Counting transversals in group multiplication tables

Rudi Mrazović

University of Zagreb
Joint work with Sean Eberhard and Freddie Manners

24 June 2021

8th European Congress of Mathematics

2	
hsieree	UIP-2017-05-4129 (MUNHANAP)

Transversals in Latin squares

Definition
 A transversal in an $n \times n$
 Latin square is a set of n cells in distinct rows and columns and having different symbols.

1	0	3	2	4
3	1	0	4	2
4	3	2	1	0
0	2	4	3	1
2	4	1	0	3

Does every Latin square have a transversal?

Latin squares with no transversals

n even, L cyclic $n \times n$ Latin square

$$
L_{i j}=(i+j) \quad \bmod n
$$

	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

If $\{(x, \pi(x)): x=0, \ldots, n-1\}$ is a transversal, then modulo n :

$$
n / 2 \equiv \sum_{x} L_{x, \pi(x)}=\sum_{x}(x+\pi(x))=\sum_{x} x+\sum_{x} \pi(x) \equiv 0 .
$$

Conjectures about transversals

Conjecture (Ryser, 1967)

For n odd, every $n \times n$ Latin square has a transversal.

Conjecture (Brualdi-Stein, 1975)

Every $n \times n$ Latin square has a partial transversal of order $n-1$ (i.e. $n-1$ cells in distinct rows and columns and having different symbols).

Group multiplication table

- G finite group of order n. Multiplication table of G is the $n \times n$ Latin square $L(G)$ such that $L(G)_{x, y}=x y$.
- The necessary condition we've seen for the cyclic Latin square ($G=\mathbf{Z}_{n}, n$ even) can be generalized.
- Let G^{\prime} be the commutator subgroup of G (subgroup generated by all $[x, y]$ where $x y=y x[x, y])$.
- If $\{(x, \pi(x)): x \in G\}$ is a transversal, then modulo G^{\prime} :

$$
\prod_{x \in G} x \equiv \prod_{x \in G} L(G)_{x, \pi(x)}=\prod_{x \in G} x \pi(x) \equiv \prod_{x \in G} x \prod_{x \in G} \pi(x) \equiv\left(\prod_{x \in G} x\right)^{2}
$$

Hall-Paige condition

A finite group G satisfies Hall-Paige condition if $\prod_{x \in G} x \in G^{\prime}$.

Hall-Paige conjecture

Conjecture (Hall-Paige, 1955) Theorem (Wilcox-Evans-Bray, 2009)

If G satisfies the Hall-Paige condition then the multiplication table of G has a transversal.

The proof used the classification of finite simple groups and computer algebra.

Counting transversals in group multiplication tables

Let $\operatorname{tran}(G)$ be the number of transversals in $L(G)$.

Conjecture (Vardi 1991, Wanless 2011)

For n odd

$$
\operatorname{tran}\left(\mathbf{Z}_{n}\right)=(1 / e+o(1))^{n} n!
$$

Heuristic

Again $G=\mathbf{Z}_{n}, n$ odd. Let $\pi: \mathbf{Z}_{n} \rightarrow \mathbf{Z}_{n}$ be a random bijection and $\psi(x)=x+\pi(x)$.

Zeroth approximation

$$
\psi \approx \operatorname{random} \text { function } \Longrightarrow \operatorname{tran}\left(\mathbf{Z}_{n}\right) \approx n!\cdot n!/ n^{n}
$$

First approximation

$\psi \approx$ random function

$$
\Longrightarrow \operatorname{tran}\left(\mathbf{Z}_{n}\right) \approx n!\cdot n!/ n^{n} \cdot n
$$

$$
\sum_{x \in \mathbf{Z}_{n}} \psi(x)=0
$$

Let $x, y \in \mathbf{Z}_{n}$ with $x \neq y$. If $\psi_{1}: \mathbf{Z}_{n} \rightarrow \mathbf{Z}_{n}$ is a random function such that $\sum_{x \in \mathbf{Z}_{n}} \psi_{1}(x)=0$, then $\mathbf{P}\left(\psi_{1}(x)=\psi_{1}(y)\right)=1 / n$. However,

$$
\mathbf{P}(\psi(x)=\psi(y))=\mathbf{P}(\pi(x)-\pi(y)=y-x)=1 /(n-1) .
$$

Principle of maximum entropy

Let coll $f=\#\left\{x, y \in \mathbf{Z}_{n}: x \neq y, f(x)=f(y)\right\}$.

$$
\mathbf{E} \operatorname{coll} \psi_{1}=\binom{n}{2} \frac{1}{n}=\frac{n-1}{2} \quad \mathbf{E} \operatorname{coll} \psi=\binom{n}{2} \frac{1}{n-1}=\frac{n}{2}
$$

Second approximation

$\psi \approx$ random function

$$
\sum_{x \in \mathbf{Z}_{n}} \psi(x)=0 \quad \Longrightarrow \operatorname{tran}\left(\mathbf{Z}_{n}\right) \approx n!\cdot n!/ n^{n} \cdot n \cdot \ldots
$$

$\mathbf{E} \operatorname{coll} \psi=n / 2$
Let $\psi_{2} \sim$ LHS. Is there a natural/default choice for the distribution of ψ_{2} ?

Principle of maximum entropy

Principle of maximum entropy

The distribution which best represents our knowledge is the one with the maximum entropy.

Let $p_{f}=\mathbf{P}\left(\psi_{2}=f\right)$ and $H=\left\{f: \sum_{x \in \mathbf{Z}_{n}} f(x)=0\right\}$.
maximize: $\quad \sum p_{f} \log \left(1 / p_{f}\right)$
subject to: $\left(p_{f}\right)$ probability distribution

$$
\begin{aligned}
& p_{f}=0 \text { if } f \notin H \\
& \sum p_{f} \operatorname{coll} f=n / 2
\end{aligned}
$$

Solution is the Gibbs distribution:

$$
p_{f} \approx \frac{1_{H}(f)}{e^{1 / 2}|H|} e^{\operatorname{coll} f / n}
$$

Abelian result

Second approximation

$\psi \approx$ random function

$$
\sum_{x \in \mathbf{Z}_{n}} \psi(x)=0 \quad \Longrightarrow \operatorname{tran}\left(\mathbf{Z}_{n}\right) \approx n!\cdot n!/ n^{n} \cdot n \cdot e^{-1 / 2}
$$

$$
\mathbf{E} \operatorname{coll} \psi=n / 2
$$

Theorem (Eberhard-Manners-M., 2019)

For n odd we have

$$
\operatorname{tran}\left(\mathbf{Z}_{n}\right)=\left(e^{-1 / 2}+o(1)\right) n!^{2} / n^{n-1}
$$

Nonabelian heuristic

G a group of order n satisfying the Hall-Paige condition. Again, $\pi: G \rightarrow G$ is a random bijection and $\psi(x)=x \pi(x)$.

Zeroth approximation

$$
\psi \approx \operatorname{random} \text { function } \Longrightarrow \operatorname{tran}(G) \approx n!\cdot n!/ n^{n}
$$

First approximation

$$
\psi \underset{\prod_{x \in G} \psi(x) \in G^{\prime}}{\approx \text { random function }} \Longrightarrow \operatorname{tran}(G) \approx n!\cdot n!/ n^{n} \cdot n /\left|G^{\prime}\right|
$$

Second approximation

$\psi \approx$ random function

$$
\prod_{x \in G} \psi(x) \in G^{\prime} \quad \Longrightarrow \operatorname{tran}(G) \approx n!\cdot n!/ n^{n} \cdot n /\left|G^{\prime}\right| \cdot e^{-1 / 2}
$$

$$
\mathbf{E} \operatorname{coll} \psi=n / 2
$$

Nonabelian result

Theorem (Eberhard-Manners-M., 2020)

Let G be a group of order n satisfying the Hall-Paige condition. Then

$$
\operatorname{tran}(G)=\left(e^{-1 / 2}+o(1)\right) n!^{2} / n^{n-1}\left|G^{\prime}\right|
$$

Corollary

The Hall-Paige conjecture holds for all groups G of order greater than 10^{10}.

Theorem

Let $n=2^{k}$. For k sufficiently large
$\operatorname{tran}\left(\mathbf{Z}_{2}^{k}\right)>\operatorname{tran}(G) \quad$ for all other G of order n.

