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Abstract
We give representations for solutions of time-fractional differential equations that

involve operators on Lebesgue spaces of sequences defined by discrete convolutions

involving kernels through the discrete Fourier transform. We consider finite difference

operators of first and second orders, which are generators of uniformly continuous

semigroups and cosine functions. We present the linear and algebraic structures (in

particular, factorization properties) and their norms and spectra in the Lebesgue

space of summable sequences. We identify fractional powers of these generators and

apply to them the subordination principle. We also give some applications and

consequences of our results.
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1 Introduction
In this work, we study the following semidiscrete Cauchy problem:

⎧⎨
⎩∂tu(n, t) = Bu(n, t) + g(n, t), n ∈ Z, t > 0,

u(n, 0) = ϕ(n), n ∈ Z,
(1.1)

where B is the convolution operator in the discrete variable, that is,

Bu(n, t) =
∑
j∈Z

b(n – j)u(j, t) (1.2)

with b belonging to the Banach algebra �1(Z). A typical example is the one-dimensional

discrete Laplacian �d , which can be obtained by taking b = δ–1 – 2δ0 + δ1, where δi(j)

denotes the Kronecker delta (or discrete Dirac measure). In such a case, equation (1.1)

corresponds to the nonhomogeneous semidiscrete diffusion equation (also known as the

semidiscrete heat equation or the lattice diffusion equation).

The analytical study of such equations has received an increasing interest in the last

decade, mainly due to many their applications in diverse areas of knowledge. For instance,
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1. Introduction

We study the fractional differential equation{
Dβt u(n, t) = Bu(n, t) + g(n, t), n ∈ Z, t > 0.

u(n, 0) = ϕ(n), ut(n, 0) = φ(n) n ∈ Z,
(1)

Bf (n) = (b ∗ f )(n), with b ∈ l1(Z), f ∈ lp(Z), p ∈ [1,∞] and

β ∈ (0, 2]. We recall that Dβt denotes the Caputo fractional
derivative.
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For a regular function v , Dβt is the Caputo derivative of order β,

Dβt v(t) =
1

Γ(1− β)

∫ t

0
(t−s)−βv ′(s)ds = (g1−β∗v ′)(t), t > 0,

for 0 < β < 1 and

Dβt v(t) =
1

Γ(2− β)

∫ t

0
(t−s)1−βv ′′(s)ds = (g2−β∗v ′′)(t), t > 0,

for 1 < β < 2.

For β = 1 and β = 2, note that

ĺım
β→1−

Dβt v(t) = v ′(t), ĺım
β→2−

Dβt v(t) = v ′′(t), t > 0,

however,

ĺım
β→0+

Dβt v(t) = v(t)−v(0), ĺım
β→1+

Dβt v(t) = v ′(t)−v ′(0), t > 0,

see, for example [Baz, GM].
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For β = 1, the semi discrete Cauchy problem given in the
introduction{

∂tu(n, t) = Bu(n, t) + g(n, t), n ∈ Z, t > 0,

u(n, 0) = ϕ(n), n ∈ Z,

and their fundamental solution that is obviously given by
Duhamel’s formula

u(n, t) = eBtϕ(n) +

∫ t

0
eB(t−s)g(n, s)ds n ∈ Z, t ≥ 0.



,

Jean Marie Duhamel (1797 - 1872)

His studies were affected by the troubles of the Napoleonic era
(Gaspar Monge). Duhamel worked on partial differential equations
and applied his methods to the theory of heat, to rational
mechanics, and to acoustics. He was an experimenter and
published several memories. Sur la méthode générale relative au
mouvement de la chaleur dans les corps solides plongés dans des
milieux dont la température varie avec le temps (1833).
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00 INTRODUCTION

Dans un memoire en 1833, JoM.C. Duhamel etablit par des considerations heuris-

tiques Le theoreme suivant [Duh],[ C-J] : "notons F(X,y,Z,A,t) la temperature au

point (x,y,z) a l'instant t dans un solide dont la temperature initiale est

nulle et sa temperature au bord Alors la solution du probleme dans

lequel la temperature initiale est zero et la temperature au bord ¢(x,y,z,t) est

donnee par :

v(x,y,z,t) I
t

o ( )"at F X,y,Z,A,t-A dA
o

(1)

Dans un travail recent, dans un cadre tres general, R.M. Dubois et G. Lumer

a coefficients (ne- co
X.
i.

Lb.
i.

paraboliques du second ordre 0t - L a ..
l.J

[Du-L] etablissent une formule du type (I) s'appliquant en particulier aux equations

0
2
x.x.
l. J

dependant que des variables spatiales, bien sur) continus reels sur V, V ouvert

relativement compact de IR
n

de classe C
2,

avec de plus c < 0 et les coeffi -

cients principaux continus holderiens sur V.

(*) Cet article est la redaction detaillee de l'expose du 17 Avril 1980



Analogously, in the case of the second order semi discrete Cauchy
problem:

∂ttu(n, t) = Bu(n, t) + g(n, t), n ∈ Z, t > 0,

u(n, 0) = ϕ(n), n ∈ Z,
ut(n, 0) = φ(n), n ∈ Z,

we have that the fundamental solution is given by D’Alembert
formula

u(n, t) = Cos(t,B)ϕ(n) + Sin(t,B)φ(n) +

∫ t

0
Sin(t − s,B)f (s)ds,

where Cos(t,B) and Sin(t,B) are generated by B.



,
Jean Le Rond d‘Alembert (1717 - 1783)

He was left the newly born child on the steps of the church St Jean
Le Rond. D‘Alembert worked on the Encyclopédie for many years,
(28 volumes). He was also a brilliant mathematician. He felt that
Euler was stealing his ideas and not giving him due credit. He
stopped publishing his articles, collecting them in Opuscules
mathématiques (8 volumes).
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R e c h e r c h e s

SUR LA CO URBE Q U E  FORM E U N E  CORDE

T E N D U E  MI S E  EN V I B R A T I O N ,

P a r  M r. D’ A L E M B E R T .

L
^ v T n t ^  e mc Pr0P°^c ^*re v0,r dans ce Mcmoire, qu’il 
^ ¾ )  ^ a U,îe *n^ n‘c® d’autres courbes que la Compagne

^  f y ct°‘de allongé*y qui fatisfont au Problème 
]W'v&iO*“ <jont ü s’agir j e fuppoferay toujours i»»*, que les 

excurfions ou vibrations de la corde font fort petites, enforte que 
F»{. î- les arcs A M de la courbe qu’elle forme, puillênt toujours ctre fup- 

pofës fenfiblemcnt égaux aux abfcilles correfpondantes A P. z». que 
la corde eft uniformément cpaiirc dans toute fa longueur : 30. que la 
force F de la tenfion eft au poids de la corde, en.raifon confiante, 
c. a. d. comme tn à 1; d’où il s’enfuit que fi on nomme/» la gravité, 
& / la longueur de la corde, 011 pourra fuppofer F — p v i  /; 4«. que 
li on nomme A P ou A M, / ;  P M , j i i  & qu’on fade J s  conltance,

la force acccleratricc du point M fuivant M P, eft — ^ — > fi la

courbe eft concave vers A C , ou ^ e^c convexe, t'oyez
Taylar Metb. Incr. s

II. Cela

,



Aims of the talk

The main aim of this talk is to study the fractional differential
equations in `p(Z) for 1 ≤ p ≤ ∞. To do this.

(i) We apply Güelfand theory to describe convolution operators.

(ii) We calculate the kernel of the convolution fractional powers.

(iii) We solve some fractional evolution equation in `p(Z).

(iv) We obtain explict solutions for fractional evolution equation
for some fractional powers of finite difference operators.

(v) Finally we give some application to concrete equations and
special functions.
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2. A Banach algebra framework

For 1 ≤ p ≤ ∞, the Banach space (`p(Z), ‖ ‖p) are formed by
f = (f (n))n∈Z ⊂ C such that

‖f ‖p : =

( ∞∑
n=−∞

|f (n)|p
) 1

p

<∞, 1 ≤ p <∞;

‖f ‖∞ : = sup
n∈Z
|f (n)| <∞.

`1(Z) ↪→ `p(Z) ↪→ `∞(Z), (`p(Z))′ = `p
′
(Z) with 1

p + 1
p′ = 1 for

1 < p <∞ and p = 1 and p′ =∞.



2. A Banach algebra framework

In the case that f ∈ `1(Z) and g ∈ `p(Z), then f ∗ g ∈ `p(Z) where

(f ∗ g)(n) :=
∞∑

j=−∞
f (n − j)g(j), n ∈ Z,

and ‖f ∗ g‖p ≤ ‖f ‖1 ‖g‖p for 1 ≤ p ≤ ∞. Note that (`1(Z), ∗) is a
commutative Banach algebra with unit (we write δ0 = χ{0}).



2. A Banach algebra framework
We recall that the spectrum of f , denoted as σ`1(Z)(f ), is defined
by σ`1(Z)(f ) := C\ρ`1(Z)(f ), where

ρ`1(Z)(f ) := {λ ∈ C : (λδ0 − f )−1 ∈ `1(Z)}.

We apply Güelfand theory to get

σ`1(Z)(f ) = F(f )(T), f ∈ `1(Z),

where F : `1(Z)→ C(T) is the discrete Fourier transform,

F(f )(θ) :=
∑
n∈Z

f (n)e inθ, θ ∈ T.

The inverse discrete Fourier transform is given by

F−1(F )(n) =
1

2π

∫ π

−π
F (e iθ)e−inθ dθ =

1

2πi

∫
|z|=1

F (z)
dz

zn+1
, n ∈ Z,

for F ∈ A(T) (and for other functions in larger sets).
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2. A Banach algebra framework

Definition
For α, β > 0, the vector-valued Mittag-Leffler function,
Eα,β : `1(Z)→ `1(Z),

Eα,β(a) :=
∞∑
j=0

aj

Γ(αj + β)
, a ∈ `1(Z).

Note that

E1,1(a) =
∞∑
j=0

aj

j!
= ea; E2,1(a) =

∞∑
j=0

aj

(2j)!
.

The element a is the generator of the entire group (eza)z∈C; a
cosine function, Cos(z , a) := E2,1(z2a), and a sine function,
Sin(z , a) := zE2,2(z2a). We have

Sin(z , a) =

∫
[0,z]

Cos(s, a)ds, z ∈ C, a ∈ `1(Z).



2. A Banach algebra framework
For ν ∈ R, let Jν denote the Bessel function defined by

Jν(x) =
∞∑
n=0

(−1)n

Γ(n + ν + 1)n!

(x

2

)2n+ν
, x ≥ 0. (2)

the Modified Bessel functions of the first kind, defined by

Iν(x) =
∞∑
n=0

1

Γ(n + ν + 1)n!

(x

2

)2n+ν
. (3)

Note that |Jν(x)| ≤ Iν(x), ν ∈ R+ and In(x) ≥ 0, n ∈ Z, x ≥ 0,

1.
∑
n∈Z

Jn(x)zn = e
x
2

(z− 1
z

), z ∈ C \ {0}, x ∈ C.

2. Jn(x + y) =
∑
k∈Z

Jn−k(x)Jk(y).

3.
∑
n∈Z

In(x)zn = e
x
2

(z+ 1
z

), z ∈ C \ {0}, x ∈ C.

4. In(x + y) =
∑
k∈Z

In−k(x)Ik(y).



2. A Banach algebra framework
The Laplace transform of a entire group or a cosine function is
connected with the resolvent of its generator:

(λ− a)−1 =

∫ ∞
0

e−λseasds, λ > ‖a‖1,

λ(λ2 − a)−1 =

∫ ∞
0

e−λsCos(s, a)ds, λ >
√
‖a‖1.

Example

For α, β > 0, we have that

Eα,β(zδ0) = Eα,β(z)δ0; Eα,β(zδ1) =
∞∑
j=0

z jδj
Γ(αj + β)

.

In particular, ezδ1 =
∞∑
j=0

z jδj
j!

and Cos(z , δ1) =
∞∑
j=0

z2jδj
(2j)!

are

generated by δ1.



2. A Banach algebra framework

Proposition

For α, β > 0 and a ∈ `1(Z), we have that

(i) ‖Eα,β(a)‖1 ≤ Eα,β(‖a‖1).

(ii) F(Eα,β(a)) = Eα,β(F(a)); in particular F(eaz) = ezF(a) and
F(Cos(z , a)) = Cos(F(z), a) for z ∈ C.

(iii) σ`1(Z)(Eα,β(a)) = Eα,β(σ`1(Z)(a)).

(iv) The following Laplace transform formula holds∫ ∞
0

e−λttαk+β−1E
(k)
α,β(tαa)dt = k!λα−β

(
(λα − a)−1

)(k+1)
,

for <(λ) > ‖a‖1/α
1 , and k ∈ N ∪ {0}.



2. A Banach algebra framework

Given a = (a(n))n∈Z ∈ `1(Z), define A ∈ B(`p(Z)) by convolution,

A(b)(n) := (a ∗ b)(n), n ∈ Z, b ∈ `p(Z),

for all 1 ≤ p ≤ ∞, ‖A‖ = ‖a‖1 and

σB(`p(Z))(A) = σ`1(Z)(a) = F(a)(T) (4)

for all 1 ≤ p ≤ ∞, (Wiener’s Lemma).

It is also straightforward to check that the adjoint operator of A is
again a convolution operator given by A′(g)(n) := (ã ∗ g)(n) where

ã(n) = a(−n), n ∈ Z.



2. A Banach algebra framework

Given a = (a(n))n∈Z ∈ `1(Z), define A ∈ B(`p(Z)) by convolution,

A(b)(n) := (a ∗ b)(n), n ∈ Z, b ∈ `p(Z),

for all 1 ≤ p ≤ ∞, ‖A‖ = ‖a‖1 and

σB(`p(Z))(A) = σ`1(Z)(a) = F(a)(T) (4)

for all 1 ≤ p ≤ ∞, (Wiener’s Lemma).

It is also straightforward to check that the adjoint operator of A is
again a convolution operator given by A′(g)(n) := (ã ∗ g)(n) where
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3. Some finite difference operators in `1(Z)

Finite difference operators A ∈ B(`p(Z)) given by

Af (n) :=
m∑

j=−m
a(j)f (n − j), aj ∈ C,

for some m ∈ N, i.e. a = (a(n)n∈Z) ∈ cc(Z) are convolution
operator and the discrete Fourier Transform of a is a trigonometric
polynomial

F(a)(θ) =
m∑

j=−m
a(j)e ijθ.

It is interesting to observe that if
∑m

j=−m a(j) = 0 then
0 ∈ σ`1(Z)(a).
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3. Some finite difference operators in `1(Z)

Definition
[B] For f ∈ `p(Z), with 1 ≤ p ≤ ∞, we define operators

1. −∆f (n) := f (n)− f (n + 1) = ((δ0 − δ−1) ∗ f )(n);

2. ∇f (n) := f (n)− f (n − 1) = ((δ0 − δ1) ∗ f )(n);

3. ∆d f (n) := f (n+1)−2f (n)+f (n−1) = ((δ−1−2δ0+δ1)∗f )(n);

4. ∆dd f (n) := f (n + 2)− 2f (n) + f (n − 2) =
((δ−2 − 2δ0 + δ2) ∗ f )(n);

for n ∈ Z.

Operators −∆ and ∇ are related to Euler scheme of approximation,
and the operator ∆d corresponds to the second-order central
difference approximation for the second order derivative. The
operator ∆dd appears in Bateman’s paper in connection with the
equations of Born and Karman on crystal lattices in vibration.
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3. Some finite difference operators in `1(Z)

Harry Bateman (1882 – 1946)



3. Some finite difference operators in `1(Z)

Theorem
The operator −∆f = a ∗ f where a := δ0 − δ−1 verifies

1. The norm is given by ‖∆‖ = 2;

2. The Fourier transform is F(a)(z) = 1− z , |z | = 1;

3. For all 1 ≤ p ≤ ∞, σB(`p(Z))(−∆) = {z ∈ T : |z − 1| = 1};

4. For |λ+ 1| > 1, (λδ0 + a)−1 =
∑
j≥0

δ−j
(1 + λ)j+1

.

5. The associated group is e−za(n) = e−z
z−n

(−n)!
χ−N0(n), for

z ∈ C, n ∈ Z and its generator is −a.

6. The norm of the group is given by ‖e−ta‖1 = 1, t > 0;

7. The associated cosine function is

Cos(z ,−a)(n) =

√
π

(−n)!

(z

2

)−n+ 1
2

J−n− 1
2
(z)χ−N0(n), z ∈ C, n ∈ Z.



3. Some finite difference operators in `1(Z)

Theorem
The operator ∇f = a ∗ f where a := δ0 − δ1 verifies

1. ‖∇‖ = 2;

2. F(a)(z) = 1− 1

z
;

3. For 1 ≤ p ≤ ∞, σB(`p(Z))(∇) = {z ∈ T : |z − 1| = 1};
4. For |λ+ 1| > 1,

(λδ0 + a)−1 =
∑
j≥0

δj
(1 + λ)j+1

.

5. e−za(n) = e−z zn

n!χN0(n), z ∈ C, n ∈ Z;

6. ‖e−ta‖1 = 1, t > 0;

7. Cos(z ,−a) =
√
π

n!

(
z
2

)n+ 1
2 Jn− 1

2
(z)χN0(n), z ∈ C, n ∈ Z.



3. Some finite difference operators in `1(Z)

Theorem
The operator ∆d f = a ∗ f where a := δ−1 − 2δ0 + δ1 verifies

1. ‖∆d‖ = 4;

2. F(a)(z) = z +
1

z
− 2;

3. For all 1 ≤ p ≤ ∞ we have σB(`p(Z))(∆d) = [−4, 0];

4. The group eza(n) = e−2z In(2z), z ∈ C, n ∈ Z and its
generator is a.

5. ‖eta‖1 = 1, t > 0;

6. For λ ∈ C \ [−4, 0],

(λ− a)−1(n) = 2−n
((λ+ 2)−

√
λ2 + 4λ)n√

λ2 + 4λ
, n ∈ Z;

7. Cos(z , a) = J2n(2z), z ∈ C, n ∈ Z.



3. Some finite difference operators in `1(Z)

Theorem
The operator ∆dd f = a ∗ f where a := δ−2 − 2δ0 + δ2 verifies

1. ‖∆dd‖ = 4;

2. F(a)(z) = (z − 1

z
)2;

3. For all 1 ≤ p ≤ ∞ we have σB(`p(Z))(∆dd) = [−4, 0];

4. eza(n) = e−2z I n
2
(2z)χ2Z(n), z ∈ C, n ∈ Z;

5. ‖e−ta‖1 = 1, t > 0;

6. For λ ∈ C \ [−4, 0],

(λ−a)−1(n) = 2−
n
2

((λ+ 2)−
√
λ2 + 4λ)

n
2

√
λ2 + 4λ

χ2Z(n), n ∈ Z;

7. Cos(z ,−a)(n) = Jn(2z)χ2Z(n), z ∈ C, n ∈ Z.



3. Some finite difference operators in `1(Z)

Some simple computations show linear, algebraic and dual relations
between the operators defined previously, which are presented in
the following result.

Proposition

Let −∆,∇,∆d and ∆dd be the discrete operators.

(i) The following equalities hold:

−∆d = (∇−∆) = −∆∇.

(ii) For 1 ≤ p <∞, the following identities hold on `p(Z):

(−∆)′ = ∇; (∇)′ = −∆;

(∆d)′ = ∆d ; (∆dd)′ = ∆dd .



3. Some finite difference operators in `1(Z)

−∆d = (∇−∆) = −∆∇.

gz,−(n) :=
zn

n!
χN0(n), gz,+(n) :=

z−n

(−n)!
χ−N0(n).

Theorem
The Bessel function In admits a factorization via convolution given
by

In(2z) = (gz,+ ∗ gz,−)(n), n ∈ Z, z ∈ C.



3. Some finite difference operators in `1(Z)

−∆d = (∇−∆) = −∆∇.

gz,−(n) :=
zn

n!
χN0(n), gz,+(n) :=

z−n

(−n)!
χ−N0(n).

Theorem
The Bessel function In admits a factorization via convolution given
by

In(2z) = (gz,+ ∗ gz,−)(n), n ∈ Z, z ∈ C.



3. Some finite difference operators in `1(Z)

a ∗ f a F(·)(z) σ`1(Z)(a)

−∆ δ0 − δ−1 1− z {z ∈ T : |z − 1| = 1}
∇ δ0 − δ1 1− 1

z {z ∈ T : |z − 1| = 1}
∆d δ−1 − 2δ0 + δ1 z + 1

z − 2 [−4, 0]

∆dd δ−2 − 2δ0 + δ2 z2 − 2 + 1
z2 [−4, 0]

a ∗ f Generated semigroup Generated cosine

−∆ e−z z−n

(−n)!χ−N0
(n)

√
π

(−n)!

(
z
2

)−n+ 1
2 J−n− 1

2
(z)χ−N0(n)

∇ e−z zn

n!χN0(n)
√
π

n!

(
z
2

)n+ 1
2 Jn− 1

2
(z)χN0(n)

∆d e−2z In(2z) J2n(2z)

∆dd e−2z I n
2
(2z)χ2Z(n) Jn(2z)χ2Z(n)



4. Fractional powers of generators of semigrupos in `1(Z)

To define fractional powers in a Banach algebra (and in operator
theory) is, in general, a difficult task. Not every element in `1(Z)
has fractional powers. For example δ1 does not have square root in
`1(Z).

When σ`1(Z)(a) ⊂ C+ and α ∈ R, we may consider the function
Fα(z) = zα which is holomorphic in a neighbour of σ`1(Z)(a). By
the analytic functional calculus, the element

Fα(a) =
1

2πi

∫
γ

Fα(z)

z − a
dz ,

(where γ is a spectral contour lying in an open set O containing
the spectrum of a) exists in the Banach algebra `1(Z) and
F(Fα(a)) = (F(a))α ([La]). Then Fα(a) is a fractional power of a
of order α, and we write Fα(a) = aα.
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When σ`1(Z)(a) ⊂ C+ and α ∈ R, we may consider the function
Fα(z) = zα which is holomorphic in a neighbour of σ`1(Z)(a). By
the analytic functional calculus, the element

Fα(a) =
1

2πi

∫
γ

Fα(z)

z − a
dz ,

(where γ is a spectral contour lying in an open set O containing
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of order α, and we write Fα(a) = aα.



4. Fractional powers of generators of semigrupos in `1(Z)

We note that there exists a classical way to define fractional
powers of generators of uniformly bounded semigroups in Banach
spaces, see for example [Y] and, in particular in `1(Z).

Definition
Let 0 < α < 1, and a ∈ `1(Z), such that (eta)t≥0 is a uniformly
bounded semigroup, i.e., sups>0 ‖eas‖1 <∞. Then we write (−a)α

by the fractional power of a given by the following integral
representation,

(−a)α :=
1

Γ(−α)

∫ ∞
0

esa − δ0

s1+α
ds.



4. Fractional powers of generators of semigrupos in `1(Z)

As an immediate consequence of this definition, we have that, for
0 < α < 1,

F((−a)α) = (−F(a))α, σ((−a)α) = (σ(−a))α,

It is well known that the uniformly bounded semigroup
(e−t(−a)α)t≥0 is subordinated to (eta)t≥0 (principle of Lévy
subordination) by the formula

e−t(−a)α =

∫ ∞
0

ft,α(s)easds =
∞∑
j=0

(−t)j

j!
(−a)jα, t ≥ 0,

see, for example [Y]. Note that

F(e−t(−a)α) = e−t(−F(a))α .
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As an immediate consequence of this definition, we have that, for
0 < α < 1,

F((−a)α) = (−F(a))α, σ((−a)α) = (σ(−a))α,

It is well known that the uniformly bounded semigroup
(e−t(−a)α)t≥0 is subordinated to (eta)t≥0 (principle of Lévy
subordination) by the formula

e−t(−a)α =

∫ ∞
0

ft,α(s)easds =
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(−t)j
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(−a)jα, t ≥ 0,

see, for example [Y]. Note that

F(e−t(−a)α) = e−t(−F(a))α .



4. Fractional powers of generators of semigrupos in `1(Z)

kα(j) :=
Γ(α + j)

Γ(α)j!
for j ∈ N0.

∞∑
j=0

kα(j)z j =
1

(1− z)α
([Z]).

Fractional power F(·)(z) Explicit expression

(δ0 − δ−1)α (1− 1
z )α k−α(n)χ−N0

(δ0 − δ1)α (1− z)α k−α(n)χN0

(−(δ−1 − 2δ0 + δ1))α (4 sin2( θ2 ))α (−1)jΓ(2α+1)
Γ(1+α+n)Γ(1+α−n)

(−(δ−2 − 2δ0 + δ2))α (4 sin2(θ))α
Γ(2α+1) cos( n

2
π)

Γ(1+α+ n
2

)Γ(1+α− n
2

)



4. Fractional powers of generators of semigrupos in `1(Z)

Now we apply the Lévy subordination principle to a = δ−1 − δ0 and
a = δ1 − δ0.

Corollary

Let 0 < α < 1 and fs,α is the Lévy stable process. Then

∞∑
j=1

k−αj(n)
(−t)j

j!
=

∫ ∞
0

ft,α(s)
e−ssn

n!
ds, t > 0, n ≥ 1.

In particular, when α = 1
2 , we obtain

∞∑
j=1

k
−j
2 (n)

(−t)j

j!
=

∫ ∞
0

t√
4πs3

e
−t2

4s e−ssnds, n ≥ 1.



4. Fractional powers of generators of semigrupos in `1(Z)

Kα
d (n) :=

(−1)nΓ(2α + 1)

Γ(1 + α + n)Γ(1 + α− n)
.

We also apply the Lévy subordination principle to the semigroup
generated to a = δ−1 − 2δ0 + δ1 to obtain the following result.

Corollary

Let 0 < α < 1 and fs,α be the Lévy stable process. For n ∈ Z and
0 < t < 1, we have

∞∑
j=0

Kαj
d (n)

(−t)j

j!
=

∫ ∞
0

ft,α(s)e−2s In(2s)ds;

in particular for α = 1
2 ,

∞∑
j=0

K
j
2
d (n)

(−t)j

j!
=

∫ ∞
0

t√
4πs3

e
−t2

4s e−2s In(2s)ds.



5. Fundamental solutions for discrete evolution equations

We consider the fractional differential equation{
Dβt u(n, t) = Bu(n, t) + g(n, t), n ∈ Z, t > 0.

u(n, 0) = ϕ(n), ut(n, 0) = φ(n) n ∈ Z,
(5)

Bf (n) = (b ∗ f )(n), with b ∈ l1(Z), f ∈ lp(Z), p ∈ [1,∞] and
β ∈ (0, 2] and

Dβt v(t) =
1

Γ(1− β)

∫ t

0
(t − s)−βv ′(s)ds, t > 0,

for 0 < β < 1 and

Dβt v(t) =
1

Γ(2− β)

∫ t

0
(t − s)1−βv ′′(s)ds, t > 0,

for 1 < β < 2.



5. Fundamental solutions for discrete evolution equations

We consider the fractional differential equation{
Dβt u(n, t) = Bu(n, t) + g(n, t), n ∈ Z, t > 0.

u(n, 0) = ϕ(n), ut(n, 0) = φ(n) n ∈ Z,
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1
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5. Fundamental solutions for discrete evolution equations

Theorem
Let ϕ, φ ∈ `p(Z), and g : Z× R+ → C be such that, for each
t ∈ R+, g(·, t) ∈ `p(Z) and sup

s∈[0,t]
||g(·, s)||p <∞ with

1 ≤ p ≤ ∞.
(i) For 0 < β < 1, the function

u(n, t) =(Eβ,1(tβb) ∗ ϕ)(n)

+

∫ t

0
(t − s)β−1

(
Eβ,β((t − s)βb) ∗ g(·, s)

)
(n)ds, n ∈ Z,

is the unique solution of the initial value problem and u(·, t)
belong to `p(Z) for t > 0.



5. Fundamental solutions for discrete evolution equations

Theorem
Let ϕ, φ ∈ `p(Z), and g : Z× R+ → C be such that, for each
t ∈ R+, g(·, t) ∈ `p(Z) and sup

s∈[0,t]
||g(·, s)||p <∞ with

1 ≤ p ≤ ∞.
(ii) For 1 < β < 2, the function

u(n, t) =(Eβ,1(tβb) ∗ ϕ)(n) + t(Eβ,2(tβb) ∗ φ)(n)

+

∫ t

0
(t − s)β−1

(
Eβ,β((t − s)βb) ∗ g(·, s)

)
(n)ds, n ∈ Z,

is the unique solution of the initial value problem and , u(·, t)
belong to `p(Z) for t > 0.



5. Fundamental solutions for discrete evolution equations
Now we consider the behavior of the solution when β → 1, 2. For
simplicity, g = 0. When β → 1−, the solution of equation
converges to semigroup family operators E1,1(tb), and for the case
β → 2−, the solution of equation (1),

u(·, t) = Eβ,1(tβb) ∗ ϕ+ tEβ,2(tβb) ∗ φ, t > 0,

converges to unique mild solution of second order Cauchy problem.
However, as in the scalar case, when β → 1+ the solution of the
equation converges to

u(·, t) = E1,1(bt) + tE1,2(tb), t > 0.

Note that this function is the solution of the following first order
modified Cauchy problem{

v ′(n, t) = Bv(n, t) + φ(n), n ∈ Z, t > 0,

v(n, 0) = ϕ(n), n ∈ Z,

for φ, ϕ ∈ `p(Z). This fact is in accordance with the interpolation
property of the Caputo fractional derivative.



5. Fundamental solutions for discrete evolution equations
The fundamental solution uβ,1 are obtained by requiring by ψ = δ0

and φ = 0. In the case 1 < β ≤ 2 (included the wave equation), a
second fundamental solution uβ,2 is given by ψ = 0 and φ = δ0.

Corollary

Let uβ,1 and uβ,2 be the fundamental solutions of problems (1)

and Φβ the Wright function, Φβ(z) :=
∑∞

n=0
(−z)n

n!Γ(−βn+1−β) .

(i) Let 0 < β < 1. Then,

uβ,1(n, t) =

∫ ∞
0

Φβ(τ)u1,1(n, τ tβ)dτ, n ∈ Z, t > 0.

(ii) Let 1 < β < 2. Then

uβ,1(n, t) =

∫ ∞
0

Φβ
2

(τ)u2,1(n, τ t
β
2 )dτ, , n ∈ Z, t > 0,

uβ,2(n, t) =

∫ t

0

(t − u)
−β

2

Γ(1− β
2 )

∫ ∞
0

Φβ
2

(τ)u2,2(n, τu
β
2 )dτ du.



5. Fundamental solutions for discrete evolution equations

The particular case B = −(−A)α, where A is the infinitesimal
generator of an uniformly bounded C0-semigroup in B(`p(Z)) has
received a special attention, for example B = −(−∆d)α. These
proofs rest about the explicit expressions of Eβ,1(−tβKα

d ),
Eβ,2(−tβKα

d ) and Eβ,β(−tβKα
d ).

Corollary

Let ϕ, φ ∈ `p(Z), and g : Z× R+ → C be such that, for each
t ∈ R+, g(·, t) ∈ `p(Z) and sup

s∈[0,t]
||g(·, s)||p <∞ with

1 ≤ p ≤ ∞. Take a ∈ `1(Z) such that generates a uniformly
continuous semigroup in `1(Z), we write (−a)α the fractional
powers given and B(f ) := −(−a)α ∗ f for f ∈ `p(Z) and
0 < α < 1. Then the same representation of the fundamental
solutions with b = −(−a)α holds.



6. Applications to concrete examples

6.1 The discrete Nagumo equation Let us consider the linear
part of the discrete Nagumo equation, which can be written as
follows:{

∂tu(n, t) = ∆du(n, t)− ku(n, t), n ∈ Z, t > 0,

u(n, 0) = ϕ(n), n ∈ Z.
(6)

where 0 < k < 1/2. The discrete Nagumo equation is used as a
model for the spread of genetic traits and for the propagation of
nerve pulses in a nerve axon, neglecting recovery. Then

σ(et(∆d−kI )) = etσ(∆d−kI ) = {ets : t ≥ 0, −4− k ≤ s ≤ −k}

It implies that the unique solution of equation (6) is uniformly
asymptotically stable, i.e.

u(n, t) = et(∆d−kI )ϕ(n)→ 0 as t →∞.



6. Applications to concrete examples

6.1 The discrete Nagumo equation
Moreover, using Theorem 6(4) and the semigroup property, we can
obtain a representation of the fundamental solution as follows:

u(n, t) = e−2t
n∑

j=0

n−j∑
l=0

(−kt)l

l!
In−j−l(2t)ϕ(j).

Since σ(−(−∆d)α) = [−4α, 0] we have that the same asymptotic
behavior also holds for the fundamental solution of the fractional
Laplacian version for the discrete Nagumo equation [LR]:{

∂tu(n, t) = −(−∆d)αu(n, t)− ku(n, t), n ∈ Z, t > 0,

u(n, 0) = ϕ(n), n ∈ Z.



7. Applications to concrete examples

7.3 Subordination principle on Wright function We obtain
some known formulae but others seem to be new.
Take a = δ−1 − δ0 or a = δ1 − δ0.

(i) For 0 < β < 1, t ∈ C and n ∈ N0, we have

E
(n)
β,1(t) =

∞∑
j=0

(j + n)!

j!

t j

Γ(β(j + n) + 1)
=

∫ ∞
0

Φβ(τ)eτ tτndτ.

(ii) For 1 < β < 2, t ∈ C and n ∈ N0, we have

(2t)n−
1
2

∞∑
j=0

(−1)j(j + n)!

j!

t2j

Γ(β(j + n) + 1)

=

√
π

2

∫ ∞
0

Φβ
2

(τ)τn+ 1
2 Jn− 1

2
(τ t) dτ.



7. Applications to concrete examples
7.3 Subordination principle on Wright function
Now take a = δ−1 − 2δ0 + δ1 or a = δ−2 − 2δ0 + δ2.

(i) For 0 < β < 1, t ∈ C and n ∈ N0, we have

∞∑
j=0

(−1)j
(

2(j + n)

j

)
t j+n

Γ(β(j + n) + 1)
=

∫ ∞
0

Φβ(τ)e−2τ t In(2τ t)dτ.

In particular, when β = 1
3 , we get the integral formula for Airy

function,

∞∑
j=0

(−1)j
(

2(j + n)

j

)
t j+n

Γ( j+n
3 + 1)

=

∫ ∞
0

3
2
3 Ai

(
τ

3
1
3

)
e−2τ t In(2τ t)dτ,

for t ∈ C and n ∈ N0.

(ii) For 1 < β < 2, t ∈ C and n ∈ N0, we have

∞∑
j=0

(−1)j
(

2(j + n)

j

)
t2(j+n)

Γ(β(j + n) + 1)
=

∫ ∞
0

Φβ
2

(τ)J2n(2τ t)dτ.
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[GKLW] J. González-Camus, V. Keyantuo, C. Lizama and M.
Warma. Fundamental solutions for discrete dynamical systems
involving the fractional Laplacian. Mathematical Methods in the
Applied Sciences, (2019).
[LR] C. Lizama and L. Roncal Hölder-Lebesgue regularity and
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