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Fractional elliptic equations

{(—A)Su =hu inQ

u=0 in RV \ Q (£)

where s € (0,1) and Q C RV is open and bounded with N > 2

0 € 09 and 99 is of class C1'! in a neighbourhood of 0

The fractional Laplacian (—A)* of a function u: RV — R is defined as

(Za)u(E) = |E*a(6),

where U is the Fourier transform of u, i.e.

1 .
(&) = Fu(§) = ——— e ™ €u(x) dx.
(€) = Fule) = gy [, € ul
Problem: strong unique continuation property and local asymptotics of solutions (blow-

up analysis and quantization of the possible vanishing orders) at 0 € 9.



Weak formulation of (E;)

Let be the completion of C>°(RN) w.r.t. the norm induced by the scalar product

(—A)* can be extended to a bounded linear operator from D*?(RN) to its dual (D%2(RN))*,
the Riesz isomorphism of DS2(RV):

(Ds2(RN))* <(—A)5U, V>'Ds,2(RN) = (U7 V)DS.Z(RN).

Definition

A weak solution to (Es) is a function u € D*2(RN) s.t. u(x) =0 for a.e. x € RV \ Q and

(U, ) ps2@mny = /Qh(x)u(x)cp(x) dx for all ¢ € C2°(Q).



Unique continuation

Let F be a family of functions (e.g. the family of solutions of some equation).

Definition

e F enjoys the strong unique continuation property (SUCP) if no function in F, besides
possibly the zero function, has a zero of infinite order.



Unique continuation

Let F be a family of functions (e.g. the family of solutions of some equation).

Definition
e F enjoys the strong unique continuation property (SUCP) if no function in F, besides
possibly the zero function, has a zero of infinite order.

e F enjoys the weak unique continuation property (WUCP) if no function in F, besides
possibly the zero function, vanishes on an open set.



Unique continuation for second order elliptic equations

F = set of solutions to
~Au=Vu inQcRV

e Carleman (1939): n =2, V bounded
e Aronszajn (1957): n >3
¢ Jerison-Kenig (1985): V € L2

loc
e Garofalo-Lin (1986): 2nd order elliptic operators with variable coefficients; admits the
case V(x) = %= with 0 < m < 2 (SUCP fails with m > 2)

= X

e Fabes-Garofalo-Lin (1990): V in some Kato class
e Wolff (1992): WUCP for solutions to |Au| < V|u| + W|Vul, with V € L2 woe Ll

loc ! loc

e Koch-Tataru (2001): more general elliptic operators



Unique continuation for second order elliptic equations

Two approaches to treat
unique continuation

Garofalo and Lin

Carleman

Almgren monotonicity

weighted a priori
inequalities

local doubling
properties




SUCP from interior points (e.g. 0 € ) via monotonicity for —Au = Vu

Frequency function

_ rfB,(|Vu|2 — Vuz) dx

N(r) faB, u? dS
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SUCP from interior points (e.g. 0 € ) via monotonicity for —Au = Vu

Frequency function

_ rfB,(|Vu|2 — Vi) dx

2 faB, u? dS

SUCP

N'(r) > integrable function [ N is bounded




SUCP from interior points (e.g. 0 € ) via monotonicity for —Au = Vu

Frequency function Doubling condition
N(r) = "fB,(|V”|2* Vuz) dx / u? dx < C u? dx
r)= Ton 25 By, Br
" C > 0 independent of r

SUCP

N'(r) > integrable function [ N is bounded




To differentiate N ...

one integrates the Rellich-Necas identity
div (|[Vul’x —2(Vu - x)Vu) = (N = 2)|Vu]> = 2(Vu - x)Au

on balls B, C Q, obtaining a Pohozaev-type identity

N -2 0
—7/ |V ul? dx + £/ |Vul?dS = r/ !
2 Jp 2 Jos, 0B,

2
dS + / Vu(Vu - x) dx.
aV B
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To differentiate N ...

one integrates the Rellich-Necas identity
div (|[Vul’x —2(Vu - x)Vu) = (N = 2)|Vu]> = 2(Vu - x)Au

on balls B, C Q, obtaining a Pohozaev-type identity
N—2
—7/ |V ul? dx + £/ |Vul?dS = r/
2 Jp 2 Jos, 0B,

e this requires some regularity for u (e.g. u € H?)

Ju

2
5 dS—&—/B Vu(Vu - x) dx.

P

But

e if0 e 90 ~- loss of regularity
interference with the geometry of the domain

0

extra terms arising in the integration by parts

and appearing the rest of N”. e



Unique continuation from boundary points

Adolfsson-Escauriaza-Kenig (1995), Adolfsson-Escauriaza (1997),
Kukavica-Nystrom (1998), Tao—Zhang (2008), F.-Ferrero (2013): under
homogeneous Dirichlet conditions

Tao-Zhang (2005), Dipierro-F.-Valdinoci (2020): under Neumann type conditions

Fall-F.-Ferrero-Niang (2019): unique continuation from Dirichlet-Neumann junctions
for planar mixed boundary value problems

De Luca-F. (2021): unique continuation from the edge of a crack.



Unique continuation for fractional Schrodinger equations

Fall-F. (2014): SUCP and UCP from sets of positive measure for

A
(—=A)’u(x) — WU(X) = h(x)u(x) + f(x, u(x)) with s € (0,1)
X
via frequency function methods for the Caffarelli-Silvestre extension;
Fall-F. (2015): analogous results for relativistic Schrédinger operators;

Riiland (2015): SUCP for fractional Laplacians with power s € (0,1) in presence of
rough potentials, via Carleman inequalities for the Caffarelli-Silvestre extension;

Yu (2017): fractional operators with variable coefficients.

Yang (2013), Seo (2014-2015), F.-Ferrero (2020), Garcia-Ferrero-Riiland (2019):
higher order (s > 1) fractional equations.



Caffarelli-Silvestre extension

RQ_’“:{Z:(XJ):XERN, t > 0}

DL2(RIYT; £172%) := completion of C°(RY™) w.r.t. the norm

1/2
”WHDL?(RﬁH;tl*?S) = (f]Rf“ t1_25|VW(X7 t)|2dX dt)

e Jatrace map Tr:DM2(RIYT; t1725) — Ds2(RN)
o Yue DW2(RY) 3! H(u) € DM2(RYT; t1-25)  weakly solving

div(t'=>VH(u)) =0 in RYTL
TrH(u)=u on ORY*! = RN x {0}.

10



Caffarelli-Silvestre extension

. oH . .
_ m tl—zs#(x, £) = ko(~A)u(x) in (D2(RY))*  where ks = ;37 > 0.
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Caffarelli-Silvestre extension

, o OH(u . N _
- tI_l)n& th 25%(& t) = ks(—A)u(x) in (D*(RN)) where ks = 222(,11;()5) > 0.
\
div(t'=*VU) =0 in RN
u solves (—A)su=huin Q < U= H(u) solves { U(x,0) = u in RV,
— lim t1_25‘2)—lt/(x7 t) = ksh(x)u(x) in €,

t—0t

in a weak sense,
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Caffarelli-Silvestre extension

, o OH(u . N _
- tI_l)n& th 25%(& t) = ks(—A)u(x) in (D*(RN)) where ks = 222(,11;()5) > 0.
\
div(t'=*VU) =0 in RN
u solves (—A)su=huin Q < U= H(u) solves { U(x,0) = u in RV,
— lim t1_25‘2)—lt/(x7 t) = ksh(x)u(x) in €,

t—0t

in a weak sense, i.e. Tr U = u and / t1=3VU - Vo dtdx = ks / huTr ¢ dx
JQ

Rﬁ+1
for all ¢ € DV2(RYTL £1-2%) s.t. supp(Try) C Q.
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Caffarelli-Silvestre extension

diw (EVU) =0

_mk"”abu =K RTV
0

TeU-0 im R\ Q

We are dealing with a problem with mixed boundary conditions!

12



Monotonicity formula around 0 € 02 for the extended problem

Additional difficulties in the development of a monotonicity argument around points located at
Dirichlet-Neumann junctions:

interference
with the geometry
of the domain

lack of regularity

junctions

Double approximation procedure:

e we approximate the potential h

We straight 092 through
a diffeomorphic
deformation.

with potentials vanishing near
the boundary;

e we approximate the Dirichlet N
dimensional region with smooth
(N + 1)-sets with straight
vertical boundary.

13



A diffeomorphism to straighten the boundary

Inspired by [Adolfsson-Escauriaza (1997)] we construct F: RV*1 — RN+1 which is a
diffeomorphism of class C!! from Bg to U = F(Bg) for some U open neighbourhood of 0,
s.t. F(x',0,0) = (x’, g(x’),0) where B, N9 = {(x’,xn) € Br : xn = g(x)}

W = Uo F is solution to

—div (t*=2AVW) =0 in B,
limeor (t1"2AVW -v) = ksh Tt W in Ty,
W=0 in FE,

where v = (0,0,...,0,—1), Ais an (N + 1) x (N + 1) variable coefficient matrix (not
depending on t) (related to the Jacobian matrix of F), and

h(y) = det Jr(y’, yn,0)h(F(y,0)), y € Tg.

14



A diffeomorphism to straighten the boundary

Crucial feature of the matrix A

D(y) | 0
25 ( 0 |1+ 0(y'P)+ O(m) )

where
dus +O0YP) +0w) | O(m)

O(ym) | 130(y'P) + O(m)

D(y',yn) =

15



Double approximation procedure

Assume that there exists p > 2% such that h € WP(Q).

e Take a sequence h, € C* (ﬁ) such that h, — hin WLP(Iz).

16
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Double approximation procedure

Assume that there exists p > 2% such that h € WP(Q).

e Take a sequence h, € C™ (ﬁ) such that h, — hin WLP(Iz).

£
e Construct a sequence of approx-
imating domains U, with section T,
like:
YV z=(x,t) €, and n large T e 65 mosen
A(y)z-v >0 on v, o> 0 In

VANISHING AS m —>o00
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Approximating problems in the domains i/,

—div (tleSAVU,,) =0 in U,,
lim; o+ (tl_zsAVU,, - u) = ksNnh, Tr U, in op,
U, = G, in 7, U,

where

e G, € C=(BE\T}), G, — W strongly in HY(B;; t*-2) and G, =0 on v,

e 1), are cut-off functions vanishing around 9l .

17



Pohozaev identity for U,

U, has enough regularity to integrate a Rellich—Necas identity ~~

12
r/ t_lf2SAVUn VUn d572r/ t1725|AVUn l/| ds
Ju,nos, Ju,noB, K

S|
— 2H5/ —nphy TrU,(DV, TrU, - y) dy
o,NB,
:/ =B AVU, - VU, divB dz — 2/ 172 J5(AV U,) - VU, dz
Uu,NB, U,NB,

4 / t'=2(dAV U,V U,) - Bdz + (1 — 25)/ tlfzsgAVUn -VU,dz
U,NB, U,NB, H

» t1725 R
+ / 10, Un2(Av - v)(Az - v) dS
Jv,NB,

M

where B(z) = 2Yz (7)) = A(l);)‘f'z, a = det JE.
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Pohozaev identity for U,

U, has enough regularity to integrate a Rellich—Necas identity ~~

2
r / =B AV U, - VU, dS — 2r / p-2s AV U -V o
JUu,NoB, Ju,noB, 12

S|
— 2H5/ —nphy TrU,(DV, TrU, - y) dy
o,NB,
:/ =B AVU, - VU, divB dz — 2/ 172 J5(AV U,) - VU, dz
Uu,NB, U,NB,

4 / t'=2(dAV U,V U,) - Bdz + (1 — 25)/ tlfzsgAVUn -VU,dz
U,NB, U,NB, H

d t1725 N
+ / 10, Un2(Av - v)(Az - v) dS
Jv,NB,

M

where 3(z) = Aly)z. u(z) = A(I);)\iz’ a = det Jr. 0
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Pohozaev “inequality” for U

U, — W strongly in HY(Bg; t17%)

4

. 2
5/ t1—2SAVW-VWd5—r/ p-2s AVW -V o
o+ B,

orBf H
+ﬁ/ (v5-5’+ﬁdiv5’) |Trvv|2dy_’i’/ FITe W |2ds’
1
> 5/ tImEAVW - VW divﬁdzf/ 2 Jg(AVW) - VW dz
B J B

1 1-2
= / t'B(dAVWVY W) - B dz + TS -2 AVW . YW dz
+ B; H

19



Frequency function

For small r > 0 define

1 _ g
D(r) = -5 </B+ t! 2SAVW'VWdzfns/r7 h|TrW|2dy>

1

A = —wrrs /S P WA (2) dS

where S;F = {z = (t,x) € 9B, : t > 0}.

well defined for r > 0 sufficiently small if W # 0.

20



Monotonicity ~~ unique continuation

e Our Pohozaev “inequality” =—

.vl? N -2
/ t1—2SM + O(r—1+5) D(r)—|— 5 SH(r) as r — 0+
S+ 12

21



Monotonicity ~~ unique continuation

e Our Pohozaev “inequality” =—

2 AVW - v|? N—2
D'(r) > —=; / -2 AW o100y p(y + L2220 as v 0t
S+

: p 2

e N’ > integrable function: enough to prove the existence of ~ = lim, o+ N(r)
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D'(r) > —=; / -2 AW o100y p(y + L2220 as v 0t
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: p 2

e N’ > integrable function: enough to prove the existence of ~ = lim, o+ N(r)

e In particular NV is bounded near 0
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Integrate between r and 2r ~~ doubling condition
H(2r) < CH(r)

~ unique continuation for the extended problem
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Monotonicity ~~ unique continuation

e Our Pohozaev “inequality” =—

2 AVW - v|? N —2
D)2 o [ 8B 4 090y D) + B2 H()| as s 0r
S+

: u 2

e N’ > integrable function: enough to prove the existence of ~ = lim, o+ N(r)

e In particular NV is bounded near 0

H 2 .
W—;N%—O(l) asr— 0.

Integrate between r and 2r ~~ doubling condition
H(2r) < CH(r)
~ unique continuation for the extended problem

but not yet for the original nonlocal problem

21



Blow-up analysis

WA (z) = W(Az) N bounded = {w*},c(0.7) bounded in HY(B;"; t'~2°)
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Blow-up analysis

WA (z) = W(Az) N bounded = {w*},c(0.7) bounded in HY(B;"; t'~2°)
H(A)
—div (£17#A(X)Vw?) =0 in B
Jim. (t72AN)VW? - v) = K APA(N) Trwd on T /S O3 (AW (0)]7 dS = 1
=0 on f '

w? = win HY(B;; t1729), with
—div (t'"*Vw) =0 in B
lim (t'7224) =0 only O T w?(0)dS =1

t—0t S+
1
w=20 on r1+

22



Characterization of the limit profiles w

The frequency function associated to w is constantly equal to v =
w(rf) = r'y(9), re(0,1), Sy
where 1) is and eigenfunction of the problem

—diven (035 Vent)) = pby, 3% in SY,
v=0 on SN=1 N {6y > 0}, (EPsn)
limg,,,,—o+ Oy;3 Vewt - v =0 on SN=1 N {fy < 0},

on the half-sphere SQ/ ={(01,...,0n,0n11) €SN Opny1 > 0.

23



Weighted eigenvalue problem on S_’\F’ with mixed Dirichlet-Neumann b. c.

—divgn (0335 Vent)) = pby; 3% in SY,
=0 on SN=1 N {6y > 0}, (EPSQ)

limg,,,, o+ O3 Vend - v =0 on SN {fy < 0},

Classical spectral theory ~~ 3 a diverging sequence { ik }ken of real eigenvalues with finite
multiplicity My
pk = (k+s)(k+N—-s), keN.

24



Blow-up analysis — quantization of possible vanishing orders — SUCP

Come back to U = W o F~1:

Let U # 0 be such that U = H(u) with v satisfying (Es). Then there exists ko € N and an
eigenfunction Y’ of problem (EPgy) associated to the eigenvalue i, = (ko + 5)(ko + N —s)

such that
U(\z)
Ak0+s

— |z|oty (z) in HY(B];t172°) as A — 0™.

2]
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Blow-up analysis — quantization of possible vanishing orders — SUCP

Come back to U = W o F~1:

Let U # 0 be such that U = H(u) with v satisfying (Es). Then there exists ko € N and an
eigenfunction Y’ of problem (EPgy) associated to the eigenvalue i, = (ko + 5)(ko + N —s)

such that

U()\Z) V4 i -
ots |z|fotey (z) in HY(B;"; t17%) as A — 0.

4

If U= H(u) with u satisfying (E5) and U(z) = O(|z|¥) as z — 0, for any k € N, then U =0
in R

25



Asymptotics and SUCP for the fractional problem

Let Q be a bounded domain in RN xo € 0N s.t. 9Q is C*! in a neighbourhood of xg.
Let h € WLP(Q) for some p > &£ and let u € D?(RN), u# 0, be a weak solution to (E;).

Then there exists kg € N and an elgenfunction Y of problem (EPgy) associated to the
eigenvalue jux, = (ko + s)(ko + N — s) such that

u(xp + Ax s . s
% |’<°+Y(| ) in H5(B}) as A — 0.
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Asymptotics and SUCP for the fractional problem

Let Q be a bounded domain in RN xo € 0N s.t. 9Q is C*! in a neighbourhood of xg.
Let h € WLP(Q) for some p > &£ and let u € D?(RN), u# 0, be a weak solution to (E;).

Then there exists kg € N and an elgenfunction Y of problem (EPgy) associated to the
eigenvalue jux, = (ko + s)(ko + N — s) such that

u(xo + Ax)

N — |x|fety (| L ) in H*(B;) as A — 0.

4

If u€ D*2(RV) is a weak solution to (E;) such that u(x) = O(|x — x0|¥) as x — x for any
k € N, then u=0in RV,
26



