Meet preservers between lattices of real-valued continuous functions

Kristopher Lee

8th European Congress of Mathematics June 24, 2021

K. Lee (IAState)

э

"Whenever you have to do with a structure-endowed entity Σ try to determine its group of automorphisms, the group of those element-wise transformations which leave all structural relations undisturbed. You can expect to gain a deep insight into the constitution of Σ in this way."

Hermann Weyl, 1952

э

(日)

It is an algebra over ${\mathbb C}$ when equipped with the usual point-wise operations

 $(\lambda f)(x) = \lambda f(x), \quad (f + g)(x) = f(x) + g(x), \quad (f \cdot g)(x) = f(x) \cdot g(x)$

イロト 不得 トイヨト イヨト 二日

It is an algebra over ${\mathbb C}$ when equipped with the usual point-wise operations

$$(\lambda f)(x) = \lambda f(x), \quad (f + g)(x) = f(x) + g(x), \quad (f \cdot g)(x) = f(x) \cdot g(x)$$

Furthermore, when equipped with the uniform norm

$$\|f\|=\max\{|f(x)|\colon x\in X\},\$$

the set C(X) is a Banach algebra.

• • = • • = •

It is an algebra over ${\mathbb C}$ when equipped with the usual point-wise operations

$$(\lambda f)(x) = \lambda f(x), \quad (f + g)(x) = f(x) + g(x), \quad (f \cdot g)(x) = f(x) \cdot g(x)$$

Furthermore, when equipped with the uniform norm

$$||f|| = \max\{|f(x)| \colon x \in X\},\$$

the set C(X) is a Banach algebra.

With so much structure, there are many **preserver problems** that can be considered.

く 目 ト く ヨ ト く ヨ ト

Theorem (Banach¹-Stone²)

Let $T: C(X) \rightarrow C(Y)$ be a surjective, linear, and

$$||T(f) - T(g)|| = ||f - g||$$

for all $f, g \in C(X)$. Then |T(1)| = 1 and there exists a homeomorphism $\psi \colon Y \to X$ such that

$$T(f) = T(1) \cdot (f \circ \psi)$$

for all $f \in C(X)$.

¹S. Banach, "Théorie des opérations linéarse," Chelsea, Warsaw, 1932

²M. Stone, "Applications of the theory of boolean rings in topology," Trans. Amer. Math. Soc., Vol. 41 (1937), pp. 375–481.

Given an $f \in C(X)$, we denote the range of f by

$$\mathsf{Ran}(f) = \{f(x) \colon x \in X\}$$

Theorem (Molnár³)

Let $T: C(X) \rightarrow C(Y)$ be surjective and

$$\operatorname{Ran}(T(f) \cdot T(g)) = \operatorname{Ran}(f \cdot g)$$

for all $f, g \in C(X)$. Then $[T(1)]^2 = 1$ and there exists a homeomorphism $\psi \colon Y \to X$ such that

$$T(f) = T(1) \cdot (f \circ \psi)$$

for all $f \in C(X)$.

³L. Molnár, "Some Characterizations of the Automorphisms of B(H) and C(X)," Proc. Amer. Math. Soc., Vol. 130 (2001), pp. 111-120.

イロト 不得 トイラト イラト 一日

Given an $f \in C(X)$, we define

$$\operatorname{\mathsf{Ran}}_{\pi}(f) = \{\lambda \in \operatorname{\mathsf{Ran}}(f) \colon |\lambda| = \|f\|\}$$

Theorem (Hatori-Miura-Takagi⁴ and Luttman-Tonev⁵) Let $T: C(X) \rightarrow C(Y)$ be surjective and

 $\operatorname{\mathsf{Ran}}_{\pi}(T(f) \cdot T(g)) = \operatorname{\mathsf{Ran}}_{\pi}(f \cdot g)$

for all $f, g \in C(X)$. Then $[T(1)]^2 = 1$ and there exists a homeomorphism $\psi \colon Y \to X$ such that

$$T(f) = T(1) \cdot (f \circ \psi)$$

for all $f \in C(X)$.

⁵A. Luttman and T. Tonev, "Uniform Algebra Isomorphisms and Peripheral Multiplicativity," Proc. Amer. Math. Soc., Vol. 135 (2007), pp. 3589-3598.

K. Lee (IAState)

⁴O. Hatori, T. Miura, and H. Takagi, "Characterization of Isometric Isomorphisms Between Uniform Algebras via Non-linear Range Preserving Properties," Proc. Amer. Math. Soc., Vol. 134 (2006), pp. 2923-2930.

Theorem (Hatori-Hirasawa-Miura⁶)

Let $T: C(X) \rightarrow C(Y)$ be surjective and

$$\operatorname{Ran}_{\pi}(T(f) + T(g)) = \operatorname{Ran}_{\pi}(f + g)$$

for all $f, g \in C(X)$. Then there exists a homeomorphism $\psi \colon Y \to X$ such that

$$T(f)=f\circ\psi$$

for all $f \in C(X)$.

イロト イヨト イヨト ・

⁶O. Hatori, G. Hirasawa, and T. Miura, "Additively spectral-radius preserving surjections between unital semisimple commutative Banach algebras," Cent. Eur. J. Math., Vol. 8 (2010), pp. 59-601

In light of the previous results, we can posit the following:

э

イロト イポト イヨト イヨト

In light of the previous results, we can posit the following:

Question

Suppose that \odot is a binary operation for continuous functions. What can be said about a surjective $T: C(X) \to C(Y)$ such that

$$\operatorname{\mathsf{Ran}}_{\pi}(T(f)\odot T(g)) = \operatorname{\mathsf{Ran}}_{\pi}(f\odot g)$$

for all $f, g \in C(X)$?

イロト イポト イヨト イヨト

A partial ordering can be induced on $C_{\mathbb{R}}(X)$ by using the usual ordering \leq of \mathbb{R} as follows:

 $f \leq g$ if and only if $f(x) \leq g(x)$ for all $x \in X$

A partial ordering can be induced on $C_{\mathbb{R}}(X)$ by using the usual ordering \leq of \mathbb{R} as follows:

$$f \leq g$$
 if and only if $f(x) \leq g(x)$ for all $x \in X$

Equipped with this ordering the set $C_{\mathbb{R}}(X)$ becomes a *lattice*, meaning that $\{f, g\}$ has a supremum and infimum for all $f, g \in C_{\mathbb{R}}(X)$.

A partial ordering can be induced on $C_{\mathbb{R}}(X)$ by using the usual ordering \leq of \mathbb{R} as follows:

$$f \leq g$$
 if and only if $f(x) \leq g(x)$ for all $x \in X$

Equipped with this ordering the set $C_{\mathbb{R}}(X)$ becomes a *lattice*, meaning that $\{f, g\}$ has a supremum and infimum for all $f, g \in C_{\mathbb{R}}(X)$. In particular, the supremum of $\{f, g\}$ is called the *join* and denoted by

 $f \lor g$

and the infimum is called the meet and is written as

 $f \wedge g$

《曰》《聞》《臣》《臣》 三臣

A partial ordering can be induced on $C_{\mathbb{R}}(X)$ by using the usual ordering \leq of \mathbb{R} as follows:

$$f \leq g$$
 if and only if $f(x) \leq g(x)$ for all $x \in X$

Equipped with this ordering the set $C_{\mathbb{R}}(X)$ becomes a *lattice*, meaning that $\{f,g\}$ has a supremum and infimum for all $f,g \in C_{\mathbb{R}}(X)$. In particular, the supremum of $\{f,g\}$ is called the *join* and denoted by

 $f \lor g$

and the infimum is called the meet and is written as

 $f \wedge g$

Note that

 $(f \lor g)(x) = \max\{f(x), g(x)\}$ and $(f \land g)(x) = \min\{f(x), g(x)\}$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへの

< 回 > < 回 > < 回 >

• $C_{\mathbb{R}}(X)$ is a *lattice group* since $f + h \leq g + h$ whenever $f \leq g$.

< 回 > < 三 > < 三 > -

- $C_{\mathbb{R}}(X)$ is a *lattice group* since $f + h \leq g + h$ whenever $f \leq g$.
- $C_{\mathbb{R}}(X)$ is a *Riesz space* as $\alpha f \leq \alpha g$ whenever $f \leq g$ and $0 \leq \alpha$.

(人間) トイヨト イヨト ニヨ

- $C_{\mathbb{R}}(X)$ is a *lattice group* since $f + h \leq g + h$ whenever $f \leq g$.
- $C_{\mathbb{R}}(X)$ is a *Riesz space* as $\alpha f \leq \alpha g$ whenever $f \leq g$ and $0 \leq \alpha$.
- $C_{\mathbb{R}}(X)$ is a Banach lattice since $||f|| \le ||g||$ whenever $|f| \le |g|$.

(人間) トイヨト イヨト ニヨ

- $C_{\mathbb{R}}(X)$ is a *lattice group* since $f + h \leq g + h$ whenever $f \leq g$.
- $C_{\mathbb{R}}(X)$ is a *Riesz space* as $\alpha f \leq \alpha g$ whenever $f \leq g$ and $0 \leq \alpha$.
- $C_{\mathbb{R}}(X)$ is a Banach lattice since $||f|| \le ||g||$ whenever $|f| \le |g|$.
- $C_{\mathbb{R}}(X)$ is an *f*-ring as
 - $0 \le f \cdot g$ whenever $0 \le f$ and $0 \le g$.
 - given $0 \le f$ and g and h with $g \land h = 0$, then $(f \cdot g) \land h = 0$.

イロト イポト イヨト イヨト 二日

- $C_{\mathbb{R}}(X)$ is a *lattice group* since $f + h \leq g + h$ whenever $f \leq g$.
- $C_{\mathbb{R}}(X)$ is a *Riesz space* as $\alpha f \leq \alpha g$ whenever $f \leq g$ and $0 \leq \alpha$.
- $C_{\mathbb{R}}(X)$ is a Banach lattice since $||f|| \le ||g||$ whenever $|f| \le |g|$.
- $C_{\mathbb{R}}(X)$ is an *f*-ring as • $0 \le f \cdot g$ whenever $0 \le f$ and $0 \le g$. • given $0 \le f$ and g and h with $g \land h = 0$, then $(f \cdot g) \land h = 0$.

With so much structure, there are many **preserver problems** that can be considered.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Theorem (Kaplansky⁷)

Let $T: C_{\mathbb{R}}(X) \to C_{\mathbb{R}}(Y)$ be bijective, continuous, and

 $T(f \wedge g) = T(f) \wedge T(g)$ and $T(f \vee g) = T(f) \vee T(g)$

for all $f, g \in C_{\mathbb{R}}(X)$. Then there exists a homeomorphism $\psi \colon Y \to X$ and a continuous $\varphi \colon X \times \mathbb{R} \to \mathbb{R}$ such that

$$T(f)(x) = \varphi(x, f(\psi(x)))$$

for all $f \in C_{\mathbb{R}}(X)$ and $x \in X$.

⁷I. Kaplansky, "Lattices of continuous functions", Bull. Amer. Math. Soc., Vol. 53 (1947), pp. 617-623.

Theorem (Lee)

Let $T: C_{\mathbb{R}}(X) \to C_{\mathbb{R}}(Y)$ be surjective such that

$$\operatorname{\mathsf{Ran}}_{\pi}(T(f) \wedge T(g)) = \operatorname{\mathsf{Ran}}_{\pi}(f \wedge g)$$

for all $f, g \in C_{\mathbb{R}}(X)$. Then there exists a homeomorphism $\psi \colon Y \to X$ such that

$$T(f) = f \circ \psi$$

for all $f \in C_{\mathbb{R}}(X)$ such that $0 \leq f$.

2

イロト イヨト イヨト イヨト

• Given $f \in C_{\mathbb{R}}(X)$, we define the *maximizing set* of f by

$$M(f) = \{x \in X : |f(x)| = ||f||\}$$

3

イロト 不得 トイヨト イヨト

• Given $f \in C_{\mathbb{R}}(X)$, we define the *maximizing set* of f by

$$M(f) = \{x \in X : |f(x)| = ||f||\}$$

• Given $\alpha \in (0,\infty)$, an $h \in C_{\mathbb{R}}(X)$ is said to be an α -peaking function if

$$0 \leq h$$
 and $\operatorname{Ran}_{\pi}(h) = \{\alpha\}$

We denote the collection of all such functions by

 $\mathcal{P}_{X}(\alpha)$

< 回 > < 回 > < 回 >

• Given $f \in C_{\mathbb{R}}(X)$, we define the *maximizing set* of f by

$$M(f) = \{x \in X : |f(x)| = ||f||\}$$

• Given $\alpha \in (0,\infty)$, an $h \in C_{\mathbb{R}}(X)$ is said to be an α -peaking function if

$$0 \leq h$$
 and $\operatorname{Ran}_{\pi}(h) = \{\alpha\}$

We denote the collection of all such functions by

 $\mathcal{P}_{X}(\alpha)$

• Given $\alpha \in (0,\infty)$ and $x \in X$, we define

$$\mathcal{P}_X(\alpha, x) = \{h \in \mathcal{P}_X(\alpha) \colon h(x) = \alpha\}$$

Let $\alpha \in (0, \infty)$, and let $h, k \in \mathcal{P}_X(\alpha)$ be such that $M(h) \subset M(k)$. Then $M(T(h)) \subset M(T(k))$

э

A (1) < A (2) < A (2) </p>

Let $\alpha \in (0, \infty)$, and let $h, k \in \mathcal{P}_X(\alpha)$ be such that $M(h) \subset M(k)$. Then $M(T(h)) \subset M(T(k))$

Key ideas for the proof:

• For $\alpha \in (0, \infty)$, then $h \in \mathcal{P}_X(\alpha)$ if and only if $T(h) \in \mathcal{P}_Y(\alpha)$. This follows immediately from $\operatorname{Ran}_{\pi}(T(f) \wedge T(g)) = \operatorname{Ran}_{\pi}(f \wedge g)$ and the fact that $f \wedge 0 = 0$ if and only if $0 \leq f$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Let $\alpha \in (0, \infty)$, and let $h, k \in \mathcal{P}_X(\alpha)$ be such that $M(h) \subset M(k)$. Then $M(T(h)) \subset M(T(k))$

Key ideas for the proof:

- For $\alpha \in (0, \infty)$, then $h \in \mathcal{P}_X(\alpha)$ if and only if $T(h) \in \mathcal{P}_Y(\alpha)$. This follows immediately from $\operatorname{Ran}_{\pi}(T(f) \wedge T(g)) = \operatorname{Ran}_{\pi}(f \wedge g)$ and the fact that $f \wedge 0 = 0$ if and only if $0 \le f$.
- Given α ∈ (0,∞), an x ∈ X, and h ∈ P_X(α), then h ∈ P_X(α, x) if and only if h ∧ k ∈ P_X(α) for all k ∈ P_X(α, x).

イロト 不得 トイヨト イヨト

Let $\alpha \in (0,\infty)$, and let $x \in X$. Then

$$\bigcap_{h\in\mathcal{P}_X(\alpha,x)}M(T(h))$$

is a singleton.

2

イロン イ理 とくほとう ほんし

Let $\alpha \in (0,\infty)$, and let $x \in X$. Then $\bigcap_{h \in \mathcal{P}_X(\alpha,x)} M(T(h))$

is a singleton.

Key idea for the proof: Combine the previous lemma with the finite intersection property and with the fact that given $\alpha \in (0, \infty)$ and $h_1, \ldots, h_n \in \mathcal{P}_X(\alpha)$ such that

$$\bigcap_{k=1}^n M(h_k) \neq \emptyset$$

then

$$\bigwedge_{k=1}^n h_k \in \mathcal{P}_X(lpha)$$
 and $M\left(\bigwedge_{k=1}^n h_k
ight) = \bigcap_{k=1}^n M(h_k).$

Let $\alpha, \beta \in (0, \infty)$, and let $x \in X$. Then

$$\bigcap_{h\in\mathcal{P}_X(\alpha,x)} M(T(h)) = \bigcap_{h\in\mathcal{P}_X(\beta,x)} M(T(h))$$

2

イロト イヨト イヨト イヨト

Let $\alpha, \beta \in (0, \infty)$, and let $x \in X$. Then

$$\bigcap_{h\in\mathcal{P}_X(\alpha,x)} M(T(h)) = \bigcap_{h\in\mathcal{P}_X(\beta,x)} M(T(h))$$

Key idea for the proof: Let

$$\{y\} = \bigcap_{h \in \mathcal{P}_X(\alpha, x)} M(T(h)) \text{ and } \{z\} = \bigcap_{h \in \mathcal{P}_X(\beta, x)} M(T(h))$$

If $y \neq z$, there is an open neighborhood U of z with $y \notin U$. Choosing $k \in \mathcal{P}_Y(\beta, z)$ with $M(k) \subset U$ and scaling the $h \in \mathcal{P}_X(\beta, x)$ with T(h) = k by α/β will then lead to the contradictory $y \in U$.

We now have access to the mapping $\tau \colon X \to Y$ such that

$$\bigcap_{h\in\mathcal{P}_X(\alpha,x)}M(T(h))=\{\tau(x)\},$$

where $\alpha \in (0,\infty)$.

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

We now have access to the mapping $\tau: X \to Y$ such that

$$\bigcap_{h\in\mathcal{P}_X(\alpha,x)}M(T(h))=\{\tau(x)\},$$

where $\alpha \in (0,\infty)$.

Lemma

Let $x \in X$, and let $f \in C_{\mathbb{R}}(X)$ be such that $0 \le f$. Then $T(f)(\tau(x)) = f(x)$.

э

イロト 不得 トイヨト イヨト

We now have access to the mapping $\tau \colon X \to Y$ such that

$$\bigcap_{h\in\mathcal{P}_X(\alpha,x)}M(T(h))=\{\tau(x)\},$$

where $\alpha \in (0,\infty)$.

Lemma

Let $x \in X$, and let $f \in C_{\mathbb{R}}(X)$ be such that $0 \le f$. Then $T(f)(\tau(x)) = f(x)$.

Key idea for the proof: Let $\varepsilon > 0$ and set $\delta = f(x) + \varepsilon$. We can find an $h \in \mathcal{P}_X(\delta, x)$ with $||f \wedge h|| < \delta$. Since

$$\|T(f)\wedge T(h)\|=\|f\wedge h\|$$

and $T(h) \in \mathcal{P}_{Y}(\delta, \tau(x))$, it follows that

 $T(f)(\tau(x)) = \min\{T(f)(\tau(x)), T(h)(\tau(x))\} < \delta = f(x) + \varepsilon$

ヘロト 不得 トイヨト イヨト 二日

The mapping $\tau \colon X \to Y$ is a homeomorphism.

3

イロト イヨト イヨト イヨト

The mapping $\tau \colon X \to Y$ is a homeomorphism.

Key idea for injectivity: If $\tau(x) = \tau(y)$ and $x \neq y$, take an open neighborhood U of x with $y \notin U$. Choosing $h \in \mathcal{P}_X(1, x)$ with $M(h) \subset U$ then yields the contradictory

$$h(y) = T(h)(\tau(y)) = T(h)(\tau(x)) = h(x) = 1$$

イロト 不得 トイヨト イヨト

The mapping $\tau \colon X \to Y$ is a homeomorphism.

Key idea for injectivity: If $\tau(x) = \tau(y)$ and $x \neq y$, take an open neighborhood U of x with $y \notin U$. Choosing $h \in \mathcal{P}_X(1, x)$ with $M(h) \subset U$ then yields the contradictory

$$h(y) = T(h)(\tau(y)) = T(h)(\tau(x)) = h(x) = 1$$

Key idea for continuity: Let $V \subset Y$ be open, and let $x \in \tau^{-1}[V]$. As $\tau(x) \in V$, we can find $k \in \mathcal{P}_Y(1, \tau(x))$ with $M(k) \subset V$. There is an $h \in \mathcal{P}_X(1, x)$ with T(h) = k, and it can be shown that

$$\{t \in X \colon \alpha < h(t)\} \subset \tau^{-1}[V]$$

where

$$\alpha = \max\{k(y) \colon y \in Y \setminus V\} < 1$$

Key idea for surjectivity: Let $y \in Y$. Suppose that $y \notin \tau[X]$. As X is compact and τ is continuous, it follows that $U = Y \setminus \tau[X]$ is open. We can then find a $k \in \mathcal{P}_Y(1, y)$ with $M(k) \subset U$. There is an $h \in \mathcal{P}_X(1)$ with T(h) = k and so any $t \in M(h)$ then satisfies

$$1 = h(t) = T(h)(\tau(t)) = k(\tau(t)),$$

which gives the contradictory

$$au(t)\in M(k)\subset U=Y\setminus au[X]$$

イロト イヨト イヨト -

Key idea for surjectivity: Let $y \in Y$. Suppose that $y \notin \tau[X]$. As X is compact and τ is continuous, it follows that $U = Y \setminus \tau[X]$ is open. We can then find a $k \in \mathcal{P}_Y(1, y)$ with $M(k) \subset U$. There is an $h \in \mathcal{P}_X(1)$ with T(h) = k and so any $t \in M(h)$ then satisfies

$$1 = h(t) = T(h)(\tau(t)) = k(\tau(t)),$$

which gives the contradictory

$$au(t) \in M(k) \subset U = Y \setminus au[X]$$

Proof of Theorem.

Let $\psi \colon Y \to X$ be the inverse of τ . Given $f \in C_{\mathbb{R}}(X)$ with $0 \leq f$, we have $f = T(f) \circ \tau$ and so it follows that

$$T(f) = f \circ \psi$$

3

イロト イポト イヨト イヨト

Does $T(f) = f \circ \psi$ hold for all $f \in C_{\mathbb{R}}(X)$?

イロト イ部ト イヨト イヨト 一日

Does $T(f) = f \circ \psi$ hold for all $f \in C_{\mathbb{R}}(X)$?

What can be said about such mappings between substructures of $C_{\mathbb{R}}(X)$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Does $T(f) = f \circ \psi$ hold for all $f \in C_{\mathbb{R}}(X)$?

What can be said about such mappings between substructures of $C_{\mathbb{R}}(X)$?

Acknowledgments _____

For all of those involved with the organization and operation of this conference,

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Does $T(f) = f \circ \psi$ hold for all $f \in C_{\mathbb{R}}(X)$?

What can be said about such mappings between substructures of $C_{\mathbb{R}}(X)$?

Acknowledgments _____

For all of those involved with the organization and operation of this conference,

THANK YOU!

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで