On compact Riemann surfaces and hypermaps of genus p + 1 where p is prime

Sebastián Reyes-Carocca

(joint work with M. Izquierdo and G. A. Jones)

Departamento de Matemática y Estadística Universidad de La Frontera Temuco. Chile

Symmetry of Graphs, Maps and Polytopes

Minisymposium at the 8ECM - June 21st, 2021 - Portorož, Slovenia

Partially supported by Fondecyt Grant 11180024 and 1190991

Compact Riemann surfaces

Definition & moduli

Definition A **Riemann surface** is a complex analytic manifold of dimension one.

Let \mathcal{M}_g denote the **moduli** space of compact Riemann surfaces of genus $g \ge 2$.

- \mathcal{M}_g has a structure of complex analytic space,
- its dimension is 3g 3, and
- if $g \ge 4$ then its singular locus is

 $Sing(\mathcal{M}_g) = \{[S] : S \text{ has non-trivial automorphisms}\}$

Equivalences

Algebraic curves & Fuchsian groups

Assume the genus to be at least two.

Theorem There is an equivalence between:

- compact Riemann surfaces,
- (complex projective smooth) algebraic curves,
- orbit spaces of the upper-half plane

$$\mathbb{H} \coloneqq \{z \in \mathbb{C} : \mathsf{Im}(z) > 0\}$$

by the action of (co-compact) **Fuchsian groups**: discrete subgroups of

$$Aut(\mathbb{H}) \cong \mathbb{P}SL(2,\mathbb{R})$$

Fuchsian groups

Signature & triangle Fuchsian groups

Let Δ be a Fuchsian group such that \mathbb{H}/Δ is compact.

Definition The **signature** of Δ is the tuple

$$\sigma(\Delta) = (h; m_1, \ldots, m_l)$$

where:

- h is the genus of the quotient \mathbb{H}/Δ and
- $m_1, ..., m_l$ are the **branch indices** in the universal canonical projection

$$\mathbb{H} \to \mathbb{H}/\Delta$$
.

We will be particularly interested in **triangle** Fuchsian groups: those with signature

$$(0; a, b, c) \rightarrow \text{ we simply write } (a, b, c)$$

Uniformization and group actions

Riemann's existence theorem

Riemann's existence Theorem Let $S \cong \mathbb{H}/\Gamma$ be a compact Riemann surface of genus $g \geqslant 2$. A finite group G acts on S

if and only if

there is a Fuchsian group Δ and a group epimorphism (ske)

$$\theta: \Delta \to G$$
 such that $\ker(\theta) = \Gamma$

The group G is said to act on S with signature $\sigma(\Delta)$ and the Riemann-Hurwitz formula is satisfied

$$2(g-1) = |G|(2h-2+\sum_{j=1}^{l}(1-1/m_j))$$

where
$$\sigma(\Delta) = (h; m_1, \ldots, m_l)$$
.

Example

Consider a Fuchsian group of signature (2,2,4,4)

$$\Delta = \langle \gamma_1, \gamma_2, \gamma_3, \gamma_4: \gamma_1^2 = \gamma_2^2 = \gamma_3^4 = \gamma_4^2 = \prod_{i=1}^4 \gamma_i = 1 \rangle$$

and the ske

$$\theta: \Delta \to G_{5,4} = \langle a, b : a^5 = b^4 = 1, bab^{-1} = a^r \rangle$$

(r is a primitive 4-th root of 1 in \mathbb{F}_5) given by

$$(\gamma_1, \gamma_2, \gamma_3, \gamma_4) \mapsto (b^2, ab^2, ab, b^{-1}),$$

It then follows that

$$S = \mathbb{H}/\ker(\theta)$$

is a compact Riemann surface and

 $G_{5,4}$ acts on S with signature (2,2,4,4)

Example

The Riemann-Hurwitz formula reads

$$2g-2=4\cdot 5(2\cdot 0-2+2(1-1/2)+2(1-1/4))\iff g=6$$

Conclusion There exists a Riemann surface of genus g = 6 admitting an action of $G_{5,4}$ with signature (2,2,4,4)

A one-dimensional **family** of compact Riemann surfaces in the singular locus $Sing(\mathcal{M}_6)$.

Admissible sequences

Definiton & general problem

Let a, b be rational numbers. The sequence

$$ag + b$$
 for $g = 2, 3, ...$

is called **admissible** if for infinitely many values of g there is a Riemann surface of genus g with a group of automorphisms of order ag + b.

We denote by

$$\mathcal{A}_{a,b} \subset \mathsf{Sing}(\mathcal{M}_g)$$

the set consisting of the respective surfaces.

General problem

Describe $\mathscr{A}_{a,b}$

Admissible sequences

Classical examples of admissible and well-studied sequences:

$$84g - 84$$
, $8g + 8$, $4g + 2$

General Questions The following questions arise naturally.

- ▶ How many compact Riemann surfaces lie in $\mathcal{A}_{a,b}$?
- ▶ Which are the **possible groups** of automorphisms of the members of $\mathcal{A}_{a,b}$?
- Which are the possible signatures arising by the action of the previous groups?
- How many different actions appear, once the group and signature are fixed?

Notice that, in general, the set $\mathcal{A}_{a,b}$ need not be a family.

Example: the admissible sequence 4g

Bujalance, Costa and Izquierdo¹

- Mow many compact Riemann surfaces lie in $\mathcal{A}_{4,0}$? complex dimension 1
- ▶ Which are the **possible groups** of automorphisms of the members of $\mathcal{A}_{4,0}$? **the dihedral group only**
- ▶ Which are the **possible signatures** arising by the action of the previous groups? (0;2,2,2,2g) **only.**
- How many different actions appear, once the group and signature are fixed? only one

Surprisingly $\mathcal{A}_{4,0}$ is a family (one stratum = the actions are all equivalent) without any additional condition on g.

E. BUJALANCE, A. F. COSTA AND M. IZQUIERDO, On Riemann surfaces of genus g with 4g automorphisms, Topology Appl. 218 (2017) 1–18.

The case $\mathcal{A}_{a,-a}$

The possibilities for Riemann surfaces S of genus g and their automorphism groups depend heavily on the factorisation of

$$\chi(S) = 2 - 2g$$

The **simplest case** of admissible sequence to consider is

ag - a on the assumption that q := g - 1 is prime.

This problem was first considered by Belolipetsky and Jones.²

They restrict to the case $a \ge 7$ and q sufficiently large (to avoid sporadic cases) and proved that $\mathcal{A}_{a,-a}$ "splits" into three infinite series of **quasiplatonic** surfaces.

 $^{^2}$ M. V. Belolipetsky and G. A. Jones, Automorphism groups of Riemann surfaces of genus p+1, where p is prime. Glasg. Math. J. 47 (2005), no. 2, 379–393.

The case
$$\mathcal{A}_{a,-a}$$

The subcase $a = 4$

A group of automorphisms G of a surface of genus g is large if

$$|G| > 4g - 4$$

In this case, the surface is either quasiplatonic or belongs to a one-dimensional family such that the signature of the action is

$$(0;2,2,2,n)$$
 for $n \ge 3$ or $(0;2,2,3,n)$ for $3 \le n \le 5$.

The case 4g-4 is therefore the "maximal non-large" case. These surfaces were recently considered³. Indeed, $\mathcal{A}_{4,-4}$ consists of:

- a two-dimensional family for each g, and
- ▶ a one-dimensional family (if $g \equiv 2 \mod 4$).

 $^{^3}$ S. R-C.,On Riemann surfaces of genus g with 4g-4 automorphisms, Israel J. Math. 237, 415–436 (2020).

The case
$$\mathcal{A}_{a,-a}$$

The subcases $a = 3,5,6$

The previous results were recently extended⁴ to the cases

$$3(g-1)$$
, $5(g-1)$ and $6(g-1)$.

- As in the case a = 4, for a = 3, 6 appear positive dimensional families of surfaces.
- The surfaces found for a = 5 agree with the ones with a = 10 obtained earlier.
- ▶ The ones obtained for $a \ge 7$ appear as special points in these families.

⁴ M. IZQUIERDO AND S. R-C., A note of large automorphism groups of compact Riemann surfaces, J. Algebra 547 (2020), 1–21.

$$\mathcal{A}_{a,-a}$$

The classification is now complete

Theorem 1

Let S be a compact Riemann surface of genus

$$g = q + 1$$
 for some prime $q \ge 7$.

There is a subgroup $G \leq Aut(S)$ of order

$$|G| = a(g-1) = aq$$
 for some integer $a \ge 3$

if and only if one of the following holds.

Notation: let r be a primitive n-th root of unity in \mathbb{F}_q . Write:

$$G_{q,n} := \langle a,b : a^q = b^n = 1, bab^{-1} = a^r \rangle = C_q \rtimes_n C_n$$

case	а	signature	group	<i>q</i> ≡	surfaces	
(i)	12	(2,6,6)	$G_{q,6} \times C_2$	1(3)	S_1, \bar{S}_1 *	
(ii)	10	(2,5,10)	$G_{q,10}$	1(5)	$S_2, \bar{S}_2, S'_2, \bar{S}'_2$	
(iii)	8	(2,8,8)	$G_{q,8}$	1(8)	S_3, \bar{S}_3	
(iv)	6	(3,6,6)	$G_{q,6}, G_{q,3} \times C_2$	1(3)	S_1, \bar{S}_1	
(v)	6	(2,2,3,3)	$G_{q,6}$	1(3)	$oxed{\mathscr{C}_1}$	
(vi)	5	(5,5,5)	$G_{q,5}$	1(5)	$S_2, \bar{S}_2, S'_2, \bar{S}'_2$	
(vii)	4	(2,2,4,4)	$G_{q,4}$	1(4)	\mathscr{C}_1'	
(viii)	4	(2^5)	\mathbf{D}_{2q}	none	\mathscr{C}_2	
(ix)	3	(3,3,3,3)	$G_{q,3}$	1(3)	$ \mathscr{C}_1 $	
(x)	84	(2,3,7)	PSL(2,13)	13	Y_1, Y_2, Y_3	
(xi)	48	(2,3,8)	PGL (2,7)	7	X_1, X_2	
(xii)	24	(3,3,4)	P SL(2,7)	7	X_1, X_2	

Remarks

- The actions are explicitly given in terms of surface-kernel epimorphisms.
- The table also gives the full automorphism groups.
- ▶ The cases q = 2,3,5 and a = 1,2 lead to less uniform behavior (but they are well-known).
- **Corollary.** There is no a compact Riemann surface of genus g = q + 1 (q prime) with exactly

$$3(g-1)$$
 or $5(g-1)$

automorphisms!

▶ The families $\mathscr{C}_1, \mathscr{C}_1'$ and \mathscr{C}_2 are **equisymmetric**, namely, there is only one class of topological action.

Belyi pairs

Definition A Riemann surface S is called a **Belyi surface** if

 $\exists \beta: S \to \mathbb{P}^1$ holomorphic with three critical values.

The pair (S, β) is called a **Belyi pair**.

Amongst Belyi pairs, the regular ones are those for which

$$\beta: S \to S/G \cong \mathbb{P}^1$$
 is given by the action of $G \leqslant \operatorname{Aut}(S)$.

Equivalently:

- S is quasiplatonic (rigid in the moduli space)
- ▶ S is uniformised by a finite index normal subgroup of a triangle Fuchsian group $\Delta(a,b,c)$

Dessin d'enfants

Definition A **dessin d'enfant** is an embedding of a connected, **bipartite** graph

$$\mathcal{G} \hookrightarrow X$$

on an **oriented** compact topological surface X such that the components of $X-\mathcal{G}$ are homeomorphic to open discs.

The dessin d'enfant is called **regular** if its automorphism group acts transitively on their edges.

Roughly speaking, there is a correspondence between

- (regular) dessin d'enfants,
- (regular) Belyi pairs, and
- algebraic curves defined over number fields.

Grothendieck, Belyi, Shabat, Singerman, Jones, Wolfart,...

Dessin d'enfants = hypermaps

A special kind of dessin d'enfants are those that have "black" vertices all with degree 2:

- clean dessin d'enfants,
- maps (forget the colours!)
- ▶ platonic surfaces, namely, uniformised by finite index subgroups of Fuchsian groups of signature $\Delta(2,b,c)$

Thus, for the regular case:

regular hypermap ≡ regular dessin d'enfant ≡

≡ regular Belyi pair ≡ quasiplatonic surface

The classification of dessins d'enfant or hypermaps

Theorem 2

The orientably regular maps/hypermaps (or, equivalently, regular dessin d'enfants on Riemann surfaces) of genus

$$g = q + 1$$
 for some prime $q \ge 7$

with orientation-preserving automorphism group G of order divisible by q, are given in the following table.

- up to duality/triality, permuting the roles of vertices, edges and faces.
- N is the number of orientably regular maps/hypermaps supported by the surfaces.

 $\mathcal{A}_{a,-a}$

The classification of dessins d'enfant or maps/hypermaps

case	а	type	group	<i>q</i> ≡	surfaces	N
(i)	12	{6,6}	$G_{q,6} \times C_2$	1(3)	S_1, \bar{S}_1	1ср
(ii)	10	{5,10}	$G_{q,10}$	1(5)	$S_2, \bar{S}_2, S'_2, \bar{S}'_2$	2ср
(iii)	8	{8,8}	$G_{q,8}$	1(8)	S_3, \bar{S}_3	1ср
(iv)	6	(3,6,6)	$G_{q,6}$	1(3)	S_1, \bar{S}_1	1ср
(iv)'	6	(3,6,6)	$G_{q,3} \times C_2$	1(3)	S_1, \bar{S}_1	1ср
(vi)	5	(5,5,5)	$G_{q,5}$	1(5)	$S_2, \bar{S}_2, S'_2, \bar{S}'_2$	12t
(x)	84	{3,7}	PSL(2,13)	13	Y_1, Y_2, Y_3	3t
(xi)	48	{3,8}	PGL(2,7)	7	X_1, X_2	2t
(xii)	24	(3,3,4)	PSL (2,7)	7	X_1, X_2	2t

Final comments

- The small cases are identified in Conder's list.
- A similar classification for the non-orientable case of characteristic −q is derived (the associated orientable double cover are the cases (x), (xi) and (xii)). This is related to earlier work of Conder, Širáň and Tucker⁵.
- We also provide isogeny decomposition of the associated Jacobian varieties with group action. For instance, the surfaces in case (i) decompose as

$$JS \sim E \times E' \times JX^6$$

where E, E' are elliptic curves and X is a quotient of S.

⁵ M. CONDER, J. ŠIRÁŇ AND T. TUCKER, The genera, reflexibility and simplicity of regular maps. J. Eur. Math. Soc. (JEMS) 12 (2010), no. 2, 343–364.

Further details

M. IZQUIERDO, G. A. JONES AND S. R-C. *Groups of automorphisms of Riemann surfaces and maps of genus* p+1 *where* p *is prime*, To appear in Ann. Acad. Sci. Fenn. Math. arXiv:2003.05017

Thanks! - Hvala!

