On the Connectivity of Branch Loci of Spaces of Curves

Milagros Izquierdo

Applied Combinatorial Geometric Topology 8ECM, June 24, 2021

Joint work with A. Costa and other (important) people

Given an orientable, closed surface X of genus $g \geq 2$ The equivalence: $(X, \mathcal{M}(X)$, complex atlas) $(\mathcal{M}(X)=\langle x, y\rangle, p(x, y)=0$, the field of meromorphic functions on X)
$X \cong \frac{\mathbb{H}}{\Delta}$, with Δ a (cocompact) Fuchsian group
Δ discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$
$(X, \mathcal{M}(X)$, complex curve $)(\mathcal{M}(X)=\mathbb{C}[x, y] / p(x, y)$, the field of rational functions on X)
$(Y$, dianalytic atlas $) \cong(X / \bar{\sigma}, \bar{\sigma}$ class of anticonformal involution $) \cong$ real curve $(Y$, birational structure). $Y \cong \frac{\mathbb{H}}{\Delta}$, with $\widehat{\Delta}$ an NEC group

The ovals of the curve Y are the boundary components of the surface $X / \bar{\sigma}$, the orientability is the one of $X / \bar{\sigma}$, the genus (is the genus): topological type t
$(X$, complex atlas $) \cong \mathbb{H} / \Delta$, with Δ a (cocompact) Fuchsian group
Surface Fuchsian Group $\Gamma_{g}=\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g} \mid \Pi\left[a_{i}, b_{i}\right]=1\right\rangle$

- Teichmüller space \mathcal{T}_{g}, space of geometries on a surface of genus g $\mathcal{T}_{g}=\left\{\sigma: \Gamma_{0} \rightarrow \operatorname{PSL}(2, \mathbb{R}) \mid\right.$ oinjective, $\sigma\left(\Gamma_{0}\right)$ discrete $\} / \operatorname{PSL}(2, \mathbb{R})$
A Riemann surface with prescribed geometry is given by a marked polygon (and all its conjugate by a hyperbolic transformation) in the hyperbolic plane, or the space of conjugacy classes of Fuchsian groups isomorphic to the abstract group $\Gamma_{0}=\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g} ; a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \ldots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}=1\right\rangle$.
- Moduli space $\mathcal{M g}_{g}$, space (orbifold) of conformal structures on a surface of genus g
- Mapping Class Group (Teichmüller Modular Group)
$M_{g}^{+}=\operatorname{Diff}^{+}(X) / \operatorname{Diff}_{0}(X)=\operatorname{Out}\left(\Gamma_{g}\right)$
- Orbifold Universal Covering $\mathcal{M}_{g}=\mathcal{T}_{g} / M_{g}^{+}$
\mathcal{B}_{g} Branch Locus $=$ Singular Locus of \mathcal{M}_{g} as orbifold (Not the singular set of $\mathcal{M}_{2,3}$ as algebraic variety, A. Costa- A. Porto for a proof with Fuchsian groups)

Nielsen Realization Theorem (Abikoff 1980, Macbeath for NEC groups)
$\mathcal{B}_{g}=\left\{X \in \mathcal{M}_{g} \mid \operatorname{Aut}(X) \neq 1\right\}$
(\mathcal{B}_{2} : surfaces with more automorphisms than the hyperelliptic involution)
$g=1$ Euclidean case: $\mathcal{T}_{1}=\mathbb{H}, M_{1}=\operatorname{PSL}(2, \mathbb{Z}), \mathcal{B}_{1}=\left\{i, e^{i \pi / 3}\right\}, \mathcal{M}_{1}$ hyperbolic triangle with a vertex at ∞, the nodal curve $y^{2}=x^{3}$.

Considering $(X$, dianalytic atlas, top. type $\mathbf{t}) \cong \mathbb{H} / \widehat{\Delta}$, with $\widehat{\Delta}$ an NEC group \mathcal{T}_{t}^{K} and \mathcal{M}_{t}^{K} the Teichmüller and moduli space of Klein surfaces of topological type \mathbf{t}.
$\mathcal{M}_{t}^{K}=\mathcal{T}_{t}^{K} / M(\widehat{\Delta}), \quad M(\widehat{\Delta})=\operatorname{Out}(\widehat{\Delta})$. Branch locus \mathcal{B}_{t}^{K}
Studies of branch locus and moduli spaces:
For $g=1$ Schwarz
For $g=2$ Bolza (1887, moduli of automorphic functions)
For hyperbolic surfaces Harvey, Natanzon, Macbeath.

Deligne-Mumford Complection (going to ∞ in $\mathcal{M g}_{g}$)
Curves whose singularities are ordinary double points (nodes), all of whose irreducible components isomorphic to \mathbb{P}^{1} (or $\widehat{\mathbb{C}}$), meet the other irreducible components in at least 3 nodes: stable curves
$\widehat{\mathcal{M}}_{g}=\mathcal{M}_{g} \cup\{$ stable curves $\}$ (deforming by variating the coeffcients or roots)

Geometrically: Riemann surfaces with a geodesic multicurve pinched to length 0 (deforming by variating the lengths of a system of curves)
Consider the complection $\widehat{\mathcal{B}}_{g}$ of \mathcal{B}_{g} in $\widehat{\mathcal{M}}_{g}$

Wish: If $\mathcal{B}_{g}, \mathcal{B}_{t}^{K}, \widehat{\mathcal{B}}_{g}$ connected one can deform a curve with symmetry to another curve with symmetry along a path of curves, all they with symmetry, maybe pinching some multicurve.

1. The branch loci \mathcal{B}_{g} of moduli spaces of hyperbolic Riemann surfaces are disconnected for all genera with the exception of genera 3, 4, 7, 13, 17, 19 and 59.

Bartolini-Costa-I 2013 (Ann. Acad. Sci. Fenn.)
In genus 2 Wiman's curve (of type I) is isolated.
2. It constains several connected components. E.g. \mathcal{B}_{g} contains isolated strata formed by p -gonal RS for genera a multiple g of $(\mathrm{p}-1) / 2$, at least $2(\mathrm{p}-1) / 2$ Bartolini-Costa-I-Porto 2010/2012 (RACSAM), Costa-I 2011 (Math. Scand.) Question: How much does the no. of connected comp. grow?
3. Considering RS as Klein surfaces, $\mathcal{B}_{(g,+, 0)}^{K}$ is connected! Bartolini-Costa-I-Porto 2010 (RACSAM)
4. $\mathcal{B}_{(g,+, k)}^{K}$ is connected (orientable Klein surfaces) Costa-l-Porto 2015 (Geom. Dedic.)
5. $\mathcal{B}_{(g,-, 0)}^{K}$ is connected ($g=4,5$ Bujalance-Etayo-Martínez-Szpietowski 2014) In general? (Costa-I-Porto 2021).

6 Considering $\widehat{\mathcal{M}}_{g}$,

- Question1: Is $\widehat{\mathcal{B}}_{g}$ connected?
- Question 2: Is the locus of stable p-gonal curves connected, p odd prime?

7 The hyperelliptic locus is connected (Seppälä 1982), the p-gonal locus is in general disconnected, each connected comp. associated to a partition of Omodp (González-Diez 1995, Buser-Silhol-Seppälä 1995)
8 The locus of hyperelliptic non-orientable Klein surface with one boundary component is disconnected. It is connected for the corresponding orientable surfaces.
Costa-I-Porto 2017 (Inter. J. Math.)
9 The complection of the trigonal locus is connected Costa-I-Parlier 2014 (Rev. Mat. Complut.)
$10 \widehat{\mathcal{B}}_{g}$ contains isolated strata of dim. 1 for genera $g=p-1, p \geq 11$. These strata consists of p-gonal curves
Costa-I-Parlier 2014 (Rev. Mat. Complut.)
11 The locus of principally polarized abelian varieties (ppav) admitting involutions is connected
Reyes-Carocca - Rodríguez 2018

Riemann \& Surfaces and Fuchsian \& NEC Groups
Teichmüller Spaces
Connectedness of Branch Locus

Introduction

Fuchsian \& NEC groups

Conformal Geometry and Low Dimensional Manifolds

A conference in Honour of Antonio F. Costa
 27 June - 1 July 2022 UNED Ávila

Fuchsian and NEC Groups

- Δ (cocompact) discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$
- A (compact) Riemann (surface) orbifold of genus $g \geq 2 \quad X=\frac{\mathbb{H}}{\Delta}$
- Δ has presentation:
generators: $x_{1}, \ldots, x_{r}, a_{1}, b_{1}, \ldots, a_{h}, b_{h}$ relations: $x_{i}^{m_{i}}, i=1: r, x_{1} \ldots x_{r} a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \ldots a_{h} b_{h} a_{h}^{-1} b_{h}^{-1}$
- $X=\frac{\mathbb{H}}{\Delta}$: orbifold with r cone points and underlying surface of genus g
- Algebraic structure of Δ and geometric structure of X are determined by the signature $\quad s(\Delta)=\left(h ; m_{1}, \ldots, m_{r}\right)$
- NEC group Δ (hyperbolic silvered 2-orbifolds)
- extra generators: $e_{1}, \ldots, e_{k}, c_{i, j}, 1 \leq i \leq k, 1 \leq j \leq r_{i}+1$ extra relations: $\left(c_{i, j-1} c_{i, j}\right)^{n_{i, j}}, j=1, \ldots, r_{i}, e_{i}^{-1} c_{i, r_{i}} e_{j}^{-1} c_{i, 0}, i=1, \ldots, k$, long relation: either $x_{1} \ldots x_{r} e_{1} \ldots e_{k} a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \ldots a_{h} b_{h} a_{h}^{-1} b_{h}^{-1}$

$$
\text { or } x_{1} \ldots x_{r} e_{1} \ldots e_{k} d_{1}^{2} \ldots d_{h}^{2},
$$

- $s(\Delta)=\left(h ; \pm ;\left[m_{1}, \ldots, m_{r}\right] ;\left\{\left(n_{1,1}, \ldots, n_{1, r_{1}}\right), \ldots,\left(n_{k, 1}, \ldots, n_{k, r_{k}}\right)\right\}\right)$.

Singerman 1970-1974

Fundamental polygon

- Area of Δ : area of a fundamental region P

$$
\mu(\Delta)=2 \pi\left(2 h-2+\sum_{1}^{r}\left(1-\frac{1}{m_{i}}\right)\right)
$$

- For NEC group
$\mu(\Delta)=2 \pi\left(\varepsilon h-2+k+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right)+\frac{1}{2} \sum_{i=1}^{k} \sum_{j=1}^{r_{i}}\left(1-\frac{1}{n_{i, j}}\right)\right)$,
- X hyperbolic equivalent to P /\langle pairing〉
- Every Riemann/Klein orbifold is diconformally equiv. to a Riemann/Klein surface X (uniformized by a surface group $\Gamma_{g}, \Gamma_{(g, \pm, k)}$) Moore 197X, Bujalance 1982, (Armstrong 1984 for structures associated to more general discontinuos groups)

Automorphisms and Morphisms of RS

G finite group of automorphisms of $X_{g}=\mathbb{H} / Г, \Gamma$ a surface group iif there exist Δ Fuchsian/NEC group and epimorphism $\theta: \Delta \rightarrow G$ with $\operatorname{Ker}(\theta)=\Gamma$
θ is the monodromy of the (regular) covering $f: \mathbb{H} / \Gamma \rightarrow \mathbb{H} / \Delta$

Δ : lifting to \mathbb{H} of G
An automorphism of X will fix the class of the uniformizing Fuchsian/NEC group

A morphism $f: X=\mathbb{H} / \Lambda \rightarrow Y=\mathbb{H} / \Delta$, given by the group inclusion $i: \Lambda \rightarrow \Delta$ Covering f determined by monodromy $\theta: \Delta \rightarrow \Sigma_{\mid \Delta: \Lambda}, \Lambda \mid=\theta^{-1}(S T b(1))$ (symbol $\leftrightarrow \Lambda$-coset \leftrightarrow sheet for f)
Theorem (Singerman 1971) \wedge (and so i) determined θ (and Δ): If $s(\Delta)=\left(h ; m_{1}, \ldots, m_{r}\right)$, then $s(\Lambda)=\left(h^{\prime} ; m_{11}^{\prime}, \ldots, m_{1 s_{1}}^{\prime}, \ldots, m_{r 1}^{\prime}, \ldots, m_{r s_{r}}^{\prime}\right)$ iff $\theta: \Delta \rightarrow \Sigma_{|\Delta: \Lambda|}$ st.
i) Riemann-Hurwitz $\frac{\mu(\Lambda)}{\mu(\Delta)}=|\Delta: \Lambda|$
ii) $\theta\left(x_{i}\right)$ product of s_{i} cycles each of length $\frac{m_{i}}{m_{i 1}^{\prime}}, \ldots, \frac{m_{i}}{m_{i s_{i}}^{\prime}}$

Analogous result for NEC group \& Klein surfaces Singerman 1974, Hoare 1990, Pride 1990
focally a cycle of $\theta\left(x_{i}\right)$

In case of automorphism groups $G \quad \theta: \Delta \rightarrow G \leq \sum_{n} \quad \theta\left(x_{i}\right)$)of order mi

$$
\theta\left(x_{1} \cdots x_{r} \pi\left[a_{j}, b_{j}\right]\right)=1_{d}
$$

Example: Surfaces of genus 2 with 8 automorphisms. They admit an action of Dy with monodromy $\theta: \Delta(0 ; 2,2,2,4) \longrightarrow D_{y}$

$$
\begin{aligned}
& \theta\left(x_{1}\right)=a=(1,3,5,7)(2,4,6,8) \\
& \theta\left(x_{2}\right)=s=(1,2)(4,7)(3,8)(6,5) \\
& \theta\left(x_{3}\right)=s a=(1,4)(2,3)(5,8)(6,7)
\end{aligned}
$$

Oof course $\theta\left(x_{4}\right)=$
No singular pts for order 4 ,

for one of order a
(2i), 47), (38) and (65
The are is $2 A 8\left(\frac{1}{4}\right)=4 a$, so genus is $2 \quad \operatorname{Arec}\left(x_{g}\right)=4 a(q-1)^{c}$

p-gonal Riemann Surfaces

- A Riemann surface X is called p-gonal if it admits a morphism of degree p on the Riemann sphere
- X is called cyclic p-gonal when X has an automorphism φ of order p such that $X /\langle\varphi\rangle=\hat{\mathbb{C}}$.
- Case $p=2: \mathrm{X}$ hyperelliptic R.S.
- A Riemann surface X is called elliptic-p-gonal if it admits a morphism of degree p on a torus.
- X is called cyclic elliptic-p-gonal when the morphism is a regular covering.
- Severi-Castelnuovo inequality: A p-gonal morphism of X is unique if the genus of $X \geq(p-1)^{2}$.
- An elliptic- p-gonal morphism of X is unique if the genus of $X \geq 2 p+(p-1)^{2}$.

Teichmüller and Moduli Spaces

Δ abstract Fuchsian group $\quad s(\Delta)=\left(h ; m_{1}, \ldots, m_{r}\right)$
$\mathcal{T}_{\Delta}=\{\sigma: \Delta \rightarrow \operatorname{PSL}(2, \mathbb{R}) \mid$ oinjective, $\sigma(\Delta)$ discrete $\} / \operatorname{PSL}(2, \mathbb{R})$
Teichmüller space \mathcal{T}_{Δ} has a complex structure of $\operatorname{dim} 3 h-3+r$, diffeomorphic to a ball of $\operatorname{dim} 6 h-6+2 r$.

If Λ subgroup of $\Delta(i: \Lambda \rightarrow \Delta) \Rightarrow i_{*}: \mathcal{T}_{\Delta} \rightarrow \mathcal{T}_{\Lambda}$ embedding
Γ_{g} surface Fuchsian group $\quad \Gamma_{g} \leq \Delta \quad \mathcal{T}_{\Delta} \subset \mathcal{T}_{\Gamma_{g}}=\mathcal{T}_{g}$
G finite group $\quad \mathcal{T}_{g}^{G}=\left\{[\sigma] \in \mathcal{T}_{g} \mid g[\sigma]=[\sigma] \forall g \in G\right\} \neq \emptyset$
\mathcal{T}_{g}^{G} : surfaces with G as a group of automorphisms.
Mapping class group $M^{+}(\Delta)=\operatorname{Out}(\Delta)=\frac{\operatorname{Diff}(\mathbb{H} / \Delta)}{\operatorname{Diff}(\mathbb{H} / \Delta)}$
$\Delta=\pi_{1}(\mathbb{H} / \Delta)$ as orbifold
$M^{+}(\Delta)$ acts properly discontinuously on $\mathcal{T}_{\Delta} \quad \mathcal{M}_{\Delta}=\mathcal{T}_{\Delta} / M^{+}(\Delta)$

- We can give coordinates to this space by considering decomposition in pairs of pants: Fenchel-Nielsen Coordinates.
- A pairs of pants is a surface with boundary obtained by taking two identical copies of a right-angle hexagon and gluing 3 of the sides. A pair of pants is homeomorphic to a sphere with three holes, the boundaries are totally geodesic (any point on the boundary has a neighbourhood isometric to a half-disc). Given three positive real numbers I_{1}, l_{2}, l_{3}, there is a pair of pants whose boundaries have lengths l_{1}, l_{2}, l_{3} respectively.
- Any hyperbolic surface S_{g} admits a decomposition in $2 g-2$ pairs of pants with $3 g-3$ boundaries (there are many such decompositions)
- So we have $3 g-3$ parameters that are the lengths of the boundaries in the pant decompositions $\left(I_{1}, l_{2}, \ldots l_{3 g-3}, \ldots \ldots\right)$). The remaining $3 g-3$ parameters $\theta_{1}, \ldots \theta_{3 g-3}$ are the twist parameters, each one giving the angle along which two pairs of pants are glued together along the common boundary.

$$
\left(I_{1}, I_{2}, \ldots I_{3 g-3}, \theta_{1}, \ldots \theta_{3 g-3}\right)
$$

- (Teichmüller) In fact the map asinging to each class of triples the Fenchel-Nielsen parameters is a homeomorphism $\mathcal{T}_{g} \rightarrow \mathbb{R}^{6 g-6}$.
- This map is not only a homeomorphism but also a conformal map $\mathcal{T}_{g} \rightarrow \mathbb{C}^{3 g-3}$. (Beltrami, Ahlfors).

Surfaces with automorphisms: Branch Locus
Consider a marked surface $\sigma(X) \in \mathcal{T}_{g}$ and $\beta \in M_{g}^{+}$, we have

$\beta[\sigma]=[\sigma] \quad \Leftrightarrow \quad \gamma \in \operatorname{PSL}(2, \mathbb{R}), \quad \sigma\left(\Gamma_{g}\right)=\gamma^{-1} \sigma \beta\left(\Gamma_{g}\right) \gamma$
γ induces an automorphism of $[\sigma(X)]$
$\operatorname{Stb}_{\mathcal{M}_{g}}[\sigma]=\left\{\beta \in M_{g} \mid \beta[\sigma]=[\sigma]\right\}=\operatorname{Aut}([\sigma(X)])$
$G=\operatorname{Aut}(X)$ finite, determines a conjugacy class of finite subgroups of M_{g}, the symmetry of X
X_{g}, Y_{g} equisymmetric if $\operatorname{Aut}\left(X_{g}\right)$ conjugate to $\operatorname{Aut}\left(Y_{g}\right)$
($\operatorname{Aut}\left(X_{g}\right)$: full automorphism group)
Singerman's list of non-maximal signatures.

Equisymmetric Stratification

Action: $\theta: \Delta \rightarrow \operatorname{Aut}\left(X_{g}\right)=G, \operatorname{ker}(\theta)=\Gamma_{g}$
$\operatorname{Aut}\left(X_{g}\right)=G$ conjugate $\operatorname{Aut}\left(Y_{g}\right) \quad$ iff $w \in \operatorname{Aut}(G), h \in \operatorname{Diff}^{+}(X)$ $\epsilon, \epsilon^{\prime}: G \rightarrow \operatorname{Diff}^{+}(X), \epsilon^{\prime}(g)=h \in w(g) h^{-1}$
Two (surface) monodromies $\theta_{1}, \theta_{2}: \Delta \rightarrow G$ topologically equiv. actions of G

$$
\begin{array}{lcccc}
& \Delta \in \operatorname{Aut}(\Delta) & \downarrow & & G \\
& \downarrow & & \\
& \Delta & \xrightarrow[\rightarrow]{\theta_{2}} & G
\end{array} \quad w \in \operatorname{Aut}(G)
$$

θ_{1}, θ_{2} equiv under $\mathcal{B}(\Delta) \times \operatorname{Aut}(G), \mathcal{B}(\Delta)$ braid group
Broughton (1990): Equisymmetric Stratification
$\mathcal{M}_{g}^{G, \theta}=\left\{X \in \mathcal{M}_{g} \mid\right.$ symmetry type of X is $\left.G\right\}$
$\overline{\mathcal{M}}_{g}^{G, \theta}=\left\{X \in \mathcal{M}_{g} \mid\right.$ symmetry type of X contains $\left.G\right\}$
$\mathcal{M}_{g}^{G, \theta}$ smooth, connected, locally closed alg. var. of \mathcal{M}_{g}, dense in $\overline{\mathcal{M}}_{g}^{G, \theta}$

$$
\mathcal{B}_{g}=\cup \overline{\mathcal{M}}_{g}^{G, \theta}
$$

Costa-I (2008) $\mathcal{B}_{g}=\cup \overline{\mathcal{M}}_{g}^{C_{p}, \theta}$ (Cornalba 1987 and 2008)

Connectedness, we are interested in $Y \in \overline{\mathcal{M}}_{g}^{G_{1}, \theta_{1}} \cap \overline{\mathcal{M}}_{g}^{G_{2}, \theta_{2}}$
Finding $\theta: \Delta \rightarrow G=\operatorname{Aut}(Y)$ extends both $\theta_{1}: \Delta_{1} \rightarrow G_{1}$ and $\theta_{2}: \Delta_{2} \rightarrow G_{2}$ with $\operatorname{Ker}(\theta)=\operatorname{Ker}\left(\theta_{1}\right)=\operatorname{Ker}\left(\theta_{2}\right)=\Gamma_{g}$

Corresponding to groups:

We need to look at maximal actions of C_{p} for isolated strata

Some Results

- Costa-I (2008). \mathcal{B}_{4} is connected
- Kulkarni (1991). Existence of isolated points in \mathcal{B}_{g} iff $g=2$ or $2 \mathrm{~g}+1$ a prime ≥ 11
Isolated points are given by actions $\theta: \Delta(0 ; p, p, p) \rightarrow C_{p}, p=2 g+1$
The actions of C_{7} in \mathcal{M}_{3} extend to actions of C_{14} or $\operatorname{PSL}(2,7)$
- Bartolini-l (2009): $\overline{\mathcal{M}}_{g}^{C_{2}, \theta}$ and $\overline{\mathcal{M}}_{g}^{C_{3}, \theta^{\prime}}$ belong to the same connected component of \mathcal{B}_{g}.
All the closed strata induced by actions of C_{2} or C_{3} intersect the closed stratum formed by surfaces X_{g} admitting an automorphism of order 2 with quotient Riemann surface of genus highest possible: $\frac{g}{2}$ for even g and $\frac{g+1}{2}$ for odd g.
- Costa-I (2011): \mathcal{B}_{g} contains isolated strata of dimension 1 iff $\mathrm{g}+1$ is a prime ≥ 11
The isolated strata are given by actions:
$\theta_{h}: \Delta(0 ; p, p, p, p) \rightarrow C_{p}: \theta_{h}\left(x_{1}\right)=a, \theta_{h}\left(x_{2}\right)=a^{i}, \theta_{h}\left(x_{3}\right)=a^{j}$
$i \neq 1, p-1, j \neq 1, p-1, i, p-i, p-1-i-j \neq 1, i, j$.
These actions are maximal and the strata contain no curve with more symmetry.
- Branch loci in genera four, seven, thirteen, seventeen, nineteen and fifty-nine are connected.
GAP-machinery !!
- Bartolini-Costa-I (2013). These are the only genera with connected branch locus.

Actions given isolated stratum of maximal dimension

- $\mathbf{g}=\mathbf{6 0}$, action $\theta: \Delta\left(0 ; 5^{32}\right) \rightarrow C_{5}:$
$\theta\left(x_{1}\right)=\cdots=\theta\left(x_{19}\right)=\alpha, \theta\left(x_{20}\right)=\cdots=\theta\left(x_{24}\right)=\alpha^{2}, \theta\left(x_{25}\right)=\alpha^{3}$, $\theta\left(x_{26}\right)=\cdots=\theta\left(x_{32}\right)=\alpha^{4}$.
- $\mathbf{g}=\mathbf{6 1}$, action $\theta: \Delta\left(1 ; 5^{30}\right) \rightarrow C_{5}$
$\theta(a)=\theta(b)=1, \theta\left(x_{1}\right)=\cdots=\theta\left(x_{23}\right)=\alpha, \theta\left(x_{24}\right)=\cdots=\theta\left(x_{28}\right)=\alpha^{2}$, $\theta\left(x_{29}\right)=\alpha^{3}, \theta\left(x_{30}\right)=\alpha^{4}$.
- $\mathbf{g}=63$, action $\theta: \Delta\left(0 ; 7^{23}\right) \rightarrow C_{7}:$
$\theta\left(x_{1}\right)=\cdots=\theta\left(x_{14}\right)=\alpha, \theta\left(x_{15}\right)=\cdots=\theta\left(x_{19}\right)=\alpha^{5}, \theta\left(x_{20}\right)=\alpha^{4}$,
$\theta\left(x_{21}\right)=\cdots=\theta\left(x_{23}\right)=\alpha^{2}$.
- $\mathbf{g}=67$, action $\theta: \Delta\left(1 ; 7^{22}\right) \rightarrow C_{7}$
$\theta(a)=\theta(b)=1, \theta\left(x_{1}\right)=\cdots=\theta\left(x_{17}\right)=\alpha, \theta\left(x_{18}\right)=\cdots=\theta\left(x_{20}\right)=\alpha^{6}$, $\theta\left(x_{21}\right)=\alpha^{3}, \theta\left(x_{22}\right)=\alpha^{4}$.
- $\mathbf{g}=\mathbf{7 1}$, action $\theta: \Delta\left(2 ; 7^{21}\right) \rightarrow C_{7}$
$\theta\left(a_{i}\right)=\theta\left(b_{i}\right)=1, i=1,2, \theta\left(x_{1}\right)=\cdots=\theta\left(x_{13}\right)=\alpha$, $\theta\left(x_{14}\right)=\cdots=\theta\left(x_{16}\right)=\alpha^{2}, \theta\left(x_{17}\right)=\theta\left(x_{18}\right)=\alpha^{5}, \theta\left(x_{19}\right)=\alpha^{3}, \theta\left(x_{20}\right)=\alpha^{4}$, $\theta\left(x_{21}\right)=\alpha^{6}$.

Isolated strata in the complection of branch loci

Costa-l-Parlier (2015): The complections in the Deligne-Munford compactification $\widehat{\mathcal{B}}_{g}$ of isolated strata of dim 1 given by the monodromies θ_{h} are isolated.

$$
\left(\theta_{h}: \Delta(0 ; p, p, p, p) \rightarrow C_{p}: \theta_{h}\left(x_{1}\right)=a, \theta_{h}\left(x_{2}\right)=a^{i}, \theta_{h}\left(x_{3}\right)=a^{j}\right)
$$

The limit points in $\widehat{\mathcal{B}}_{g}$ of every such stratum (given by a monodromy θ_{h} with quotient the sphere with four branch points of order p) is the covering given by $f_{\theta_{h}}$ of the limit point of pinched spheres with a decomposition in two pairs of pants, each pair of pants has as boundary two branch points and a curve surrounding two branch points. As in the next slide.

Consider the (hyperbolic) orbifold of genus 0 with two branch points of order p and a cusp. The cyclic p -gonal coverings are given by the monodromies
$\theta: \Delta(0 ; p, p, \infty)=<y_{1}, y_{2} \mid y_{1}^{p}=y_{2}^{p}>\rightarrow<t>$ where $\left.\theta\left(y_{1}\right)=t^{a}, \theta\left(y_{2}\right)\right)=t^{b}$
Two such maps $\left(t^{a}, t^{b}\right)$ and $\left(t^{a^{\prime}}, t^{b^{\prime}}\right)$ induce equivalent surfaces iif there exists a c such that $a^{\prime} \equiv c a \bmod (p), \quad b^{\prime} \equiv c b \bmod (p)$. Each equivalence class of monodromies has a representative of type $(1, j)$. Call P_{j} the covering given by the monodromy of type $(1, j)$.
The limit points of each stratum are
$P_{i}+P_{-1-\frac{i+1}{j}}, P_{j}+P_{-1-\frac{j+1}{i}}, P_{\frac{j}{j}}+P_{p-1-i-j}$
where $2 \leq i \leq \frac{p-1}{2}, i<j \leq p-3, p-1-i-j \notin\{1, i, j, p-1,-i,-j\}$
The limit points for other strata of p-gonal Riemann surfaces with quotient the sphere with four branch points are
$P_{1}+P_{p-3} ; P_{1}+P_{1}, P_{p-1}+P_{p-1} ; P_{p-1}+P_{p-1}, P_{i}+P_{i}, P_{-i}+P_{-i}$ with $2 \leq i \leq \frac{p-1}{2}$ and $P_{1}+P_{\frac{p-i-2}{i}}, P_{i}+P_{p-i-2}$ where $2 \leq i \leq \frac{p-1}{2}$

Using elementary number theory, the limit points $P_{i}+P_{-1-\frac{i+1}{j}}, P_{j}+P_{-1-\frac{j+1}{i}}$, $P_{j}+P_{p-1-i-j}$ do no coincide with limit points of other stratum.
Finally these limit points do not admit any other automorphism.
$B_{(a,-, 1)}^{k_{1} H_{y p}}$ consits of $\frac{g t_{2}}{2}$ connected components if g even $\frac{g+1}{2}$ connected components if g odd
Consider Y hyperelliptic surface of top type $\epsilon=(g,-, 1)$; Y $=1 \mathrm{H} / \rho \mathrm{PS} \cdot \mathrm{Gr}_{\mathrm{r}}$ ρ index 2 subgr in $\Delta: s(\Delta)=\left(0 ;+;\left[2,-\frac{9}{2}\right],\{(2,2) 4)\right.$

$$
\text { Hut }(y) \leq C_{2} \times C_{2} \text { (Bujalance-Etayo-Gamboa-Gromad=ki; 1990) }
$$

Geometrically; we have the conjiguretion for the action of AutH $/ 4) / 4>$ (φ hype elíphic involution)
if we have $\theta_{1}: \Lambda \rightarrow C_{2} \times C_{2}=\langle a, b\rangle 0 \leq r \leq\left\lfloor\frac{9}{2}\right\rfloor$
$s(\Lambda)=10 ; t ;\left[2^{r}\right] ;\left\{\left(2^{s}\right) 4\right)$ and monodromies

$$
\theta_{r}: \Lambda \xrightarrow{\longrightarrow} C_{2} \times C_{2}=1 / r ; s\left(\theta^{c}\langle a\rangle\right)=\left(0 ;+;\left[2^{\eta}\right] ;\right)((2,2))
$$

$\theta_{r}\left(x_{i}\right)=a ; \theta_{r}(e)=a / 1 d$ accoreling r 's parity
$\theta\left(c_{0}\right)=\theta\left(e_{s}\right)=a ; \theta_{r}\left(c_{1}\right)=1 d$
Alteru-Aing $\theta_{1}\left(C_{2 j}\right)=b<O_{r}\left(C_{2 j+1}\right)=a b$
The actions given by Or are maximal. They produce $\frac{g}{2}+1=\frac{g+2}{2}$ connected components for g even and $\frac{9-1}{2}+1=\frac{9 t^{2}}{2}$ connected components for good
$B_{(g, t, 1)}^{k, H_{y p}}$ is connected.
Consider again y hyper. with top type $t=(g, t, 1)$, 4 hyper. involution

$$
Y=\mid H / p \text { and } V /\langle\varphi\rangle=H / \Lambda \text { with } s(\Delta)=\left(0 ; t^{t} ;\left[2^{2 q^{+1}}\right]:\{(-)!)\right.
$$

la disc with $2 q+1$ cone pts
the groups of automorphisms of $y / \angle u s$ can be dihedral or cyclic
Aut(y): $\operatorname{Cn} x C_{2}$, n a proper divisor of $2 q+1$

$$
S(\Lambda)^{2}=\left(0 ; t ;[n, 2 r],\{(-1)) \quad r=\frac{2 q+1}{n}\right.
$$

$C_{2 n}$; n a propo divisor of $2 g$

$$
s(1)=\left(0 ;+;\left[2 n, 2^{r}\right] ;\{(-) 4) ; r=2 g / n\right.
$$

D_{n} : n an even divisor of 4 g

$$
\begin{aligned}
& s(1)=\left(0 ; t ;\left[2^{r}\right] ;\left\{\left(n ; 2^{s}-2\right)\right\} ; s=\frac{4 g}{n}+2-2 r\right. \\
& \operatorname{Dn} / 2 x(2 ; n \text { an even divisor of } 4 g+2 \\
& s(1)=\left(0 ;+\left[2^{r}\right] ;\left\{\left(\frac{n}{2}, 2^{s}\right) 4\right) ; s=\frac{4 g+2}{n}+2-2 r\right. \\
& \text { (Buj<larce-Etayo }\text { - Gambol - Gromedzhi; } 1990)
\end{aligned}
$$

Graphically: Consider Configurations

The following configurations show actions connecting ell the stab induced by anticonformel involutions

THANK YOU

