Local asymptotics and unique continuation
 from boundary points for fractional equations

Joint work with A. De Luca and S. Vita

Veronica Felli
University of Milano - Bicocca

8ECM Portoroz, June 23rd, 2021
Minisymposium Nonlocal operators and related topics

Fractional elliptic equations

$$
\begin{cases}(-\Delta)^{s} u=h u & \text { in } \Omega \tag{s}\\ u=0 & \text { in } \mathbb{R}^{N} \backslash \Omega\end{cases}
$$

where $s \in(0,1)$ and $\Omega \subset \mathbb{R}^{N}$ is open and bounded with $N \geq 2$
$0 \in \partial \Omega$ and $\partial \Omega$ is of class $C^{1,1}$ in a neighbourhood of 0
The fractional Laplacian $(-\Delta)^{s}$ of a function $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is defined as

$$
\widehat{(-\Delta)^{s}} u(\xi)=|\xi|^{2 s} \widehat{u}(\xi)
$$

where \widehat{u} is the Fourier transform of u, i.e.

$$
\widehat{u}(\xi)=\mathcal{F} u(\xi):=\frac{1}{(2 \pi)^{N / 2}} \int_{\mathbb{R}^{N}} e^{-i x \cdot \xi} u(x) d x .
$$

Problem: strong unique continuation property and local asymptotics of solutions (blowup analysis and quantization of the possible vanishing orders) at $0 \in \partial \Omega$.

Weak formulation of $\left(E_{s}\right)$

Let $\mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right)$ be the completion of $C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{N}\right)$ w.r.t. the norm induced by the scalar product

$$
(u, v)_{\mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right)}=\int_{\mathbb{R}^{N}}|\xi|^{2 s} \widehat{v}(\xi) \widehat{u}(\xi) d \xi .
$$

$(-\Delta)^{s}$ can be extended to a bounded linear operator from $\mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right)$ to its dual $\left(\mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right)\right)^{*}$, the Riesz isomorphism of $\mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right)$:

$$
\left(\mathcal{D}^{\left.s, 2\left(\mathbb{R}^{N}\right)\right)^{*}}\left\langle(-\Delta)^{s} u, v\right\rangle_{\mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right)}=(u, v)_{\mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right)}\right.
$$

Definition

A weak solution to $\left(E_{s}\right)$ is a function $u \in \mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right)$ s.t. $u(x)=0$ for a.e. $x \in \mathbb{R}^{N} \backslash \Omega$ and

$$
(u, \varphi)_{\mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right)}=\int_{\Omega} h(x) u(x) \varphi(x) d x \quad \text { for all } \varphi \in C_{c}^{\infty}(\Omega)
$$

Unique continuation

Let \mathcal{F} be a family of functions (e.g. the family of solutions of some equation).

Definition

- \mathcal{F} enjoys the strong unique continuation property (SUCP) if no function in \mathcal{F}, besides possibly the zero function, has a zero of infinite order.

Unique continuation

Let \mathcal{F} be a family of functions (e.g. the family of solutions of some equation).

Definition

- \mathcal{F} enjoys the strong unique continuation property (SUCP) if no function in \mathcal{F}, besides possibly the zero function, has a zero of infinite order.
- \mathcal{F} enjoys the weak unique continuation property (WUCP) if no function in \mathcal{F}, besides possibly the zero function, vanishes on an open set.

Unique continuation for second order elliptic equations

$\mathcal{F}=$ set of solutions to

$$
-\Delta u=V u \quad \text { in } \Omega \subset \mathbb{R}^{N}
$$

- Carleman (1939): $n=2, V$ bounded
- Aronszajn (1957): $n \geq 3$
- Jerison-Kenig (1985): $V \in L_{\text {loc }}^{N / 2}$
- Garofalo-Lin (1986): 2nd order elliptic operators with variable coefficients; admits the case $V(x)=\frac{1}{|x|^{m}}$ with $0 \leq m \leq 2$ (SUCP fails with $m>2$)
- Fabes-Garofalo-Lin (1990): V in some Kato class
- Wolff (1992): WUCP for solutions to $|\Delta u| \leq V|u|+W|\nabla u|$, with $V \in L_{\text {loc }}^{N / 2}, W \in L_{\text {loc }}^{N}$
- Koch-Tataru (2001): more general elliptic operators

Unique continuation for second order elliptic equations

To differentiate \mathcal{N}...

one integrates the Rellich-Nec̆as identity

$$
\operatorname{div}\left(|\nabla u|^{2} x-2(\nabla u \cdot x) \nabla u\right)=(N-2)|\nabla u|^{2}-2(\nabla u \cdot x) \Delta u
$$

on balls $B_{r} \subset \Omega$, obtaining a Pohozaev-type identity

$$
-\frac{N-2}{2} \int_{B_{r}}|\nabla u|^{2} d x+\frac{r}{2} \int_{\partial B_{r}}|\nabla u|^{2} d S=r \int_{\partial B_{r}}\left|\frac{\partial u}{\partial \nu}\right|^{2} d S+\int_{B_{r}} V u(\nabla u \cdot x) d x .
$$

To differentiate \mathcal{N}...

one integrates the Rellich-Nec̆as identity

$$
\operatorname{div}\left(|\nabla u|^{2} x-2(\nabla u \cdot x) \nabla u\right)=(N-2)|\nabla u|^{2}-2(\nabla u \cdot x) \Delta u
$$

on balls $B_{r} \subset \Omega$, obtaining a Pohozaev-type identity

$$
-\frac{N-2}{2} \int_{B_{r}}|\nabla u|^{2} d x+\frac{r}{2} \int_{\partial B_{r}}|\nabla u|^{2} d S=r \int_{\partial B_{r}}\left|\frac{\partial u}{\partial \nu}\right|^{2} d S+\int_{B_{r}} V u(\nabla u \cdot x) d x .
$$

But

- this requires some regularity for u (e.g. $u \in H^{2}$)

To differentiate \mathcal{N}...

one integrates the Rellich-Nečas identity

$$
\operatorname{div}\left(|\nabla u|^{2} x-2(\nabla u \cdot x) \nabla u\right)=(N-2)|\nabla u|^{2}-2(\nabla u \cdot x) \Delta u
$$

on balls $B_{r} \subset \Omega$, obtaining a Pohozaev-type identity

$$
-\frac{N-2}{2} \int_{B_{r}}|\nabla u|^{2} d x+\frac{r}{2} \int_{\partial B_{r}}|\nabla u|^{2} d S=r \int_{\partial B_{r}}\left|\frac{\partial u}{\partial \nu}\right|^{2} d S+\int_{B_{r}} V u(\nabla u \cdot x) d x .
$$

But

- this requires some regularity for u (e.g. $u \in H^{2}$)
- if $0 \in \partial \Omega \rightsquigarrow$ loss of regularity interference with the geometry of the domain
extra terms arising in the integration by parts and appearing the rest of \mathcal{N}^{\prime}.

Unique continuation from boundary points

- Adolfsson-Escauriaza-Kenig (1995), Adolfsson-Escauriaza (1997), Kukavica-Nyström (1998), Tao-Zhang (2008), F.-Ferrero (2013): under homogeneous Dirichlet conditions
- Tao-Zhang (2005), Dipierro-F.-Valdinoci (2020): under Neumann type conditions
- Fall-F.-Ferrero-Niang (2019): unique continuation from Dirichlet-Neumann junctions for planar mixed boundary value problems
- De Luca-F. (2021): unique continuation from the edge of a crack.

Unique continuation for fractional Schrödinger equations

- Fall-F. (2014): SUCP and UCP from sets of positive measure for

$$
(-\Delta)^{s} u(x)-\frac{\lambda}{|x|^{2 s}} u(x)=h(x) u(x)+f(x, u(x)) \quad \text { with } s \in(0,1)
$$

via frequency function methods for the Caffarelli-Silvestre extension;

- Fall-F. (2015): analogous results for relativistic Schrödinger operators;
- Rüland (2015): SUCP for fractional Laplacians with power $s \in(0,1)$ in presence of rough potentials, via Carleman inequalities for the Caffarelli-Silvestre extension;
- Yu (2017): fractional operators with variable coefficients.
- Yang (2013), Seo (2014-2015), F.-Ferrero (2020), García-Ferrero-Rüland (2019): higher order $(s>1)$ fractional equations.

Caffarelli-Silvestre extension

$$
\begin{aligned}
& \mathbb{R}_{+}^{N+1}=\left\{z=(x, t): x \in \mathbb{R}^{N}, t>0\right\} \\
& \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{N+1} ; t^{1-2 s}\right):=\text { completion of } C_{\mathrm{c}}^{\infty}\left(\overline{\mathbb{R}_{+}^{N+1}}\right) \text { w.r.t. the norm } \\
& \qquad\|w\|_{\mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{N+1} ; t^{1-2 s}\right)}=\left(\int_{\mathbb{R}_{+}^{N+1}} t^{1-2 s}|\nabla w(x, t)|^{2} d x d t\right)^{1 / 2}
\end{aligned}
$$

- \exists a trace map $\operatorname{Tr}: \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{N+1} ; t^{1-2 s}\right) \rightarrow \mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right)$
- $\forall u \in \mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right) \quad \exists!\mathcal{H}(u) \in \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{N+1} ; t^{1-2 s}\right) \quad$ weakly solving

$$
\begin{cases}\operatorname{div}\left(t^{1-2 s} \nabla \mathcal{H}(u)\right)=0 & \text { in } \mathbb{R}_{+}^{N+1} \\ \operatorname{Tr} \mathcal{H}(u)=u & \text { on } \partial \mathbb{R}_{+}^{N+1}=\mathbb{R}^{N} \times\{0\}\end{cases}
$$

Caffarelli-Silvestre extension

Caffarelli and Silvestre (2007)

$$
-\lim _{t \rightarrow 0^{+}} t^{1-2 s} \frac{\partial \mathcal{H}(u)}{\partial t}(x, t)=\kappa_{s}(-\Delta)^{s} u(x) \quad \text { in }\left(\mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right)\right)^{\star} \quad \text { where } \kappa_{s}=\frac{\Gamma(1-s)}{2^{2 s-1} \Gamma(s)}>0 .
$$

Caffarelli-Silvestre extension

Caffarelli and Silvestre (2007)

$$
-\lim _{t \rightarrow 0^{+}} t^{1-2 s} \frac{\partial \mathcal{H}(u)}{\partial t}(x, t)=\kappa_{s}(-\Delta)^{s} u(x) \quad \text { in }\left(\mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right)\right)^{\star} \quad \text { where } \kappa_{s}=\frac{\Gamma(1-s)}{2^{2 s-1} \Gamma(s)}>0
$$

u solves $(-\Delta)^{s} u=h u$ in $\Omega \Leftrightarrow U=\mathcal{H}(u)$ solves $\begin{cases}\operatorname{div}\left(t^{1-2 s} \nabla U\right)=0 & \text { in } \mathbb{R}_{+}^{N+1}, \\ U(x, 0)=u & \text { in } \mathbb{R}^{N}, \\ -\lim _{t \rightarrow 0^{+}} t^{1-2 s} \frac{\partial U}{\partial t}(x, t)=\kappa_{s} h(x) u(x) & \text { in } \Omega,\end{cases}$
in a weak sense,

Caffarelli-Silvestre extension

Caffarelli and Silvestre (2007)

$$
-\lim _{t \rightarrow 0^{+}} t^{1-2 s} \frac{\partial \mathcal{H}(u)}{\partial t}(x, t)=\kappa_{s}(-\Delta)^{s} u(x) \quad \text { in }\left(\mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right)\right)^{\star} \quad \text { where } \kappa_{s}=\frac{\Gamma(1-s)}{2^{2 s-1} \Gamma(s)}>0
$$

u solves $(-\Delta)^{s} u=h u$ in $\Omega \Leftrightarrow U=\mathcal{H}(u)$ solves $\begin{cases}\operatorname{div}\left(t^{1-2 s} \nabla U\right)=0 & \text { in } \mathbb{R}_{+}^{N+1}, \\ U(x, 0)=u & \text { in } \mathbb{R}^{N}, \\ -\lim _{t \rightarrow 0^{+}} t^{1-2 s} \frac{\partial U}{\partial t}(x, t)=\kappa_{s} h(x) u(x) & \text { in } \Omega,\end{cases}$
in a weak sense, i.e. $\operatorname{Tr} U=u$ and $\int_{\mathbb{R}_{+}^{N+1}} t^{1-2 s} \nabla U \cdot \nabla \varphi d t d x=\kappa_{s} \int_{\Omega} h u \operatorname{Tr} \varphi d x$

$$
\text { for all } \varphi \in \mathcal{D}^{1,2}\left(\mathbb{R}_{+}^{N+1}, t^{1-2 s}\right) \text { s.t. } \operatorname{supp}(\operatorname{Tr} \varphi) \subset \Omega
$$

Caffarelli-Silvestre extension

We are dealing with a problem with mixed boundary conditions!

Monotonicity formula around $0 \in \partial \Omega$ for the extended problem

Additional difficulties in the development of a monotonicity argument around points located at Dirichlet-Neumann junctions:

A diffeomorphism to straighten the boundary

Inspired by [Adolfsson-Escauriaza (1997)] we construct $F: \mathbb{R}^{N+1} \rightarrow \mathbb{R}^{N+1}$, which is a diffeomorphism of class $C^{1,1}$ from B_{R} to $\mathcal{U}=F\left(B_{R}\right)$ for some \mathcal{U} open neighbourhood of 0 , s.t. $F\left(x^{\prime}, 0,0\right)=\left(x^{\prime}, g\left(x^{\prime}\right), 0\right)$ where $B_{R}^{\prime} \cap \partial \Omega=\left\{\left(x^{\prime}, x_{N}\right) \in B_{R}^{\prime}: x_{N}=g\left(x^{\prime}\right)\right\}$
$W=U \circ F$ is solution to
$\begin{cases}-\operatorname{div}\left(t^{1-2 s} A \nabla W\right)=0 & \text { in } B_{R}^{+}, \\ \lim _{t \rightarrow 0^{+}}\left(t^{1-2 s} A \nabla W \cdot \nu\right)=\kappa_{s} \tilde{h} \operatorname{Tr} W & \text { in } \Gamma_{R}^{-}, \\ W=0 & \text { in } \Gamma_{R}^{+},\end{cases}$

where $\nu=(0,0, \ldots, 0,-1), A$ is an $(N+1) \times(N+1)$ variable coefficient matrix (not depending on t) (related to the Jacobian matrix of F), and

$$
\tilde{h}(y)=\operatorname{det} J_{F}\left(y^{\prime}, y_{N}, 0\right) h(F(y, 0)), \quad y \in \Gamma_{R}^{-}
$$

A diffeomorphism to straighten the boundary

Crucial feature of the matrix A

$$
A(y)=\left(\begin{array}{c|c}
D(y) & 0 \\
\hline 0 & 1+O\left(\left|y^{\prime}\right|^{2}\right)+O\left(y_{N}\right)
\end{array}\right)
$$

where

$$
D\left(y^{\prime}, y_{N}\right)=\left(\begin{array}{c|c}
\operatorname{Id}_{N-1}+O\left(\left|y^{\prime}\right|^{2}\right)+O\left(y_{N}\right) & O\left(y_{N}\right) \\
\hline O\left(y_{N}\right) & 1+O\left(\left|y^{\prime}\right|^{2}\right)+O\left(y_{N}\right)
\end{array}\right) .
$$

Double approximation procedure

Assume that there exists $p>\frac{N}{2 s}$ such that $h \in W^{1, p}(\Omega)$.

- Take a sequence $h_{n} \in C^{\infty}\left(\overline{\Gamma_{R}^{-}}\right)$such that $h_{n} \rightarrow \tilde{h}$ in $W^{1, p}\left(\Gamma_{R}^{-}\right)$.

Double approximation procedure

Assume that there exists $p>\frac{N}{2 s}$ such that $h \in W^{1, p}(\Omega)$.

- Take a sequence $h_{n} \in C^{\infty}\left(\overline{\Gamma_{R}^{-}}\right)$such that $h_{n} \rightarrow \tilde{h}$ in $W^{1, p}\left(\Gamma_{R}^{-}\right)$.
- Construct a sequence of approximating domains \mathcal{U}_{n} with section like:

Double approximation procedure

Assume that there exists $p>\frac{N}{2 s}$ such that $h \in W^{1, p}(\Omega)$.

- Take a sequence $h_{n} \in C^{\infty}\left(\overline{\Gamma_{R}^{-}}\right)$such that $h_{n} \rightarrow \tilde{h}$ in $W^{1, p}\left(\Gamma_{R}^{-}\right)$.
- Construct a sequence of approximating domains \mathcal{U}_{n} with section like:

$$
\begin{aligned}
\forall z= & (x, t) \in \gamma_{n} \text { and } n \text { large } \\
& A(y) z \cdot \nu \geq 0 \quad \text { on } \gamma_{n} .
\end{aligned}
$$

Approximating problems in the domains \mathcal{U}_{n}

$$
\begin{cases}-\operatorname{div}\left(t^{1-2 s} A \nabla U_{n}\right)=0 & \text { in } \mathcal{U}_{n}, \\ \lim _{t \rightarrow 0^{+}}\left(t^{1-2 s} A \nabla U_{n} \cdot \nu\right)=\kappa_{s} \eta_{n} h_{n} \operatorname{Tr} U_{n} & \text { in } \sigma_{n}, \\ U_{n}=G_{n} & \text { in } \tau_{n} \cup \gamma_{n},\end{cases}
$$

where

- $G_{n} \in C_{c}^{\infty}\left(\overline{B_{R}^{+}} \backslash \Gamma_{R}^{+}\right), G_{n} \rightarrow W$ strongly in $H^{1}\left(B_{R}^{+} ; t^{1-2 s}\right)$ and $G_{n}=0$ on γ_{n}
- η_{n} are cut-off functions vanishing around $\partial \Gamma_{R}^{-}$.

Pohozaev identity for U_{n}

U_{n} has enough regularity to integrate a Rellich-Nec̆as identity \rightsquigarrow

$$
\begin{aligned}
& r \int_{\mathcal{U}_{n} \cap \partial B_{r}} t^{1-2 s} A \nabla U_{n} \cdot \nabla U_{n} d S-2 r \int_{\mathcal{U}_{n} \cap \partial B_{r}} t^{1-2 s} \frac{\left|A \nabla U_{n} \cdot \nu\right|^{2}}{\mu} d S \\
& \quad-2 \kappa_{s} \int_{\sigma_{n} \cap B_{r}} \frac{1}{\mu} \eta_{n} h_{n} \operatorname{Tr} U_{n}\left(D \nabla_{y} \operatorname{Tr} U_{n} \cdot y\right) d y \\
& =\int_{\mathcal{U}_{n} \cap B_{r}} t^{1-2 s} A \nabla U_{n} \cdot \nabla U_{n} \operatorname{div} \beta d z-2 \int_{\mathcal{U}_{n} \cap B_{r}} t^{1-2 s} J_{\beta}\left(A \nabla U_{n}\right) \cdot \nabla U_{n} d z \\
& \quad+\int_{\mathcal{U}_{n} \cap B_{r}} t^{1-2 s}\left(d A \nabla U_{n} \nabla U_{n}\right) \cdot \beta d z+(1-2 s) \int_{\mathcal{U}_{n} \cap B_{r}} t^{1-2 s} \frac{\alpha}{\mu} A \nabla U_{n} \cdot \nabla U_{n} d z \\
& \quad+\int_{\gamma_{n} \cap B_{r}} \frac{t^{1-2 s}}{\mu}\left|\partial_{\nu} U_{n}\right|^{2}(A \nu \cdot \nu)(A z \cdot \nu) d S
\end{aligned}
$$

where $\beta(z)=\frac{A(y) z}{\mu(z)}, \mu(z)=\frac{A(y) z \cdot z}{|z|^{2}}, \alpha=\operatorname{det} J_{F}$.

Pohozaev identity for U_{n}

U_{n} has enough regularity to integrate a Rellich-Nec̆as identity \rightsquigarrow

$$
\begin{align*}
& r \int_{\mathcal{U}_{n} \cap \partial B_{r}} t^{1-2 s} A \nabla U_{n} \cdot \nabla U_{n} d S-2 r \int_{\mathcal{U}_{n} \cap \partial B_{r}} t^{1-2 s} \frac{\left|A \nabla U_{n} \cdot \nu\right|^{2}}{\mu} d S \\
& \quad-2 \kappa_{s} \int_{\sigma_{n} \cap B_{r}} \frac{1}{\mu} \eta_{n} h_{n} \operatorname{Tr} U_{n}\left(D \nabla_{y} \operatorname{Tr} U_{n} \cdot y\right) d y \\
& =\int_{\mathcal{U}_{n} \cap B_{r}} t^{1-2 s} A \nabla U_{n} \cdot \nabla U_{n} \operatorname{div} \beta d z-2 \int_{\mathcal{U}_{n} \cap B_{r}} t^{1-2 s} J_{\beta}\left(A \nabla U_{n}\right) \cdot \nabla U_{n} d z \\
& \quad+\int_{\mathcal{U}_{n} \cap B_{r}} t^{1-2 s}\left(d A \nabla U_{n} \nabla U_{n}\right) \cdot \beta d z+(1-2 s) \int_{\mathcal{U}_{n} \cap B_{r}} t^{1-2 s} \frac{\alpha}{\mu} A \nabla U_{n} \cdot \nabla U_{n} d z \\
& \quad+\int_{\gamma_{n} \cap B_{r}} \frac{t^{1-2 s}}{\mu}\left|\partial_{\nu} U_{n}\right|^{2}(A \nu \cdot \nu)(A z \cdot \nu) d S \tag{0}
\end{align*}
$$

where $\beta(z)=\frac{A(y) z}{\mu(z)}, \mu(z)=\frac{A(y) z \cdot z}{|z|^{2}}, \alpha=\operatorname{det} J_{F}$.

Pohozaev "inequality" for U

$$
\begin{gathered}
U_{n} \rightarrow W \text { strongly in } H^{1}\left(B_{R}^{+} ; t^{1-2 s}\right) \\
\Downarrow \\
\frac{r}{2} \int_{\partial^{+} B_{r}^{+}} t^{1-2 s} A \nabla W \cdot \nabla W d S-r \int_{\partial^{+} B_{r}^{+}} t^{1-2 s} \frac{|A \nabla W \cdot \nu|^{2}}{\mu} d S \\
\quad+\frac{\kappa_{s}}{2} \int_{\Gamma_{r}^{-}}\left(\nabla \tilde{h} \cdot \beta^{\prime}+\tilde{h} \operatorname{div} \beta^{\prime}\right)|\operatorname{Tr} W|^{2} d y-\frac{\kappa_{s} r}{2} \int_{S_{r}^{-}} \tilde{h}|\operatorname{Tr} W|^{2} d S^{\prime} \\
\geq \frac{1}{2} \int_{B_{r}^{+}} t^{1-2 s} A \nabla W \cdot \nabla W \operatorname{div} \beta d z-\int_{B_{r}^{+}} t^{1-2 s} J_{\beta}(A \nabla W) \cdot \nabla W d z \\
\quad+\frac{1}{2} \int_{B_{r}^{+}} t^{1-2 s}(d A \nabla W \nabla W) \cdot \beta d z+\frac{1-2 s}{2} \int_{B_{r}^{+}} t^{1-2 s} \frac{\alpha}{\mu} A \nabla W \cdot \nabla W d z
\end{gathered}
$$

Frequency function

For small $r>0$ define

$$
\begin{aligned}
& D(r)=\frac{1}{r^{N-2 s}}\left(\int_{B_{r}^{+}} t^{1-2 s} A \nabla W \cdot \nabla W d z-\kappa_{s} \int_{\Gamma_{r}^{-}} \tilde{h}|\operatorname{Tr} W|^{2} d y\right) \\
& H(r)=\frac{1}{r^{N+1-2 s}} \int_{S_{r}^{+}} t^{1-2 s} \mu(z) W^{2}(z) d S
\end{aligned}
$$

where $S_{r}^{+}=\left\{z=(t, x) \in \partial B_{r}: t>0\right\}$.

Almgren type frequency function
 $$
\mathcal{N}(r)=\frac{D(r)}{H(r)}
$$

well defined for $r>0$ sufficiently small if $W \not \equiv 0$.

Monotonicity \rightsquigarrow unique continuation

- Our Pohozaev "inequality" \Longrightarrow

$$
D^{\prime}(r) \geq \frac{2}{r^{N-2 s}} \int_{S_{r}^{+}} t^{1-2 s} \frac{|A \nabla W \cdot \nu|^{2}}{\mu}+O\left(r^{-1+\delta}\right)\left[D(r)+\frac{N-2 s}{2} H(r)\right] \quad \text { as } r \rightarrow 0^{+}
$$

Monotonicity \rightsquigarrow unique continuation

- Our Pohozaev "inequality" \Longrightarrow

$$
D^{\prime}(r) \geq \frac{2}{r^{N-2 s}} \int_{S_{r}^{+}} t^{1-2 s} \frac{|A \nabla W \cdot \nu|^{2}}{\mu}+O\left(r^{-1+\delta}\right)\left[D(r)+\frac{N-2 s}{2} H(r)\right] \quad \text { as } r \rightarrow 0^{+}
$$

- $\mathcal{N}^{\prime} \geq$ integrable function: enough to prove the existence of $\gamma=\lim _{r \rightarrow 0^{+}} \mathcal{N}(r)$

Monotonicity \rightsquigarrow unique continuation

- Our Pohozaev "inequality" \Longrightarrow

$$
D^{\prime}(r) \geq \frac{2}{r^{N-2 s}} \int_{S_{r}^{+}} t^{1-2 s} \frac{|A \nabla W \cdot \nu|^{2}}{\mu}+O\left(r^{-1+\delta}\right)\left[D(r)+\frac{N-2 s}{2} H(r)\right] \quad \text { as } r \rightarrow 0^{+}
$$

- $\mathcal{N}^{\prime} \geq$ integrable function: enough to prove the existence of $\gamma=\lim _{r \rightarrow 0^{+}} \mathcal{N}(r)$
- In particular \mathcal{N} is bounded near 0

$$
\frac{H^{\prime}}{H}=\frac{2}{r} \mathcal{N}+O(1) \quad \text { as } r \rightarrow 0^{+} .
$$

Integrate between r and $2 r \rightsquigarrow$ doubling condition

$$
H(2 r) \leq C H(r)
$$

\rightsquigarrow unique continuation for the extended problem

Monotonicity \rightsquigarrow unique continuation

- Our Pohozaev "inequality" \Longrightarrow

$$
D^{\prime}(r) \geq \frac{2}{r^{N-2 s}} \int_{S_{r}^{+}} t^{1-2 s} \frac{|A \nabla W \cdot \nu|^{2}}{\mu}+O\left(r^{-1+\delta}\right)\left[D(r)+\frac{N-2 s}{2} H(r)\right] \quad \text { as } r \rightarrow 0^{+}
$$

- $\mathcal{N}^{\prime} \geq$ integrable function: enough to prove the existence of $\gamma=\lim _{r \rightarrow 0^{+}} \mathcal{N}(r)$
- In particular \mathcal{N} is bounded near 0

$$
\frac{H^{\prime}}{H}=\frac{2}{r} \mathcal{N}+O(1) \quad \text { as } r \rightarrow 0^{+} .
$$

Integrate between r and $2 r \rightsquigarrow$ doubling condition

$$
H(2 r) \leq C H(r)
$$

\rightsquigarrow unique continuation for the extended problem

Blow-up analysis

$$
w^{\lambda}(z):=\frac{W(\lambda z)}{\sqrt{H(\lambda)}} \quad \mathcal{N} \text { bounded } \Rightarrow\left\{w^{\lambda}\right\}_{\lambda \in(0, R)} \text { bounded in } H^{1}\left(B_{1}^{+} ; t^{1-2 s}\right)
$$

Blow-up analysis

$$
\begin{aligned}
& w^{\lambda}(z):=\frac{W(\lambda z)}{\sqrt{H(\lambda)}} \quad \mathcal{N} \text { bounded } \Rightarrow\left\{w^{\lambda}\right\}_{\lambda \in(0, R)} \text { bounded in } H^{1}\left(B_{1}^{+} ; t^{1-2 s}\right) \\
& \left\{\begin{array}{ll}
-\operatorname{div}\left(t^{1-2 s} A(\lambda \cdot) \nabla w^{\lambda}\right)=0 & \text { in } B_{1}^{+} \\
\lim _{t \rightarrow 0^{+}}\left(t^{1-2 s} A(\lambda \cdot) \nabla w^{\lambda} \cdot \nu\right)=\kappa_{s} \lambda^{2 s} \tilde{h}(\lambda \cdot) \operatorname{Tr} w^{\lambda} & \text { on } \Gamma_{1}^{-} \\
w^{\lambda}=0 & \text { on } \Gamma_{1}^{+}
\end{array} \int_{S_{1}^{+}} \theta_{N+1}^{1-2 s} \mu(\lambda \theta)\left|w^{\lambda}(\theta)\right|^{2} d S=1\right. \\
& w^{\lambda} \rightarrow w \text { in } H^{1}\left(B_{1}^{+} ; t^{1-2 s}\right), \text { with } \\
& \left\{\begin{array}{ll}
-\operatorname{div}\left(t^{1-2 s} \nabla w\right)=0 & \text { in } B_{1}^{+} \\
\lim _{t \rightarrow 0^{+}}\left(t^{1-2 s} \frac{\partial w}{\partial t}\right)=0 & \text { on } \Gamma_{1}^{-} \\
w=0 & \text { on } \Gamma_{1}^{+}
\end{array} \quad \int_{S_{1}^{+}} \theta_{N+1}^{1-2 s} w^{2}(\theta) d S=1\right.
\end{aligned}
$$

Characterization of the limit profiles w

The frequency function associated to w is constantly equal to $\gamma \Rightarrow$

$$
w(r \theta)=r^{\gamma} \psi(\theta), \quad r \in(0,1), \theta \in \mathbb{S}_{+}^{N}
$$

where ψ is and eigenfunction of the problem

$$
\begin{cases}-\operatorname{div}_{\mathbb{S}^{N}}\left(\theta_{N+1}^{1-2 s} \nabla_{\mathbb{S}^{N}} \psi\right)=\mu \theta_{N+1}^{1-2 s} \psi & \text { in } \mathbb{S}_{+}^{N}, \tag{+}\\ \psi=0 & \text { on } \mathbb{S}^{N-1} \cap\left\{\theta_{N} \geq 0\right\} \\ \lim _{\theta_{N+1} \rightarrow 0^{+}} \theta_{N+1}^{1-2 s} \nabla_{\mathbb{S}^{N}} \psi \cdot \nu=0 & \text { on } \mathbb{S}^{N-1} \cap\left\{\theta_{N}<0\right\}\end{cases}
$$

on the half-sphere $\mathbb{S}_{+}^{N}=\left\{\left(\theta_{1}, \ldots, \theta_{N}, \theta_{N+1}\right) \in \mathbb{S}^{N}: \theta_{N+1}>0\right\}$.

Weighted eigenvalue problem on \mathbb{S}_{+}^{N} with mixed Dirichlet-Neumann b. c.

$$
\begin{cases}-\operatorname{div}_{\mathbb{S}^{N}}\left(\theta_{N+1}^{1-2 s} \nabla_{\mathbb{S}^{N}} \psi\right)=\mu \theta_{N+1}^{1-2 s} \psi & \text { in } \mathbb{S}_{+}^{N} \tag{+}\\ \psi=0 & \text { on } \mathbb{S}^{N-1} \cap\left\{\theta_{N} \geq 0\right\} \\ \lim _{\theta_{N+1} \rightarrow 0^{+}} \theta_{N+1}^{1-2 s} \nabla_{\mathbb{S}^{N}} \psi \cdot \nu=0 & \text { on } \mathbb{S}^{N-1} \cap\left\{\theta_{N}<0\right\}\end{cases}
$$

Classical spectral theory $\rightsquigarrow \exists$ a diverging sequence $\left\{\mu_{k}\right\}_{k \in \mathbb{N}}$ of real eigenvalues with finite multiplicity M_{k}

$$
\mu_{k}=(k+s)(k+N-s), \quad k \in \mathbb{N}
$$

Blow-up analysis \rightarrow quantization of possible vanishing orders \rightarrow SUCP

Come back to $U=W \circ F^{-1}$:

Theorem [De Luca-F.-Vita (2021)]

Let $U \not \equiv 0$ be such that $U=\mathcal{H}(u)$ with u satisfying $\left(E_{s}\right)$. Then there exists $k_{0} \in \mathbb{N}$ and an eigenfunction Y of problem $\left(E P_{S_{+}^{N}}\right)$ associated to the eigenvalue $\mu_{k_{0}}=\left(k_{0}+s\right)\left(k_{0}+N-s\right)$ such that

$$
\frac{U(\lambda z)}{\lambda^{k_{0}+s}} \rightarrow|z|^{k_{0}+s} Y\left(\frac{z}{|z|}\right) \quad \text { in } H^{1}\left(B_{1}^{+} ; t^{1-2 s}\right) \quad \text { as } \lambda \rightarrow 0^{+} .
$$

Blow-up analysis \rightarrow quantization of possible vanishing orders \rightarrow SUCP

Come back to $U=W \circ F^{-1}$:

Theorem [De Luca-F.-Vita (2021)]

Let $U \not \equiv 0$ be such that $U=\mathcal{H}(u)$ with u satisfying $\left(E_{s}\right)$. Then there exists $k_{0} \in \mathbb{N}$ and an eigenfunction Y of problem $\left(E P_{\mathbb{S}_{+}^{N}}\right)$ associated to the eigenvalue $\mu_{k_{0}}=\left(k_{0}+s\right)\left(k_{0}+N-s\right)$ such that

$$
\frac{U(\lambda z)}{\lambda^{k_{0}+s}} \rightarrow|z|^{k_{0}+s} Y\left(\frac{z}{|z|}\right) \quad \text { in } H^{1}\left(B_{1}^{+} ; t^{1-2 s}\right) \quad \text { as } \lambda \rightarrow 0^{+} .
$$

SUCP for U

If $U=\mathcal{H}(u)$ with u satisfying $\left(E_{s}\right)$ and $U(z)=O\left(|z|^{k}\right)$ as $z \rightarrow 0$, for any $k \in \mathbb{N}$, then $U \equiv 0$ in \mathbb{R}_{+}^{N+1}.

Asymptotics and SUCP for the fractional problem

Theorem [De Luca-F.-Vita (2021)]

Let Ω be a bounded domain in $\mathbb{R}^{N}, x_{0} \in \partial \Omega$ s.t. $\partial \Omega$ is $C^{1,1}$ in a neighbourhood of x_{0}. Let $h \in W^{1, p}(\Omega)$ for some $p>\frac{N}{2 s}$ and let $u \in \mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right), u \neq 0$, be a weak solution to (E_{s}). Then there exists $k_{0} \in \mathbb{N}$ and an eigenfunction Y of problem ($E P_{\mathbb{S}_{+}^{N}}$) associated to the eigenvalue $\mu_{k_{0}}=\left(k_{0}+s\right)\left(k_{0}+N-s\right)$ such that

$$
\frac{u\left(x_{0}+\lambda x\right)}{\lambda^{k_{0}+s}} \rightarrow|x|^{k_{0}+s} Y\left(\frac{x}{|x|}, 0\right) \quad \text { in } H^{s}\left(B_{1}^{\prime}\right) \text { as } \lambda \rightarrow 0^{+} .
$$

Asymptotics and SUCP for the fractional problem

Theorem [De Luca-F.-Vita (2021)]

Let Ω be a bounded domain in $\mathbb{R}^{N}, x_{0} \in \partial \Omega$ s.t. $\partial \Omega$ is $C^{1,1}$ in a neighbourhood of x_{0}. Let $h \in W^{1, p}(\Omega)$ for some $p>\frac{N}{2 s}$ and let $u \in \mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right), u \not \equiv 0$, be a weak solution to $\left(E_{s}\right)$.

Then there exists $k_{0} \in \mathbb{N}$ and an eigenfunction Y of problem $\left(E P_{\mathbb{S}_{+}^{N}}\right)$ associated to the eigenvalue $\mu_{k_{0}}=\left(k_{0}+s\right)\left(k_{0}+N-s\right)$ such that

$$
\frac{u\left(x_{0}+\lambda x\right)}{\lambda^{k_{0}+s}} \rightarrow|x|^{k_{0}+s} Y\left(\frac{x}{|x|}, 0\right) \quad \text { in } H^{s}\left(B_{1}^{\prime}\right) \text { as } \lambda \rightarrow 0^{+} .
$$

SUCP for u

If $u \in \mathcal{D}^{s, 2}\left(\mathbb{R}^{N}\right)$ is a weak solution to $\left(E_{s}\right)$ such that $u(x)=O\left(\left|x-x_{0}\right|^{k}\right)$ as $x \rightarrow x_{0}$ for any $k \in \mathbb{N}$, then $u \equiv 0$ in \mathbb{R}^{N}.

