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Numerical computation of the complex zeros of Bessel and Hankel functions

Type of cylinder functions considered

Bessel functions of first kind Jν(z)
Bessel functions of second kind Yν(z)
Hankel functions H(1)(z) and H(2)(z)
General combinations of Bessel and Hankel functions

αJν(z) + βYν(z)

αH(1)(z) + βH(2)(z)
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Historical background

J. Segura. Reliable computation of the zeros of solutions of
second order linear ODEs using a fourth order method. SIAM
J. Numer. Anal., 48(2):452–469, 2010.
J. Segura. Computing the complex zeros of special functions.
Numer. Math., 124(4):723–752, 2013.
A. Gil and J. Segura. On the complex zeros of airy and bessel
functions and those of their derivatives. Anal. Appl.,
12(5):573–561, 2014.
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Key elements of the algorithm

Given a function y(x) defined to be a solution of a second order
linear differential equation

Qualitative analysis of the approximate Liouville-Green Stokes
lines (SLs) and anti-Stokes lines (ASLs) for the differential
equation.
The structure of the exact zeros will follow very closely the
ASLs.
Combine this analysis with the application of a fixed point
method ωn+1 = T (ωn) (of order four) and carefully selected
step functions H±(ω) (for displacement between zeros).
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Outline of the algorithm

1 Divide the complex plain in disjoint domains separated by the
principal SLs and ASLs and compute in each domain.

2 In each domain, start away from the principal SLs and close to
the principal ASLs and/or a singularity (if any) and iterate
with T (ω) until a first zero is found. If a value outside the
domain is reached, stop the search in that domain.

3 Alternate between the fixed point method T (ω) and the
displacement function H±(ω) in the direction of approach to
the principal SLs.
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Graphic example

Principal Stokes and anti-Stokes lines of a general function Yν(z)
for positive ν.
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Graphic example
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We start at a point on the positive real axis or above it and away
from the Stokes lines.
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We iterate the process using the fixed point method T (ω) and the
step function H±(ω) conveniently to find the subsequent zeros.
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Graphic example
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The root finding method stops when a principal Stokes line is
reached.
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Graphic example
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We start again the process above the negative real axis until
another principal Stokes line is reached.
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Graphic example
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We proceed now to do the same process along the eye-shaped
anti-Stokes line.
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Graphic example
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When a Stokes line is reached, we go back and proceed again in
the other direction.
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Graphic example
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We repeat the process for the negative imaginary part of the
complex plane, obtaining the rest of the zeros.
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The MATLAB routine

[nz,zer,ierr]=zercylg(a,icho,alpha,beta,Lx,Ly)

Input
a : order of the function
icho : choice of the function
alpha, beta : parameters for the combinations
Lx, Ly : to indicate the size of the rectangle
[−Lx,Lx] × [−Ly,Ly]

Output
nz : number of zeros found
zer : array with the zeros found
ierr : error flag
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Some examples of the performance

zercylg(12.3,2,1,1,15,15)

Left: plot of the zeros of Y12,3(z).
Right: contour plot of the modulus and phase of the function.
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Some examples of the performance

zercylg(-7.1,3,1,1,15,15)

Left: plot of the zeros of H(1)
−7,1(z).

Right: contour plot of the modulus and phase of the function.
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Some examples of the performance

zercylg(26.3,5,complex(10.5,1.0),complex(1.0,10.5),1,1)

Left: plot of the zeros of αJ26,3(z) + βY26,3(z).
Right: contour plot of the modulus and phase of the function in
the box [0,8, 1,2] × [−0,4, 0,4]
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Testing the efficiency and accuracy

Tabulated values from other sources.
Maple approximations in extended precision.
Comparison with the ZEBEC algorithm.
P. Kravanja, O. Ragos, M.N. Vrahatis, and F.A. Zafiropoulos. ZEBEC: A mathematical software package

for computing simple zeros of Bessel functions of real order and complex argument. Comput. Phys.

Commun.,113:220–238, 1998.

A. Gil, D. Ruiz-Antolín, J. Segura., An algorithm for
computing the complex zeros of Bessel and Hankel functions

In progress.
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Thank you for your time


