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Transversals in Latin squares

A transversal in an n X n

Latin square is a set of n cells 4 @

in distinct rows and columns
and having different symbols.

Does every Latin square have a transversal?
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Latin squares with no transversals

0] 0 1 2 4 5

n even, L cyclic n x n Latin 11121314510
square

21 2 3 4 5 0 1

Lij=(i+j) modn 303450 1]2

41 4 5 0 1 2 3

5| 5 0 1 2 3 4

If {(x,m(z)) : 2 =0,...,n— 1} is a transversal, then modulo n:

n/2 = Z Lyr@) = Z(x +7(x)) = Z:U + ZT&'(,I) =0.

T
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Conjectures about transversals

Conjecture (Ryser, 1967)

For n odd, every n x n Latin square has a transversal.

Conjecture (Brualdi-Stein, 1975)

Every n x n Latin square has a partial transversal of order
n—1 (i.e. n — 1 cells in distinct rows and columns and having
different symbols).
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Group multiplication table

o G finite group of order n. Multiplication table of G is the
n x n Latin square L(G) such that L(G),,, = zy.

@ The necessary condition we’ve seen for the cyclic Latin
square (G = Zy, n even) can be generalized.

e Let G’ be the commutator subgroup of G (subgroup
generated by all [z, y] where xy = yzx[z,y]).
o If {(z,m(x)) : x € G} is a transversal, then modulo G":

[Iz=]] 2 @opw = [[or@) = [[ 2 ][] 7(=) = (H 3:)2

zeG zeG zeG zeG zeG zeG

Hall-Paige condition

A finite group G satisfies Hall-Paige condition if [, .,z € G'.
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Hall-Paige conjecture

Conjecture (Hall-Paige, 1955)

Theorem (Wilcox—Evans—Bray, 2009)

If G satisfies the Hall-Paige condition then the multiplication
table of G has a transversal.

The proof used the classification of finite simple groups and
computer algebra.
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Counting transversals in group multiplication tables

Let tran(G) be the number of transversals in L(G).

Conjecture (Vardi 1991, Wanless 2011)

For n odd
tran(Z,) = (1/e + o(1))"nl.
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Heuristic

Again G = Z,, n odd. Let 7: Z,, — Z,, be a random bijection
and Y(z) =z + ().

Zeroth approximation

1 ~ random function = tran(Z,) =~ n!-n!/n"

| \

First approximation

1 =~ random function

> wez, (@) =0

Let z,y € Z,, with x # y. If ¢1: Z,, — Z,, is a random function
such that .z 1(z) =0, then P(y1(z) = ¢1(y)) = 1/n.

However,

P((z) = ¢(y)) = P(n(z) —7(y) =y —2) = 1/(n - 1).

= tran(Z,) ~n!-n!/n" -n
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Principle of maximum entropy

Let coll f = #{z,y € Zp, : x # y, f(x) = f(y)}.

|3

1 n-1 1
E coll ¢y = (;) =z 5 E coll ¢ = (’;) - =
n n —

Second approximation

1) ~ random function
Seez, V(@) =0 = tran(Z,) ~n!-nl/n" n-...
Ecolly =n/2

Let 99 ~ LHS. Is there a natural/default choice for the
distribution of 57
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Principle of maximum entropy

Principle of maximum entropy

The distribution which best represents our knowledge is the one
with the mazimum entropy.

Let pf =P(¢p = f)and H = {f : Yz f(x) =0}

maximize : pr log(1/py)
subject to: (py) probability distribution
pr=0 it f¢ H
pr coll f =n/2
Solution is the Gibbs distribution:

~ 1H(f) coll f/n
by~ 61/2|H‘e
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Abelian result

Second approximation

1) =~ random function
Zwezn P(z) =0 — tran(Z,) =n!-n!/n" -n- e 1/2
Ecolly =n/2

Theorem (Eberhard-Manners-M., 2019)

For n odd we have

tran(Zy,) = (e~ /% 4+ o(1))n!?/n" 1.
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Nonabelian heuristic

G a group of order n satisfying the Hall-Paige condition.
Again, m: G — G is a random bijection and ¢ (z) = 7 (x).

Zeroth approximation

1 ~ random function = tran(G) =~ n!-n!/n"

First approximation

1 ~ random function

[lecc¥(z) € &'

= tran(G) ~n!-n!/n"-n/|G|

Second approximation

1) ~ random function
[Leg¥(z) €G = tran(G) = n!-nl/n™ n/|G'| - e}/
Ecolly =n/2
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Nonabelian result

Theorem (Eberhard-Manners—M., 2020)

Let G be a group of order n satisfying the Hall-Paige condition.
Then
tran(G) = (e~ /2 + o(1))n!? /0" ||

| A\

Corollary
The Hall-Paige conjecture holds for all groups G of order
greater than 1010,

v

Theorem

Let n = 2F. For k sufficiently large

tran(Z%) > tran(G) for all other G of order n.

N
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