Regularity and finite element approximation for two-dimensional elliptic equations with line Dirac sources

Peimeng Yin

Wayne State University

Joint work with Hengguang Li, Xiang Wan, Lewei Zhao.

8th ECM: MS - ID 39 June 22, 2021

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

- 1. Background
- 2. The regularity in Sobolev space and weighted Sobolev space

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 3. Finite element algorithm and optimal error estimates
- 4. Numerical illustrations

We are interested in the regularity and the finite element method for solving the elliptic boundary value problem [H. Li, et al. 2021]

$$-\Delta u = \delta_{\gamma} \quad \text{in } \Omega, \qquad u = 0 \quad \text{on } \partial\Omega. \tag{1}$$

Here,

- $\Omega \subset \mathbb{R}^2$ be a polygonal domain;
- γ be a line segment strictly contained in Ω ;
- δ_{γ} is the line Dirac measure on γ , namely,

$$\langle \delta_\gamma, {m v}
angle = \int_\gamma {m v}(s) ds, \qquad orall \, {m v} \in L^2(\gamma).$$

Applications: monophasic flows in porous media, tissue perfusion or drug delivery by a network of blood vessels.

Literature work on FEM

γ degenerates to a point:

- ► L² (or H^ϵ with small ϵ) convergence [Babuška 1972, Scott 1973, 1976, Casas 1985];
- Convergence rate with graded meshes [Apel 2011];
- Optimal error estimates away from singular points in 2D and 3D [Koppl 2014].
- γ is a curve:
 - Assuming regularity in a weighted Sobolev space, optimal error estimate in 3D [DAngelo 2008, DAngelo 2012];
 - Regularity later proved in [Ariche 2016];
 - γ is a closed loop in 2D, element immersed interface methods [Heltai. 2019, 2020].

The main challenges:

- Limited regularity because of the singular source term: singular points, and singular line.
- The convergence of the finite method is slow.

The main objectives:

Derive the regularity in a Sobolev space and weighted Sobolev space when γ is a line segment.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Propose the finite element algorithm.
- Obtain the optimal error estimates.

Lemma

Let $\Omega \subset \mathbb{R}^2$ be a bounded domain. Then $\delta_{\gamma} \in H^{-\frac{1}{2}-\epsilon}(\Omega)$ for any $\epsilon > 0$.

Lemma

Given $\epsilon > 0$, the solution of equation (1) satisfies $u \in H^{\frac{3}{2}-\epsilon}(\Omega) \cap H^1_0(\Omega).$

Corollary

The solution u of equation (1) is Hölder continuous $u \in C^{0,1/2-\epsilon}(\Omega)$ for any small $\epsilon > 0$. In particular, we have $u \in C^0(\Omega)$.

Figure: Domain Ω containing a line fracture $\gamma_{4} \equiv 3 + 3 = -9 \leq 6$

Regularity estimates in weighted spaces

- ▶ WLOG, $\gamma = \{(x, 0), 0 < x < 1\}$ with the endpoints $Q_1 = (0, 0)$ and $Q_2 = (1, 0)$.
- V: Singular set, which is the collection of Q₁, Q₂, and all the vertices of Ω.

The transmission problem Consider the equation

$$\begin{cases}
-\Delta w = 0 & \text{in } \Omega \setminus \gamma, \\
w_y^+ = w_y^- - 1 & \text{on } \gamma, \\
w^+ = w^- & \text{on } \gamma, \\
w = 0 & \text{on } \partial\Omega,
\end{cases}$$
(2)

where $w_y = \partial_y w$. Here, for a function v, $v^{\pm} := \lim_{\epsilon \to 0} v(x, y \pm \epsilon)$. It is clear that equation (2) has a unique weak solution

$$w \in H^1(\Omega \setminus \gamma) \cap \{w|_{\partial\Omega} = 0\}.$$

Domain decomposition

Figure: Decomposition around the singular line: Ω^+, Ω^-, B_1 and B_2 .

Domain decomposition:

- (i) the interior region $R_1 = \Omega^+ \cup \Omega^-$ away from the set \mathcal{V} ;
- (ii) the region $R_2 = B_1 \cup B_2$ consisting of the neighborhoods of the endpoints of γ ;
- (iii) $R_3 = \Omega \setminus (\bar{R}_1 \cup \bar{R}_2)$ is the region close to the boundary $\partial \Omega$ [Grisvard, 1985].

Weighted Sobolev spaces

Definition

Let $r_i(x, Q_i)$ be the distance from x to $Q_i \in \mathcal{V}$ and let

$$\rho(x) = \prod_{Q_i \in \mathcal{V}} r_i(x, Q_i). \tag{3}$$

For $a \in \mathbb{R}$, $m \ge 0$, and $G \subset \Omega$, the weighted Sobolev space

$$\mathcal{K}^m_{\mathsf{a}}(\mathcal{G}) := \{ \mathsf{v}, \
ho^{|lpha|-\mathsf{a}}\partial^lpha \mathsf{v} \in L^2(\mathcal{G}), orall \ |lpha| \leq m \},$$

where the multi-index $\alpha = (\alpha_1, \alpha_2) \in \mathbb{Z}^2_{\geq 0}$, $|\alpha| = \alpha_1 + \alpha_2$, and $\partial^{\alpha} = \partial^{\alpha_1}_x \partial^{\alpha_2}_y$. The $\mathcal{K}^m_a(G)$ norm for v is defined by

$$\|v\|_{\mathcal{K}^m_{\mathfrak{a}}(G)} = \big(\sum_{|\alpha| \leq m} \iint_{G} |\rho^{|\alpha|-\mathfrak{a}} \partial^{\alpha} v|^2 dx dy\big)^{\frac{1}{2}}.$$

In the neighborhood B_i :

$$\mathcal{K}^m_{\mathsf{a}}(B_i) = \{ \mathsf{v}, \mathsf{r}^{|\alpha|-\mathsf{a}}_i \partial^\alpha \mathsf{v} \in L^2(B_i), \forall_{\mathsf{c}} | \alpha | \mathsf{s} \leq \mathsf{m} \}$$

Function space at the singular points

 Away from the set V, the weighted space K^m_a is equivalent to the Sobolev space H^m;

Define

•
$$\chi_i \in C_0^\infty(B_i)$$
 that satisfies

$$\chi_i = \begin{cases} 1 & \text{ in } B(Q_i, d), \\ 0 & \text{ on } \partial B_i. \end{cases}$$

the linear span of these two functions

$$W = \operatorname{span}\{\chi_i\}, \quad i = 1, 2, \tag{4}$$

Regularity in R_1 and R_2

Lemma

The solution of equation (2) is smooth in either Ω^+ or in Ω^- . Namely, for any $m \ge 1$, $w \in H^{m+1}(\Omega^+)$ and $w \in H^{m+1}(\Omega^-)$.

Theorem

Let $B_{d,i} := B(Q_i, d) \subset B_i$, i = 1, 2. Then, in $B_{d,i}$, the solution w of equation (2) admits a decomposition $w = w_{reg} + w_s$, where $w_s \in W$ and $w_{reg} \in \mathcal{K}^{m+1}_{a+1}(B_{d,i} \setminus \gamma)$ for 0 < a < 1 and $m \ge 1$. Moreover, we have

$$\|w_{reg}\|_{\mathcal{K}^{m+1}_{a+1}(B_{d,i}\setminus\gamma)} + \|w_{s}\|_{L^{\infty}(B_{i})} \leq C.$$
 (5)

Theorem

The solution u of equation (1) is smooth in the region away from the set \mathcal{V} , namely, for $m \ge 1$, $u \in H^{m+1}(\Omega^+)$ and $u \in H^{m+1}(\Omega^-)$. In the neighborhood of each endpoint of γ , u admits a decomposition

$$u = u_{reg} + u_s, \qquad u_s \in W,$$

such that for any $m \geq 1$ and 0 < a < 1,

$$\|u_{\operatorname{reg}}\|_{\mathcal{K}^{m+1}_{a+1}(B_{d,i}\setminus\gamma)}+\|u_{s}\|_{L^{\infty}(B_{i})}\leq C.$$

In the region R_3 away from γ and close to the boundary, $u \in \mathcal{K}_{a+1}^{m+1}(R_3)$ for $m \ge 1$ and $0 < a < \frac{\pi}{\omega}$, where ω is the largest interior angle among all the vertices of the domain Ω .

Finite element algorithm

- $T = \{T_i\}$ be a triangulation of Ω with triangles
- ► $S(\mathcal{T}, m) = \{ v \in C^0(\Omega) \cap H^1_0(\Omega) : v |_{\mathcal{T}} \in P_m(\mathcal{T}), \forall \mathcal{T} \in \mathcal{T} \},$ where $P_m(\mathcal{T})$ is polynomials with degree no more than m.
- ▶ the finite element solution $u_h \in S(\mathcal{T}, m)$ of equation (1) by

$$\int_{\Omega} \nabla u_h \cdot \nabla v_h dx = \int_{\gamma} v_h dx, \quad \forall \ v_h \in S(\mathcal{T}, m).$$
(6)

Error estimate on quasi-uniform meshes

- ▶ the mesh T consists of quasi-uniform triangles with size h
- u ∈ H^{3/2}-ϵ(Ω)), the standard error estimate [Ciarlet, 1974] yields only a sup-optimal convergence rate

$$\|u-u_h\|_{H^1(\Omega)} \le Ch^{\frac{1}{2}-\epsilon}, \quad \text{for } \epsilon > 0.$$
(7)

Algorithm (Graded refinements)

Let Q be also a vertex in a triangulation \mathcal{T} . Let pq be an edge in the triangulation \mathcal{T} with p and q as the endpoints.

- 1. (Neither p nor q coincides with Q.) We choose r as the midpoint (|pr| = |qr|).
- 2. (p coincides with Q.) We choose r such that $|pr| = \kappa |pq|$, where $\kappa \in (0, 0.5)$ is a parameter that will be specified later. See Figure 3 for example.

Figure: The new node on an edge pq (left – right): $p \neq Q$ and $q \neq Q$ (midpoint); p = Q ($|pr| = \kappa |pq|$, $\kappa < 0.5$).

Graded refinements (Con't)

Optimal error estimates on graded meshes

Theorem

Recall $\kappa_Q = 2^{-\frac{m}{a}}$ for the graded mesh on $T_{(0)}$, $m \ge 1$ and 0 < a < 1. Let S_n be the finite element space associated with the graded triangulation \mathcal{T}_n defined in Algorithm 2. Let $u_n \in S_n$ be the finite element solution of equation (1). Then,

$$\|u-u_n\|_{H^1(\Omega)} \leq Ch^m \leq C\dim(S_n)^{-\frac{m}{2}},$$

where $dim(S_n)$ is the dimension of S_n .

Example 1 (Union-Jack meshes and graded meshes)

Example

- ▶ square domain $\Omega = (0, 1)^2$, FEM: P_1 polynomials
- ▶ $\gamma = Q_1 Q_2$ has two vertices $Q_1 = (0.25, 0.5)$ and $Q_2 = (0.75, 0.5)$

Figure: Graded mesh and Union-Jack mesh. (a) and (b): the initial Union-Jack mesh and the mesh after one refinement. (c) and (d): the initial graded mesh and the mesh after one refinement, $\kappa = \kappa_{Q_1} = \kappa_{Q_2} = 0.2.$

Table: Convergence history with mesh refinements.

$\kappa \setminus j$	<i>j</i> = 2	<i>j</i> = 3	<i>j</i> = 4	<i>j</i> = 5
$\kappa = 0.1$	0.99	0.94	0.97	0.99
$\kappa = 0.2$	0.97	0.99	0.99	1.00
$\kappa = 0.3$	0.87	0.96	0.99	1.00
$\kappa = 0.4$	0.86	0.91	0.94	0.98
$\kappa = 0.5$	0.84	0.87	0.89	0.91
Union-Jack	0.46	0.47	0.49	0.49

- Union-Jack meshes: the convergence rate shall be about 0.5.
- Graded meshes: optimal when $\kappa := \kappa_{Q_1} = \kappa_{Q_2} = 2^{-\frac{1}{a}} < 0.5$

Example 3

- ► triangle domain $\Omega = \Delta ABC$ with A = (0,0), B = (1,0) and C = (0.5, 1), , FEM: P_2 polynomials
- $\gamma = Q_1 Q_2$ with $Q_1 = (0.3, 0.25)$, $Q_2 = (0.7, 0.25)$

Figure: Quadratic finite element methods on graded meshes with the line fracture $\gamma = Q_1 Q_2$, $Q_1 = (0.3, 0.25)$, $Q_2 = (0.7, 0.25)$. (a) the initial mesh; (b) the mesh after four refinements, $\kappa = \kappa_{Q_1} = \kappa_{Q_2} = 0.2$; (c) the numerical solution.

Table: Convergence history of the P_2 elements on graded meshes.

$\kappa \setminus j$	<i>j</i> = 4	<i>j</i> = 5	<i>j</i> = 6	<i>j</i> = 7
$\kappa = 0.1$	1.74	1.86	1.94	1.97
$\kappa = 0.2$	1.81	1.88	1.93	1.97
$\kappa = 0.3$	1.65	1.68	1.70	1.71
$\kappa = 0.4$	1.32	1.32	1.32	1.32
$\kappa = 0.5$	1.00	1.00	1.00	1.00

- all the interior angles of Ω are less then π/2, the solution is in H³ except for the region that contains γ.
- ▶ optimal when $\kappa := \kappa_{Q_1} = \kappa_{Q_2} = 2^{-\frac{2}{a}} < 0.25$ due to the fact 0 < a < 1

Conclusion

- derived the regularity in both Sobolev space and weighted Sobolev space
- Proposed a finite element algorithm.
- obtained the optimal error estimates.

Future plan

- γ is a plane in a 3D domain.
- Consider similar source term in biharmonic problem [H. Li, P. Yin, Z. Zhang].

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Reference

H. Li, X. Wan, P. Yin, L. Zhao.

Regularity and finite element approximation for two-dimensional elliptic equations with line Dirac sources. Journal of Computational and Applied Mathematics, 393:113518, 2021.

H. Li, P. Yin, Z. Zhang.

A C^0 finite element method for the biharmonic problem with Navier boundary conditions in a polygonal domain. arXiv preprint arXiv:2012.12374, 2020.