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1. Introduction

We study the fractional differential equation

{IDfu(n7 t) = Bu(n,t) + g(n,t), neZ, t>0. (1)

u(n,0) = ¢(n), u(n,0)=o(n) neZ,



1. Introduction

We study the fractional differential equation

{Dfu(n, t) = Bu(n,t)+g(n,t), nezZ, t>0. )

u(n,0) = ¢(n), u(n,0)=o(n) neZ,

Bf(n) = (bx f)(n), with b € IX(Z), f € IP(Z), p € [1, 0] and
B € (0,2]. We recall that D? denotes the Caputo fractional
derivative.



For a regular function v, ]D)é3 is the Caputo derivative of order S,

1 t _8 B /
DO = 5 [ (== Ve = (ap () >0

for0 < 8 <1 and

D v(t) = F(21—5)/0 (t—s)1PV"(s)ds = (g_p*v")(t), t>0,

forl < g <2,



For a regular function v, ]D)é3 is the Caputo derivative of order S,

1

DO = 5 [ (== Ve = (ap () >0

for0 < 8 <1 and

D v(t) = F(21—5)/0 (t—s)1PV"(s)ds = (g_p*v")(t), t>0,

for1< 8 <2 For 8=1 and 8 =2, note that

lim DYv(t) = V/(1), lim DPv(t) =Vv'(t), t>0,
B—1— B—2—
however,

lim DPv(t) = v(t)—v(0), lim DPv(t) = v/(t)—V(0), t >0,
B—0t B—1+

see, for example [Baz, GM].



For 8 =1, the semi discrete Cauchy problem given in the
introduction

Oru(n, t) = Bu(n,t) + g(n,t), neZ, t>0,
u(n,0) = p(n), nez,

and their fundamental solution that is obviously given by
Duhamel’s formula

t
u(n, t) = eBty(n) —|—/ eBt=5)g(n s)\ds nez, t>0.
0



Jean-Marie DUHAMEL

Mathématicien

(1797-1872)

Jean Marie Duhamel (1797 - 1872)

His studies were affected by the troubles of the Napoleonic era
(Gaspar Monge). Duhamel worked on partial differential equations
and applied his methods to the theory of heat, to rational
mechanics, and to acoustics. He was an experimenter and
published several memories. Sur la méthode générale relative au
mouvement de la chaleur dans les corps solides plongés dans des
milieux dont la température varie avec le temps (1833).
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FORMULE DE DUHAMEL ET PROBLEME DE LA CHALEUR

*
par Luc PAQUET

C. INTRODUCTION

Dans un mémoire en 1833, J.M.C. Duhamel &tablit par des considérations heuris-
tiques le théoréme suivant [ Duh],[ C-J] : "notons F(x,y,z,A,t) la température au
point (x,y,z) & 1'instant t dans un solide dont la température initiale est
nulle et sa température au bord ¢(x,y,z,1). Alors la solution du probléme dans
lequel la température initiale est zéro et la température au bord ¢(x,y,z,t) est

donnée par :

t
vix,y,2,8) = [ 52 By 2, At dh wm
o



Analogously, in the case of the second order semi discrete Cauchy
problem:

Owu(n,t) = Bu(n,t) +g(n,t), neZ, t>0,
u(n,0) = p(n), nez,
ug(n,0) = ¢(n), n ez,

we have that the fundamental solution is given by D’Alembert
formula

u(n, t) = Cos(t, B)p(n) + Sin(t, B)é /Smt—sB £(s)ds,

where Cos(t, B) and Sin(t, B) are generated by B.



ENCYCLOPEDIE,

DICTIONNAIRE RAISONNE

DESHFSCIENGES,
DES ARTS ET DES METIERS,

PAR UNE SOCIETE DE GENS DE LETTRES.

4 , ;
Jean Le Rond d‘Alembert (1717 - 1783)

He was left the newly born child on the steps of the church St Jean
Le Rond. D'Alembert worked on the Encyclopédie for many years,
(28 volumes). He was also a brilliant mathematician. He felt that
Euler was stealing his ideas and not giving him due credit. He
stopped publishing his articles, collecting them in Opuscules
mathématiques (8 volumes).
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SUR LA COURBE QUE FORME UNE CORDE
TENDUE MISE EN VIBRATION,

.Par Mr DALEMBERT
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G, e me propofe de faire voir duns ce Memoire, qu'il
I’ y a une infinic¢ d'autres courbes que /a Compagne
‘7 de la (‘]:/ud: allongée, qui fatisfont au Probleme
93 dont il shagit. Je fuppoferay tovjours 1me, que les
excurfons ou vibrations dc la corde font fort petites, enforte que
les arcs A M de la courbe quellc forme, puitlent toujours étre fup-
pofés fenfiblement égaux aux abfcifles correfpondantes A P. 2. que
la corde cft uniformement cpaiffe dans toute fa longueur: 3. quela
force F de la tenfion eft au poids de Ia corde, en raifon conftinte,
c.a.d. comme m i1; d'ol il senfuic que fi on nomme p la gravité,
& 1 lalongucur de la corde, on pourra fuppofer F — pm i 4°. que
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1a force acccleratrice du poine M fuivant M P, eft — y yfila

J d
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Aims of the talk



Aims of the talk

The main aim of this talk is to study the fractional differential
equations in ¢P(Z) for 1 < p < co. To do this.

(i
(i
(ii
(iv

) We apply Giielfand theory to describe convolution operators.
) We calculate the kernel of the convolution fractional powers.
) We solve some fractional evolution equation in ¢P(Z).

) We obtain explict solutions for fractional evolution equation
for some fractional powers of finite difference operators.

(v) Finally we give some application to concrete equations and
special functions.



2. A Banach algebra framework

For 1 < p < oo, the Banach space (¢P(Z),|| ||p) are formed by
f=(f ( ))nez C C such that

T =

Ifllp: = (Z If(n)l”> <oo, 1<p<oo;

n=—oo

Iflloo : = supl|f(n)] < occ.
nez

(H(Z) < (P(Z) — £°(Z), (¢P(Z)) = (7' (Z) with £ + L =1 for
l<p<ooand p=1and p' = oc.



2. A Banach algebra framework

In the case that f € 1(Z) and g € ¢P(Z), then f x g € (P(Z) where
(f+g)(n Z f(n—j)gli), neZ,
j=—00

and ||f xgll, < |If]l1]lgllp for 1 < p < co. Note that (¢}(Z), ) is a
commutative Banach algebra with unit (we write do = x{o0})-



2. A Banach algebra framework
We recall that the spectrum of f, denoted as o1 (z)(f), is defined
by op1(z)(f) := C\pp(z)(f), where

paz)(f) ={AeC : (Ao — )" € (}(Z)}.



2. A Banach algebra framework
We recall that the spectrum of f, denoted as o1 (z)(f), is defined
by op1(z)(f) := C\pp(z)(f), where

paz)(f) ={AeC : (Ao — )" € (}(Z)}.
We apply Giielfand theory to get
on)(f) = F(F)T), el (),

where F : (1(Z) — C(T) is the discrete Fourier transform,

F(F)(0) :=> f(n)e™, 60eT.

neZ



2. A Banach algebra framework
We recall that the spectrum of f, denoted as o1 (z)(f), is defined
by op1(z)(f) := C\pp(z)(f), where

paz)(f) ={AeC : (Ao — )" € (}(Z)}.
We apply Giielfand theory to get
on)(f) = F(F)T), el (),

where F : (1(Z) — C(T) is the discrete Fourier transform,

F(F)(0) :=> f(n)e™, 60eT.

neZ

The inverse discrete Fourier transform is given by

I ; i 1 d.
FUR) = o [ FENe o= [ o ner

_r 27

for F € A(T) (and for other functions in larger sets).



2. A Banach algebra framework

Definition
For «, B > 0, the vector-valued Mittag-Leffler function,
Eop: (HZ) — (X(Z),

Note that
S SaY}
RO ST ORS pean
= = @)

The element a is the generator of the entire group (e??),cc; a
cosine function, Cos(z, a) := E»1(z2a), and a sine function,
Sin(z, a) := zE»2(z%a). We have

Sin(z,a) = Cos(s, a)ds, zeC, ac/ti2).
[0,2]



2. A Banach algebra framework
For v € R, let J, denote the Bessel function defined by

e (-1)" X\ 2n+v
= —~ 7 (= > 0. 2
x) ;I’(n—kl/—&—l)n! (2) » X = (2)
the Modified Bessel functions of the first kind, defined by
1 X 2n+v
N prd Mn+v+1)n! (2) ) (3)

Note that |J,(x)| < L(x),v € Ry and I,(x) >0, n€ Z, x > 0,
1Y Un(x)z"=e32), zeC\{0}, xeC.

n€eZ
2. Jn(x+y) =D Jnk(x)dly
keZ
3. Y Ih(x)z" = e3¢t zeC\ {0}, xeC.
nezZ

4 (x4 ) = 3 ol
keZ



2. A Banach algebra framework

The Laplace transform of a entire group or a cosine function is
connected with the resolvent of its generator:

(A—a) ! = /O e Merds, A |||,

AN —a)t = / e **Cos(s, a)ds, A >/l a1
0

Example
For o, 8 > 0, we have that

Eo 3(200) = Eu p(z)d0; E.3(z61) = Z Flof + ﬁ
j=

z 5 . z4§;
In particular, €% = Z and Cos(z,d1) = E (2)J|
; J! : /)

Jj=0 Jj=0

are

generated by d1.



2. A Banach algebra framework

Proposition
For i, 3 > 0 and a € (}(Z), we have that
(i) 1Ea,p(a)llx < Eap(llall2)-
(i) F(Enp(a)) = Eap(F(a)); in particular F(e?) = e7(2) and
F(Cos(z,a)) = Cos(F(z),a) forz € C.
(i) opn(zy(Ea,p(a)) = Eaplonz)(a))-
(iv) The following Laplace transform formula holds

/ e Mkt EW) (1 a)dr = kine P (A — a) 1Y
0 9’

for R(\) > ||a|[¥/*, and k € N U {0}.



2. A Banach algebra framework

Given a = (a(n))nez € (1(Z), define A € B(¢P(Z)) by convolution,
A(b)(n) := (ax* b)(n), nez, b e (P(Z),
for all 1 < p < o0, ||A]| = ||a]]1 and
opurz))(A) = opz)(a) = F(a)(T) (4)

for all 1 < p < oo, (Wiener's Lemma).



2. A Banach algebra framework

Given a = (a(n))nez € (1(Z), define A € B(¢P(Z)) by convolution,
A(b)(n) := (a* b)(n), nez, b e (P(7),
forall 1 < p < oo, [|All = ||af|1 and
opurz))(A) = opz)(a) = F(a)(T) (4)

for all 1 < p < oo, (Wiener's Lemma).

It is also straightforward to check that the adjoint operator of A is
again a convolution operator given by A'(g)(n) := (3 x g)(n) where

a(n) = a(—n), neZz.



3. Some finite difference operators in (*(Z)

Finite difference operators A € B(¢P(Z)) given by

m

Af(n):= > a(j)f(n—j), a€C,

j==m

for some m € N, i.e. a = (a(n)nez) € cc(Z) are convolution
operator and the discrete Fourier Transform of a is a trigonometric

polynomial
m

F(a)O) = ) a()e”.

j=—m



3. Some finite difference operators in (*(Z)

Finite difference operators A € B(¢P(Z)) given by

m

Af(n):= > a(j)f(n—j), a€C,

j=—m

for some m € N, i.e. a = (a(n)nez) € cc(Z) are convolution
operator and the discrete Fourier Transform of a is a trigonometric

polynomial
m

F@)0) = 3 al)e”.

j=—m

It is interesting to observe that if >

i=—ma(j) =0 then
060’51(2)( )



3. Some finite difference operators in (*(Z)

Definition
[B] For f € ¢P(Z), with 1 < p < oo, we define operators

1.
2. Vf(n) :=f(n)—f(n—1) = ((6o — 01) = f)(n);
3.

4. DNggf(n) :=f(n+2)—2f(n)+f(n—2) =

—Af(n):=f(n) — f(n+1) = (6o — 6_1) * F)(n);
Agf(n) := f(n+1)=2F(n)+F(n—1) = ((5_1—260-+51)F)(n);

(((5_2 — 200 + (52) * f)(n);

for nc Z.



3. Some finite difference operators in (*(Z)

Definition
[B] For f € ¢P(Z), with 1 < p < oo, we define operators
. =Af(n):=1f(n)—f(n+1)=((6o — 6_1) x f)(n);
. Vif(n):=f(n)—f(n—1)=((0o — 1) * F)(n);
. Agf(n) = f(n+1)—2f(n)+f(n—1) = ((6_1—2d80+91)*f)(n);
. Dggf(n):=Ff(n+2)—=2f(n)+f(n—2) =
((0—2 — 23g + d2) * f)(n);
forne Z.

[

A~ N

Operators —A and V are related to Euler scheme of approximation,
and the operator A, corresponds to the second-order central
difference approximation for the second order derivative. The
operator Ay, appears in Bateman's paper in connection with the
equations of Born and Karman on crystal lattices in vibration.



3. Some finite difference operators in (}(Z)

Harry Bateman (1882 — 1946)



3. Some finite difference operators in (*(Z)
Theorem
The operator —Af = ax f where a := g — d_1 verifies
1. The norm is given by | A|| = 2;
2. The Fourier transform is F(a)(z) =1—z, |z| = 1;
3. Forall1 < p<oo, oppzy)(—A)={z€T :|z-1 =1}
0—j
(1+Ay+

—n

4. For|A+1]>1, (Mo +a) ! = Z
j>0

ﬁX—No(”% for

5. The associated group is e **(n) = e *

z € C, n € Z and its generator is —a.
6. The norm of the group is given by |le"®|1 =1, t>0;

7. The associated cosine function is

Cos(z, —a)(n) = (ff)! (g)f"+§ Iy 1 (2)x (), 2€C, neL



3. Some finite difference operators in (*(Z)

Theorem
The operator Vf = ax f where a := dg — 01 verifies
L) =2

2 F(a)(z)=1- %;

3. For1 < p<oo, opurz)(V)={z€T :|z-1] =1}
4. For | A+1|>1,

5.
A0 -1 g
(o277 = 2 sy

5. e_za(n):e_zf,.XNo( n), ze€C, neZ;
6. [[e7®1 =1, t>0;

7. Cos(z,—a) = VT (%)"Jr% Jn_%(z)XNo(n), zeC, neZ.

n!



3. Some finite difference operators in (*(Z)

Theorem
The operator Ayf = a* f where a:= §_1 — 28g + 1 verifies
L ||Agll = 4;

2. F(a)(z) =z + % -2

3. Forall1 < p < oo we have op(p(z))(Ad) = [-4,0];

4. The group €(n) = e %?1,(2z), z€C, n€Zandits
generator is a.

5. |lef]y =1, t>0;

6. For A € C\ [-4,0],

(A +2) = VA2 +4N)"
O U

7. Cos(z,a) = hn(2z), z€ C, ne€ Z.

(A—a)Hn)=2"" n e Z;



3. Some finite difference operators in (*(Z)

Theorem
The operator Agqf = a* f where a:= §_» — 2dg + 9> verifies
L ||Addll = 4

Fla)(2) = (2 - )

2
3. Foralll < p < oo we have UB(Zp(Z))(Add) = [-4,0];
4. e¥(n) = e_zzlg(2Z)X2z(n), zeC, necZ

5. le7®y1 =1, t>0;
6. For A\ € C\ [—4,0],

(A +2) - VA2 +4))2
VA% 44X

7. Cos(z,—a)(n) = Jn(22)x2z(n), z€ C, ne Z.

(A—a)"Y(n) =272

x2z(n), ne



3. Some finite difference operators in (*(Z)

Some simple computations show linear, algebraic and dual relations
between the operators defined previously, which are presented in
the following result.

Proposition
Let —A,V,Ay and Ayq be the discrete operators.
(i) The following equalities hold:

—Ag=(V—-A)=-AV.
(i) Forl < p < oo, the following identities hold on (P(Z):

(—A) = V; (VY = —A;
(Ag) = Ag; (Adg) = Dgq.



3. Some finite difference operators in (*(Z)

—Ag=(V—-A)=—AV.



3. Some finite difference operators in (*(Z)

—Ag=(V—-A)=—AV.

n —n

g () 1= (), ge () = sxna(n)

Theorem
The Bessel function I, admits a factorization via convolution given
by

1n(2z) = (gz,+ * &82,—)(n), neZ, zeC.



3. Some finite difference operators in (*(Z)

axf a F()(2) 051(2)(3)
—-A do—d-1 1-z {zeT :|z—-1| =1}
Y So — 01 — 2 {zeT :|z-1]=1}
JAWY 6_1— 200+ 01 z+ % -2 [—4, 0]
Agg | 62—200+0 | 22 -2+ % [—4,0]
ax f | Generated semigroup Generated cosine
= R
-0 | e Emen(n) | 2 (3) 7T (2)xen(n)
—zZz" VT o[z n+3
\% e *Zrxmo(n) r3)e In1(2)xm0(n)
Ay 6_22/,,(22) Jz,,(2z)
Agyg 6_2215 (QZ)ng(n) J,,(2z)x22(n)




4. Fractional powers of generators of semigrupos in ¢}(Z)

To define fractional powers in a Banach algebra (and in operator
theory) is, in general, a difficult task. Not every element in ¢1(7Z)
has fractional powers. For example d; does not have square root in

MZ).



4. Fractional powers of generators of semigrupos in ¢}(Z)

To define fractional powers in a Banach algebra (and in operator
theory) is, in general, a difficult task. Not every element in /1(Z)
has fractional powers. For example d; does not have square root in
MZ).

When 01(zy(a) C C* and a € R, we may consider the function
Fa(z) = z* which is holomorphic in a neighbour of o1 (z)(a). By
the analytic functional calculus, the element

Fu(a) = — LFQ(Z)dz,

2 zZ—a

(where v is a spectral contour lying in an open set O containing
the spectrum of a) exists in the Banach algebra ¢}(Z) and
F(Fa(a)) = (F(a))* ([La]). Then F,(a) is a fractional power of a
of order o, and we write F,(a) = a“.



4. Fractional powers of generators of semigrupos in ¢}(Z)

We note that there exists a classical way to define fractional
powers of generators of uniformly bounded semigroups in Banach
spaces, see for example [Y] and, in particular in ¢1(Z).

Definition

Let 0 < a < 1, and a € (}(Z), such that (e®¥):>g is a uniformly
bounded semigroup, i.e., sups.g |[€?°||1 < co. Then we write (—a)®

by the fractional power of a given by the following integral
representation,

o 1 o0 esa _ 50
(—a)* = F(—a)/o e ds.



4. Fractional powers of generators of semigrupos in ¢}(Z)

As an immediate consequence of this definition, we have that, for
O<ax<l,

F((=a)") = (=F(a))",  a((=a)") = (o(=a)%,



4. Fractional powers of generators of semigrupos in ¢}(Z)

As an immediate consequence of this definition, we have that, for
O<ax<l,

F((=a)") = (=F(a))",  a((=a)") = (o(=a)%,

It is well known that the uniformly bounded semigroup
(e7t(=2)"),~¢ is subordinated to (€?)¢>o (principle of Lévy
subordination) by the formula

e—t(_a)a _ / ft’a(s)easds _ Z (_ny(_a)ja’ t> 0,
O H

Jj=0

see, for example [Y]. Note that

Fle a7y = e t-F@)",



4. Fractional powers of generators of semigrupos in ¢}(Z)

N Mo+ . N 1
k() = ﬁ(a).,) forj € No. S KG) = = (12D,
! =

Fractional power F()(2) Explicit expression

(6o —6-1)" (1-3)° k= (n)x—n,

(do — 61)* (1-2)" k= (n)xng
(—(6-1 — 200 + 01))* | (4sin?(§))" r(15r;1421nr)(r2(01¢2—n)

o . o r2a+1 I
(~(0-2— 200+ 52))" | (4sin’(0))" | gD




4. Fractional powers of generators of semigrupos in ¢}(Z)

Now we apply the Lévy subordination principle to a = §_1 — Jg and
a= (51 — (50.

Corollary
Let 0 < a <1 and fs o is the Lévy stable process. Then

o —S~n
g k™ "‘J )J fm(s)e IS ds, t>0,n>1.
0 n!

In particular, when o = % we obtain

i; K (r j!ty:/ooo

2
-t _
e e °s"ds, n>1.
4ms



4. Fractional powers of generators of semigrupos in ¢}(Z)

(-1)"T(2a+1)
MMl4+a+nf(l4+a—n)
We also apply the Lévy subordination principle to the semigroup
generated to a = d_1 — 209 + 01 to obtain the following result.

K3 (n) ==

Corollary

Let 0 < a <1 and fs, be the Lévy stable process. For n € Z and
0 < t<1, we have

J!

> . —tY 00
Z Kc(/lj(”)( Y = / ft,a(S)e_zs/n(2S)dS;
j=0 0

in particular for o = %

Jj=0 J

Q o~

/OO «/L e, (2s)d
= e 4s e S S.
0 4753 §



5. Fundamental solutions for discrete evolution equations
We consider the fractional differential equation

{D?u(n,r)zBu(n,t)+g(naf)7 nen =0 )

u(n,0) = p(n), ut(n,0)=¢(n) nezZ,



5. Fundamental solutions for discrete evolution equations
We consider the fractional differential equation

{D?u(n,r)zBu(n,r)+g(nvf)7 nen =0 )

u(n,0) = p(n), ut(n,0)=¢(n) nezZ,

Bf(n) = (bx f)(n), with b € IX(Z), f € IP(Z), p € [1,0] and
B €(0,2] and

DIv(t) = ———
for 0 < 5 <1and

1
- T(2-p)

t
D v(t) / (t —s)Pv"(s)ds, t >0,
0

forl < <2,



5. Fundamental solutions for discrete evolution equations

Theorem

Let ¢, ¢ € (P(Z), and g : Z x Ry — C be such that, for each

te Ry, g(-,t) € P(Z) and sup ||g(-,s)||p < oo with
s€[0,t]
1< p< oo

(i) For0 < 8 < 1, the function
u(n, t) =(Es1(t”b) * ) (n)
t_sﬁ—l — V0P x 2(-.5)) (n)ds. n
+/0 (t ) (Egﬁ((t )°b) * g (-, ))( )ds, n € Z,

is the unique solution of the initial value problem and u(-,t)
belong to (P(Z) for t > 0.



5. Fundamental solutions for discrete evolution equations

Theorem

Let ¢, ¢ € (P(Z), and g : Z x Ry — C be such that, for each

te Ry, g(-,t) € P(Z) and sup ||g(-,s)||p < oo with
s€[0,t]
1< p< oo

(i) For1l < 8 < 2, the function
u(n, t) =(Ega(t”b) * ©)(n) + t(Es2(t”b) + ¢)(n)
' —s)P-1 —5)’b)xg(-,s)) (n)ds, n
+ [ (=9 (Basl(e =)'+ .9)) (). ne

is the unique solution of the initial value problem and , u(-,t)
belong to (P(Z) for t > 0.



5. Fundamental solutions for discrete evolution equations

Now we consider the behavior of the solution when 5 — 1, 2. For
simplicity, g = 0. When 8 — 17, the solution of equation
converges to semigroup family operators E; 1(tb), and for the case
B — 27, the solution of equation (1),

u(- t) = Eg1(t’b) * ¢ + tEs2(t7b) * 6, t>0,

converges to unique mild solution of second order Cauchy problem.
However, as in the scalar case, when 3 — 17 the solution of the
equation converges to

u(-, t) = E11(bt) + tEq o(th), t>0.

Note that this function is the solution of the following first order
modified Cauchy problem

{v’(n, t) = Bv(n,t)+¢(n), neZ, t>0,
v(n,0) = ¢(n), ne,

for ¢, € ¢P(Z). This fact is in accordance with the interpolation
property of the Caputo fractional derivative.



5. Fundamental solutions for discrete evolution equations

The fundamental solution ug; are obtained by requiring by ¢ = dg
and ¢ = 0. In the case 1 < 8 < 2 (included the wave equation), a
second fundamental solution ug > is given by 1) = 0 and ¢ = do.

Corollary

Let ug1 and ug > be the fundamental solutions of problems (1)
and ®g the Wright function, ®3(z) :=> 7" %
(i) Let 0 < B < 1. Then,

o
usa(n, t):/ Sy(P)ura(n rt¥)dr,  neZ, t>0.
0
(i) Let1 < < 2. Then

B
2

oo
wa(nt) = [0 alnrtt)dr.  neZe>0

f(t—u)T [ 5
ugo(n,t) = // S (7)ur2(n, Tu2)dT du.
patmnt) = [ [ @pmalnrud)



5. Fundamental solutions for discrete evolution equations

The particular case B = —(—A)“, where A is the infinitesimal
generator of an uniformly bounded Co-semigroup in B(¢P(Z)) has
received a special attention, for example B = —(—Ay4)®. These
proofs rest about the explicit expressions of Eg,l(—tﬁKj),
Es2(—t7KG) and Egs(—t"Kg).

Corollary

Let ¢, ¢ € (P(Z), and g : Z x Ry — C be such that, for each

EC Ry, g(1) € °(Z) and sup |g(-5)]]p < oo with
s€[0,t]

1 < p < oco. Take a € £*(Z) such that generates a uniformly
continuous semigroup in £*(Z), we write (—a)* the fractional
powers given and B(f) := —(—a)* « f for f € (P(Z) and

0 < a < 1. Then the same representation of the fundamental
solutions with b = —(—a)® holds.



6. Applications to concrete examples

6.1 The discrete Nagumo equation Let us consider the linear
part of the discrete Nagumo equation, which can be written as
follows:

{atu(n, t) = Agu(n, t) — ku(n,t), ne€Z, t>0, ®)

u(n,0) = p(n), n e Z.

where 0 < k < 1/2. The discrete Nagumo equation is used as a
model for the spread of genetic traits and for the propagation of
nerve pulses in a nerve axon, neglecting recovery. Then

U(et(Adka)) — er(Ad*kl) — {ets St > 0, 4 k<s< —k}

It implies that the unique solution of equation (6) is uniformly
asymptotically stable, i.e.

u(n, t) = @k p(n) - 0 as t — .



6. Applications to concrete examples

6.1 The discrete Nagumo equation
Moreover, using Theorem 6(4) and the semigroup property, we can
obtain a representation of the fundamental solution as follows:

n n—j

u(n, t) Z

Jj=0 /=0

—J/2t) U)-

Since o(—(—Aq4)*) = [—4%,0] we have that the same asymptotic
behavior also holds for the fundamental solution of the fractional
Laplacian version for the discrete Nagumo equation [LR]:

{&gu(n, t) = —(—Agy)*u(n,t) — ku(n,t), neZ, t>0,
u(n,0) = p(n), neZz.



7. Applications to concrete examples

7.3 Subordination principle on Wright function We obtain
some known formulae but others seem to be new.
Take a =6_1 — dg or a = 61 — do.

(i) For0 < 8 <1, t € C and ne Ny, we have

= J+n tj > Tt __n
Z GRS /0 dg(r)e™ r"dT.

Jj=

(i) For1 < <2, teCand ne Ny, we have

o1 (Z1Y( + n)! t%
()" J;O J! FrBG+n)+1)

= ﬁ/ ¢g(7’)7’n+%./n_;(7't) dr.
2 0 2 2



7. Applications to concrete examples
7.3 Subordination principle on Wright function
Now take a=9_1 — 209 + 01 or a = 0_5 — 2y + d2.
(i) For0 < 8 <1, teCand ne Ny, we have

> (J+”) L_ h e 2", (27t)dT
J';O( 1)j< >F(B(j+n)+1) —/O bg(r)e " y(2rt)dT.

In particular, when g = % we get the integral formula for Airy

function,

Jj+n fee)
S 1y(2“+”)>,in = / 35Ai () ety (2rt)dr,
=0 M= +1)  Jo 33

for t € C and n € Ng.
(i) For1 < <2, te Cand nec Ny, we have

> 2(/+n) £20+n) Y
S () e Stz

j=0
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