CR(X )?

What can be said about such mappings between substructures of CR(X )?
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