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Unique Continuation Property in the Interior

Let Ω ⊂ RN be a connected open set.
Let L be a linear elliptic differential operator.

L enjoys the (Weak) UCP in Ω if

{
Lu = 0, in Ω,

u = 0 in Ω0 open b Ω
=⇒ u ≡ 0 in Ω.

L enjoys in Ω the SUCP (in the Interior) if{
Lu = 0, in Ω,

‖u‖L2(Br (x0)) = o(r k ), as r → 0,∀k ∈ N
=⇒ u ≡ 0 in Ω.

(Here x0 ∈ Ω)
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Strong Unique Continuation at the Boundary

L enjoys the SUCPB w.r.t. to the homogeneous boundary conditions
B[u] = 0 if


Lu = 0, in Ω,

B[u] = 0, on Σ,

‖u‖L2(Br (x0)∩Ω) = o(r k ), as r → 0,∀k ∈ N,
=⇒ u ≡ 0 in Ω.

Here x0 ∈ Σ, and Σ open portion (in the induced topology) of ∂Ω.

UCP for L =⇒ Propagation of Uniqueness for u

QE of UCP for L =⇒ Propagation of Smallness for u
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PROPAGATION OF SMALLNESS

Ω0 b Ω̃ b Ω 
Lu = 0, in Ω,

‖u‖L2(Ω0) ≤ ε
‖u‖L2(Ω) ≤ 1,

=⇒ ‖u‖L2(Ω̃) ≤ ω(ε),

where ω(ε)→ 0 as ε→ 0.

Example. Three sphere inequality in the Interior: for r1 < r2 < r3,

∫
Br2 (x0)

u2 ≤ C

(∫
Br1 (x0)

u2

)θ(∫
Br3 (x0)

u2

)1−θ
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Connection between UCP and determination of
unknown boundaries

A common feature in several inverse problems for PDEs concerning
the determination of an unknown boundary Γ:

UCP for L ⇒ uniqueness for Γ

QE of UCP for L ⇒ conditional stability for Γ

QE of SUCP & SUCPB for L ⇒ optimal conditional stability for Γ

Alessandrini, Beretta, R., Vessella, Optimal stability for inverse
elliptic boundary value problems with unknown boundaries. Ann.
Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), no. 4, 755–806.
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SUCPB for second-order elliptic equations
Adolfsson, Escauriaza, Kenig, Convex domains and unique
continuation at the boundary Rev. Mat. Iberoamericana 11 (1995),
no. 3, 513–525.

Adolfsson, Escauriaza, C1,α domains and unique continuation at
the boundary. Comm. Pure Appl. Math. L, (1997), 935–969.

Kukavica, Nyström, Unique continuation on the boundary for Dini
domains. Proc. Amer. Math. Soc. 126 (1998), no. 2, 441–446.

Sincich, Stable determination of the surface impedance of an
obstacle by far field measurements. SIAM J. Math. Anal. 38
(2006), no. 2, 434–451.
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for second order parabolic equations
Canuto, R., Vessella, Quantitative estimates of unique
continuation for parabolic equations and inverse initial-boundary
value problems with unknown boundaries, Trans. AMS 354
(2002), 491–535.
Escauriaza, Fernàndez, Vessella, Doubling properties of caloric
functions, Appl. Anal. 85 (2006), no. 1–3
Vessella, Quantitative estimates of unique continuation for
parabolic equations, determination of unknown boundaries and
optimal stability estimates, Inverse Problems 24 (2008), no. 2,
023001, 81 pp.

for wave equation with time independent coefficients
Sincich, Vessella, Wave equation with Robin condition,
quantitative estimates of strong unique continuation at the
boundary, Rend. Istit. Mat. Univ. Trieste 48 (2016), 221–243.
Vessella, Quantitative estimates of strong unique continuation for
wave equations, Math. Ann. 367 (2017), no. 1-2, 135–164
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SUCPB in linear elasticity
Kirchhoff-Love plates

Alessandrini, R., Vessella Optimal three spheres inequality at the
boundary for the Kirchhoff-Love plate’s equation with Dirichlet
conditions, Arch. Rational Mech. Anal. 231 (2019), 1455–1486.
Morassi, R., Sincich, Vessella, Doubling inequality at the boundary
for the Kirchhoff-Love plate’s equation with supported conditions,
Rend. Mat. Univ. Trieste, to appear.

Generalized Plane Stress problem
Morassi, R., Vessella, Optimal identification of a cavity in the
Generalized Plane Stress problem in linear elasticity, JEMS, to
appear.
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DETERMINATION OF A RIGID INCLUSION

IN A THIN ISOTROPIC ELASTIC PLATE
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Thin elastic plate: Ω×
[
−h

2 ,
h
2

]
, having middle plane Ω, D rigid

inclusion

Lw := div
(

div
(

P∇2w
))

= 0, in Ω \ D.

where w is the transversal displacement and
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P︸︷︷︸
plate tensor

=
h3

12
C︸︷︷︸

elasticity tensor

Cijkl = Cklij = Cklji , i , j , k , l = 1,2

CA · A ≥ γ|A|2︸ ︷︷ ︸
Ellipticity

,

for every 2x2 symmetric matrix A.
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Assuming that the plate is made by isotropic material we have

PA = B [(1− ν)Asym + νtr(A)I2]

for every 2× 2 matrix A, where

B(x) =
h3

12

(
E(x)

1− ν2(x)

)
, (bending stiffness)

E(x) =
µ(x)(2µ(x) + 3λ(x))

µ(x) + λ(x)
, (Young’s modulus)

ν(x) =
λ(x)

2(µ(x) + λ(x))
(Poisson’s coefficient).

the Lamé parameters λ, µ satisfy

µ(x) ≥ α0 2µ(x) + 3λ(x) ≥ γ0
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Direct Problem:
D b Ω rigid inclusion, D, Ω simply connected bdd domain of class C1,1

(P)



Lw = 0, in Ω \ D,

(P∇2w)n · n = −M̂n, on ∂Ω,

div(P∇2w) · n + ∂s((P∇2w)n · τ) = ∂s(M̂τ ), on ∂Ω,

w = 0, on ∂D,
∂nw = 0, on ∂D,

M̂τ and M̂n are, respectively, the twisting and bending component of
the assigned couple field M̂. n outer normal to ∂(Ω \ D), s arc length
parametrization of ∂Ω .
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O

X2

X1

0

D n

n

P0

τ

τ
Ω

n

s

MτM

M = Mτn + Mnτ = M2e1 + M1e2 ,       on ∂Ω
      τ = e2 x n

Mn
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Wellposedness of the Direct Problem (P)

If Ω and D are simply connected domains of class C1,1,
M̂ ∈ H−

1
2 (∂Ω,R2),

∫
∂Ω M̂α = 0, α = 1,2,

then problem (P) has a unique weak solution w ∈ H2(Ω \ D) satisfying

‖w‖H2(Ω\D) ≤ C‖M̂‖H−1/2(∂Ω).
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INVERSE PROBLEM

Determine an unknown rigid inclusion D from the additional
measurement of the Dirichlet data {w , ∂nw} taken on an open portion
Σ of ∂Ω, that is from the Cauchy data on Σ :

(Cauchy)


w |Σ,
∂nw |Σ
(P∇2w)n · n|Σ = −M̂n

div(P∇2w) · n + ∂s((P∇2w)n · τ)|Σ = ∂s(M̂τ )

APPLICATIONS
Non-destructive testing for quality assessment of materials
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Hypotheses and a priori assumptions

HYPOTHESES (Concerning the Data)

∂Ω of class C2,1 with constants r0 , M0

|Ω| ≤ M1

Σ ⊂ ∂Ω of class C3,1 with constants r0 , M0

Σ ⊃ ∂Ω ∩ Br0(P0), for some P0 ∈ Σ

supp(M̂) ⊂ Σ, M̂ ∈ L2(∂Ω,R2),
(

M̂n, ∂s(M̂τ )
)
6≡ 0 and

‖M̂‖L2(∂Ω)

‖M̂‖
H−1/2(∂Ω)

≤ F

λ, µ ∈ C4(Ω)
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A PRIORI ASSUMPTIONS (Concerning the Unknown inclusion)

dist(D, ∂Ω) ≥ r0

∂D of class C6,α with constants r0 , M0 , α ∈ (0,1)

Edi Rosset ( Dipartimento di Matematica e Geoscienze, Università di Trieste)Strong Unique Continuation at the Boundary in linear elasticity and its connection with optimal stability in the determination of unknown boundariesPortorož, 8ECM, June 24th 2021 19 / 30



Theorem (Stability)

Let wi ∈ H2(Ω \ Di) be the solutions to (P), i = 1,2.
If, given ε > 0, we have{

‖w1 − w2‖L2(Σ) + ‖∂n(w1 − w2)‖L2(Σ)

}
≤ ε,

then we have

dH(D1,D2) ≤ C(| log ε|)−η,

for every ε, 0 < ε < 1, where C > 0, η, 0 < η ≤ 1, are constants only
depending on the a priori data.

dH(D1,D2) is the Hausdorff distance between D1 and D2.

Morassi, R., Vessella, SIAM J. Math. Anal., 2019
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Main tool of the proof

Theorem (Optimal three spheres inequality at the boundary)
If x0 ∈ ∂D and

Lw = 0, in Ω \ D,

there exists C > 1 such that, for every r1 < r2 < r3 < dist(x0, ∂Ω),

‖w‖L2(Br2 (x0)∩(Ω\D)) ≤ C
(

r3

r2

)C

‖w‖θL2(Br1 (x0)∩(Ω\D)) ‖w‖
1−θ
L2(Br3 (x0)∩(Ω\D))

where

θ =
log
(

r3
Cr2

)
log
(

r3
r1

) .
Alessandrini, R., Vessella, ARMA, 2019
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Corollary (Finite Vanishing Rate at the Boundary)
Under the above hypotheses, there exist C,N such that∫

Br (x0)∩(Ω\D)
w2 ≥ CrN

X0

∂D

n
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In the interior, similar results hold true. In particular we have

Theorem (Finite Vanishing Rate in the Interior)

If x0 ∈ Ω \ D and Br (x0) b Ω \ D there exist C,N such that∫
Br (x0)

∣∣∣∇2w
∣∣∣2 ≥ CrN
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Basic steps of the Proof of the Optimal stability in
determining rigid inclusions in K–L plates

a) Stability estimates of continuation from Cauchy data:

max

{∫
D1\D2

|∇2w2|2,
∫

D2\D1

|∇2w1|2
}
≤ ω(ε)

b) by the Finite Vanishing Rate in the Interior and at the Boundary,

dH(D1,D2) ≤

(
max

{∫
D1\D2

|∇2w2|2,
∫

D2\D1

|∇2w1|2
})δ

≤ (ω(ε))δ

Edi Rosset ( Dipartimento di Matematica e Geoscienze, Università di Trieste)Strong Unique Continuation at the Boundary in linear elasticity and its connection with optimal stability in the determination of unknown boundariesPortorož, 8ECM, June 24th 2021 24 / 30



GENERALIZED PLANE STRESS PROBLEM
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Let D be a cavity inside the plate Ω. The in-plane displacement field
u = u1e1 + u2e2 satisfies the two-dimensional Neumann problem

∂βNαβ = 0, in Ω \ D,

Nαβnβ = N̂, on ∂Ω, (α, β = 1,2)

Nαβnβ = 0, on ∂D.

where
Nαβ = Cαβγδεγδ, εαβ =

1
2

(∂βuα + ∂αuβ) ,

C is the elasticity tensor of the (isotropic) material

CA =
hE(x)

1− ν2(x)
[(1− ν)Asym + νtr(A)I2]

for every 2× 2 matrix A.
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Airy’s function (1863){
∂1N11 + ∂2N12 = 0, in U := BR0(x0) ∩ (Ω \ D),

∂1N21 + ∂2N22 = 0, in U := BR0(x0) ∩ (Ω \ D),

We have that

−N12dx1 + N11dx2, −N22dx1 + N21dx2

are exact forms. Hence there exist ϕ̃1and ϕ̃2 such that
(F) ∂1ϕ̃1 = −N12, ∂2ϕ̃1 = N11 and ∂1ϕ̃2 = −N22, ∂2ϕ̃2 = N21.

The symmetry of Nαβ implies N12 = N21, hence

∂1ϕ̃1 = −∂2ϕ̃2,

and, again, the differential form

−ϕ̃2dx1 + ϕ̃1dx2,

is exact so that there exists ϕ (Airy’s function) such that

(FF) ∂1ϕ = −ϕ̃2, ∂2ϕ = ϕ̃1
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By the definition of Nαβ and by (F)− (FF) we have
ε11 = 1

hE

(
∂2

22ϕ− ν∂2
11ϕ
)
,

ε12 = −1+ν
hE ∂2

12ϕ,

ε22 = 1
hE

(
∂2

11ϕ− ν∂2
22ϕ
)

On the other hand, since εαβ = 1
2 (∂βuα + ∂αuβ) we have

∂2
22ε11 − 2∂2

12ε12 + ∂2
11ε22 = 0

hence
div
(

div
(

L∇2ϕ
))

= 0, in U

where
Lαβγδ =

1 + ν

hE
δαγδβδ −

ν

hE
δαβδγδ
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By a suitable choice of the primitives, we also have

ϕ = ∂nϕ = 0, on BR0(x0) ∩ ∂D

=⇒ FVRB for ϕ and for ∇2ϕ

m|∇2ϕ|2 ≤ |∇̂u|2 ≤ M|∇2ϕ|2

Theorem ( Morassi, R., Vessella, JEMS, to appear)

If ∂D is of C6,α class and u is not constant in BR0(x0) ∩ (Ω \ D) then
there exists C,N positive such that for every r < R0/2, we have∫

Br (x0)∩(Ω\D)
|∇̂u|2 ≥ CrN

The above theorem is the main tool for the proof of optimal stability
estimates for identification of cavities in the GPS problem.
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SOME OPEN PROBLEMS ABOUT SUCPB IN LINEAR ELASTICITY

Could the assumption ∂D ∈ C6,α be weakened?

The case of isotropic Kirchhoff–Love plate with Neumann
condition i.e. Optimal stability for unknown cavities inside
the plate

The case of three dimensional Lamé system
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