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Motivation

o BEC observed for dilute Bose gases 19

@ Quantized vertices observed with
rotations — related to superfluidity

(2001 Nobel Prize in Physics for Cornell-Wieman—Ketterle)

Anderson—Ensher—-Matthews—Wieman—Cornell (Science, 1995)
Image provided by JILA, University of Colorado, Boulder

Butts—Rokhsar (Nature, 1999) Abo-Shaeer-Raman—Vogels—Ketterle (Science, 2001)
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The Bose—Einstein condensation is closely related to superfluidity

o Allen-Misener & Kapitsa (1938): Superfluid “He (bosons) at below 2.17 K
@ London (1938): Explanation via the Bose—Einstein condensation

@ Landau (1941): Theoretical explanation via the excitation spectrum
(Nobel Prize in Physics 1962)

@ Bogoliubov (1947): Microscopic explanation for Landau's criterion of
superfluidity

Today: A mathematical proof of Bogoliubov's theory from first principles J
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A many-body quantum problem

A system of N bosons in R3 is described by the Hamiltonian

HszNj( By + Vers () + ZNW(N(XJ—xk)) on L ((R*)") J

Jj=1 j<k

e Trapping potential: Vi >0, V(x) = 00 as |x] = o0

@ Short-range interaction: 0 < V € L[1(R3) radial, compactly supported

The rescaled interaction potential N?V/(Nx) has the scattering length ag/N
with ag the scattering length of V — dilute gas

Hy is a self-adjoint, positive operator and has compact resolvent

We are interested in the low-lying eigenvalues
0 < M(Hn) < Aa(Hn) < A3(Hw) < ...

in the limit N — oo
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Gross—Pitaevskii functional

The leading order is captured by the Gross—Pitaevskii functional

Ecp (1) = (u, (=2 + Vi )u) + 4700 /R () elx

Note that the mean—field approximation suggests to consider Hartree states
W(Xy, .oy XN) R u®N(x17 vy Xy) = u(xq)...u(xn)

but it leads to a wrong functional
V(0
5H(u) = <U, (_A + Vext)u> + 7§ ) / |U(X)|4dX
R3
since V/(0) is just the first Born approximation of

8map = inf {/ QIVFE 4+ VIf?), lim f(x)= 1}
R3

|x|—o0

The strong correlation leads to a subtle nonlinear correction to leading order

5/23



Leading order results

Theorem (Lieb—Seiringer—Yngvason 2000)

For every k € N, when N — oo,

)\k(HN) =N inf lgc;p(u) T O(N)

llull 2=

Theorem (Lieb—Seiringer 2002-2006)

For every k € N, the eigenvector \IJS\I;) of Ax(Hn) exhibits the complete
condensation

N
(W, a*(@)a(p) Wiy = <W%),Z(P¢)x,\ll%‘)> = N+ o(N)

with ¢ > 0 the unique Gross—Pitaevskii minimizer

The eigenvectors \Il%() are not close to p®N in norm

The optimal rate of both estimates are O(1)



Bogoliubov's excitations

Taylor expansion of the Gross—Pitaevskii functional with v L

o (ﬁ) —car(e)+ 5( (1) o) (1) ) + o 1Wi)
v

The Hessian matrix

£ () = D + 8magp? 8magy?
GP 8magp? D + 8magp?

with D = —A + Vi + 8magp? — i, Dy = 0, can be diagonalized by a real,
symplectic matrix

* ol _(E O o V1+ 82 s
VSGP(‘P)V—(O E)’ V-( s Vits?

with the one-body excitation operator on §, = {p}+ C L?(R3)

1/2
E = <D1/2(D + 167ra0¢2)01/2) J
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Main result

Theorem (N.-Triay 2021, arXiv:2106.11949)

For every k € N, when N — oo,

Me(Hn) = Mi(Hn) =D nies + O(N7Y*), 0 € {0,1,2, ..}

i>1

where the elementary excitations e; < e, < ... are the positive eigenvalues of

1/2
E— <D1/2(D + 167ra0¢2)01/2)

with D=—A+4 Vg +8magp? —pu, D>0, Dp=0

Similar results obtained by Brennecke—Schlein—Schraven (to appear)

Heuristically, Hp is unitarily equivalent to a non-interacting operator

T*HyT — M (Hy) ~ dr(E) = é (Z EX,)

n=0 i=1

where the right side operator acts on Fock space of excited particles F({yp}+)



Earlier results

@ Seiringer (2011) and Grech—Seiringer (2013): in the mean-field regime
N2V(Nx) — N~1V(x), the elementary excitations are eigenvalues of

1/2

En = (D/*(Dn + Ku)D3{?)

with Dy = —A + Vi + V5 0% — iy, Ku(x,y) = o(x)V(x — y)o(y)
Further extensions by Lewin—N.—Serfaty—Solovej, Derezinski-Napidrkowski,

N.—Seiringer, Rougerie-Spehner, Pizzo, Bossmann—Petrat—Seiringer

@ Boccato—Brennecke—Cenatiempo—Schlein (2019): the homogeneous gas on
T3 has o = 1 and e, = /|p|* + 167ao|p|?, p € 27Z3

This implies Landau’s criterion for superfluidity

dlr(E) > cp|total momentum|, ¢o := inf N
P#0 |p|

(a drop with velocity < ¢y can move in the ground state without friction)

o N.-Napidérkowski—Ricaud—Triay (2020), Brennecke-Schlein—Schraven (2021):
Optimal rate of BEC for trapped systems in R3
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Fock space formalism

Consider the bosonic Fock space F = @, L2((R3)"). For g € ), define the

n=0 ~s
creation and annihilation operator a*(g), a(g) on F

n+1
N 1
(@ (g)V)(x1,- s Xnp1) = \/ﬁ g(Xj)‘U(Xl,---»Xjfl7Xj+17~~~aXn+1)
j=1

(a(@)V)(x1s .-y Xn—1) = ﬁ/d gxn)V(x1, ..., xp)dx,, YV E€H" Vn
R
The operator-valued distributions a} and a,, with x € R3
2(¢)= [ eWadx alg)= [ gadx vees
Rd RY
satisfy the canonical commutation relations (CCR)

[ax,ay] =0, [af,a)] =0, [ax,a)] =d(x—y), Vx,ye€ R3

X 9y

Then
1
Hy :/ ay(—Ay + Vexs(x))axdx + 5/ / N2 V(N(x — y))aﬁa;axaydxdy
R3 R3 JR3
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Bogoliubov's approximation (Step 1)

In 1947, Bogoliubov proposed a heuristic approximation for the spectrum of
1
H= / (= Ax + Vixt(x))axdx + 5/ / N=TW (x — y)axayaxa,dxdy
R3 r3 JR3
Step 1 (c-number substitution): Replace the contribution of the condensate
g € L2(R?), |lg|l;2 = 1, by a scalar field
a, =~ Né/Qg(x) +o, aim Né/zg(x) +c

where No = (a*(g)a(g)) and c, = a, restricted to excited Fock space F({g}*)

H~ 43(N3/2m+ ) =Dy + Vit ()) (N2 g (x) + ¢ )dx

+3 / / NI 0x = y) (N8 (0) + <) (N *8() + ;)

x (Ny*g(x) + 6 )(Ny"*g(y) + ¢, )dxdy



Bogoliubov's approximation (Step 2)

Step 2 (Quadratic reduction). Use the second order expansion with
o K N3/2 ~ N/2, namely ignore all terms containing more than 2 ¢, or ¢}

—

H~ Néu(g)—

5/(W*|g|2)g2+m[c*((DHwH)g)+h.c.} +/c;(DH)Xchx

1 7~ ® 1 * %
+35 f W(x—y)g(x)g(y)e;cydxdy + 5 ﬂ W(x—y) [g(X)g(y)Cx o+ h~0~] dxdy
with the Hartree functional
1
En(g) = (8. (=B + Vext)g) + 3 | Wlx = y)lg()Plg(y) Pxdy

Dy = — D+ Vixo + Wk |gl?—pir,  pin = /]R (IVgl? + Vexslg? + g2 (W * |g]?))

To describe the low energy spectrum, take g minimizing &y with ||g||;2 = 1. Then
Dpg = 0 and the linear terms (with one ¢, or c) disappear

We are left with a quadratic expression in terms of ¢, and ¢}
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Bogoliubov's approximation (Step 3)

Step 3 (Symplectic diagonalization). The quadratic Hamiltonian can be
diagonalized by a unitary operator T on Fock space F({g}*) of the form

T c(V)T = c(V1+s2v)+c*(sv), T*c*(v)T =c*(V1+s2v)+c(sv)

1 1
T*HT ~ NEH(g) — 5 /(W * \g|2)g2 + Etr(EH — Dy — KH) +/C:(EH)XCXdX

where Eyy = (D}/*(Du + 2Ki) D)2 and Ku(x,y) = g(x)W(x — y)g(y)

This approximation is correct in the mean-field regime, W independent of N
However, it is wrong in the dilute regime N1 W(x) = N2V (Nx)

Hartree functional £y has to be replaced by the Gross—Pitaevskii functional Egp
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Bogoliubov's approximation (Step 4)

When N=1W(x) = N2V/(Nx)

En(g) = (g, (~A+ Ved) + 5 [[ NPV y))lg ()1’ lg(y)Pdxdy

~ (g (<D + Vo)) + @ / 500l

Step 4 (Landau’s correction). For dilute limit, everywhere V(0) should be
replaced by 8mag with ag the scattering length of V

All this gives
1
T*HT ~ Négp(p) — 47rao/<p4 + Etr(E — D — 16mapp?) + / cr Excedx
with the excitation operator of the Gross—Pitaevskii functional

E = (D'?(D + 16magp?) D'/?)1/?

where D=—A+ Vi +8magp? —p, D>0, Dp=0



Proof strategy

Consider
1
Hp :/ 3 (—Ax + Vext(x))axdx + 7/ / N2V (N(x — y))ata v axaydxdy
R3 2 Jr3 Jr3

Bogoliubov’s approximation can be made rigorous as

Ty TETUHNU* LT . T, ~ const+ / ¢ Evedx + o(1) s oo J

with suitable unitary transformations U, Ty, T¢, T>

We follow the general approach proposed by Boccato, Brennecke, Cenatiempo,
Schlein (2017-2020, the homogeneous gas on T?), but take slightly different
transformations to deal with inhomogeneous systems in R3
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Excitation operator U

The operator U = U(p) was introduced by Lewin—N.—Serfaty—Solovej (2015)

Any function Wy € $HV admits a unique decomposition
Uy = o®Ve + 0N 1 @ & + 0¥V 2 @4 & + .+ En
with & € H% with . = {p}+ C 2(R?) =§

This defines a unitary operator U : ¥ — F=V = 1M =<NF(g,)

U : \UN — (§0a§1a "'agN) J

This operator acts as

U*a U= +/N—Nip(x) + &

with ¢, the annihilation operator and A, the number operator on F; = F($)4).
Thus U rigorously implements Bogoliubov’s c-number substitution
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We have UHyU* ~ TN+ SNyIN+<N with H = SF | £; acts on F

1
Lo= V= A0) [ (170 4 Vol 4 5 (VWi 1 )52

1
- 5(/\f+ +1) / (NPViy # ©?) 0® + AT (—A + Vexy + N> Viy % %),

L1 =VNc ((=A + Vexs + N*Viy % 0?) ¢) + hec.,

Lo =[] NVi(x = y)e(x)¢(y)e; cydxdy

1 ( N1

1- N 2/\/) jf N3 Viy(x — y)p(x)o(y)exc,dx dy + h.c.,

L3=+/(1-Ny/N)y fj N°2Vy(x — y)p(x)c) ceeydxdy + hec.,
Ly = ff N?Vin(x — y)cic) cxcydxdy.

In the Gross—Pitaevskii regime, £4 ~ N and L3 ~ 1. These terms cannot be
ignored but have to be renormalized by two unitary transformations T, and T,
which implement the 2nd & 4" steps in Bogoliubov's theory simultaneously
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First quadratic transformation T;

In extract the leading order energy, we have to decode the correlation structure
of particles. Consider the scattering equation

2Af+VF=0inR3 lim f(x)=1.

|x| =00
Denote w = 1 — f ~ ag|x| ™! and the rescaled/truncated functions
we N(X) = WNX)X(XN/l1), &0 v = 28(we, v(x) —w(Nx)),  x = 1(|x] <1)

We define a unitary (Bogoliubov) transformation T; on the Fock space F by

Trc(g) Ty = c(y/1+sig) + c*(s1g), Ve €hHy

with
s1(x,y) = —Nwe, n(x — y)e(x)e(y)
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When 1 <« ¢; < N we have

TyH Ty ~ const +dT(D) + [{ N3z, n(x = y)e(x)p(y)cic dxdy

+ [5 jj N3 eo N(Xx — y)go(x)go(y)c;‘c;dxdy +he |+ L3+ L

Thus T; extracts the leading constant of order N and replaces the short-range
potential V(N(x — y)) in £, by the longer-range one £/, ny(x — y). Note that
gs,.n is supported in |x| < O(¢;N~1) and

/ N3gp, n = 87ag < / V(x)dx = / N3V (Nx)dx
R3 R3 R3

The idea of using T; goes back to the works of Benedikter—de Oliveira—Schlein
(2015) and Brennecke=Schlein (2019) in the context of quantum dynamics where
they took ¢; ~ N to obtain the optimal rate of BEC

Here we take ¢1 < N such that T; is “smaller” and it does not change L3
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Cubic transformation T,

The cubic term L3 is still of order 1. To remove it we apply a cubic
transformation of the form

To=¢e>"5 §=1M=M fj NY2p(x)we, n(x — y)excy ¢y dxdy J

When 1 < l, M < N, we can use TAT. ~ A+ [5 - 5*,A]. In particular,

L+ [5 — §*,dr(D) + 54} ~ 0,

and hence

TXTIHTL T, =~ const +dl(D) + ff N3€g17N(X — y)o(x)e(y)cs c,dxdy

1
+[5 [ Wetntx = y)ebet)cic) +he + L4

The use of the cubic transformation was introduced by Boccato, Brennecke,
Cenatiempo, Schlein (2017-2020), which is crucial to obtain the excitation
spectrum. Here our choice of T, is simpler since we did not change L3 by T;
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Second quadratic transformation T,

Finally we diagonalize the quadratic expression
dr(D) + {[ N, n(x = y)e(x)e(y)es e dxdy
1 * %
+ [5 / Ner, n(x = y)p(x)e(y)eic) + h-C-]

by using a quadratic transformation T, which is similar to the one used by
Grech—Seiringer (2013) in the mean-field regime. This gives

T TX T3 UHU* Ty T. T, ~ const + dI(E)
with _
E = (DY?(D + 2N, n(x — y)p(x)p(y)) DY/?)H/?

If 1 < £; < N, then E — E = (DY2(D + 16wagp?)DY/2)}/2 since

N3€gl7N(X) ~ (/ N36517N> Jo(X) = 87ra050

Here we see again the advantage of taking £1 < N, such that ey, y is supported in
Ix| < Oy N~1) < 1. The proof is complete. O



BEC in the thermodynamic limit: An open problem

Consider N bosons in a large torus Q = [0, L]3 described by the Hamiltonian
Hy = Z —D + Z W (x — x)
i<j

We take thermodynamic limit N — oo, L — oo, N/L% = p > 0 fixed

Conjecture (BEC in the thermodynamic limit)

If W > 0, then the ground state Wy of Hy condensates on ¢ = L=3/21q

Wy, a* v
(W, 2 (‘7\33(@) M S >0 independently of L, N

Best known: the Lee—Huang—Yang formula (1957), ag = scattering length of W

. En
NI|_r;nOO N 4tagp <1 + W (\/E)P—)O>

N/L3=p

proved by Dyson (57), Lieb—Yngvason (98), Yau-Yin (08), Fournais—Solovej (19)
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@ In the Gross—Pitaevskii regime, the excitation spectrum of an interacting
Bose gas of N particles can be effectively described by the spectrum of a
one-body operator, as predicted by Bogoliubov’s approximation

@ By suitable transformations, we can renormalize short-range interaction
potentials to longer-range ones, thus arriving at the mean-field regime
where Bogoliubov's diagonalization method applies smoothly

@ Can we apply this approach to understand the dilute Bose gas in the
thermodynamic limit?



