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Higher rank lattices

Let G be any real connected semisimple Lie group with finite
center, no compact factor and real rank ≥ 2.

Let Γ < G be any irreducible lattice, meaning that Γ < G is a
discrete subgroup with finite covolume such that Γ · N < G is
dense for every noncentral closed normal subgroup N � G .

Examples (Minkowski, Borel–Harish-Chandra)

If G = SLn(R) for n ≥ 3, take Γ = SLn(Z)

If G = SLn(R)× SLn(R) for n ≥ 2, take Γ = SLn(Z[
√
d ])

where d ∈ N is square free.

In this talk, we simply say that Γ < G is a higher rank lattice.
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Motivation

Margulis’ Normal Subgroup Theorem (1978)

Let Γ < G be any higher rank lattice. Then any normal subgroup
N � Γ is either finite or has finite index.

In this talk, we present a new framework to study higher rank
lattices using operator algebras.

Main Problem

Given a higher rank lattice Γ < G , we want to understand:

1 IRSa and URSb of Γ

2 Structure of group C∗-algebras C∗π(Γ) where π : Γ→ U(Hπ)

3 Dynamical properties of the affine action Γ y PD(Γ)

aA IRS is a Γ-invariant Borel probability measure on Sub(Γ).
bA URS is a nonempty minimal Γ-invariant closed subset of Sub(Γ).
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Main results
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The dynamical system Γ y PD(Γ)

For any countable discrete group Γ, set

PD(Γ)
.

= {ϕ : Γ→ C | normalized positive definite function}

Then PD(Γ) ⊂ `∞(Γ) is a weak-∗ compact convex set.

We consider the affine action Γ y PD(Γ) given by conjugation

∀γ ∈ Γ, γϕ
.

= ϕ ◦ Ad(γ−1)

Definition

A character ϕ ∈ PD(Γ) is a fixed point for Γ y PD(Γ).

Examples

For any tracial von Neumann algebra (M, τ) and any unirep
π : Γ→ U(M), ϕ

.
= τ ◦ π is a character.

ϕ
.

= δe is called the regular character: πϕ = λ.
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Charmenability of higher rank lattices

Theorem (BH19, BBHP20)

Let Γ < G be any higher rank lattice. Then

1 Any nonempty Γ-invariant weak-∗ compact convex subset
C ⊂ PD(Γ) contains a character.

2 Any extremal character ϕ is either supported on Z(Γ) or the
corresponding GNS tracial factor πϕ(Γ)′′ is amenable.

When G has property (T) (e.g. G = SLn(R) for n ≥ 3), we can
strengthen the above second item as follows:

2 Any extremal character ϕ is either supported on Z(Γ) or the
corresponding GNS tracial factor πϕ(Γ)′′ is finite dimensional.

Our theorem strengthens celebrated results by Margulis (1978),

Stuck–Zimmer (1992), Bekka (2006), Peterson (2014).
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Structure theorem for group C∗-algebras C∗π(Γ)

When π : Γ→ U(Hπ) is a unirep, we may regard

S(C∗π(Γ)) ↪→ PD(Γ) : ψ 7→ ψ ◦ π

as a Γ-invariant weak-∗ compact convex subset. We obtain:

Theorem (BH19, BBHP20)

Let Γ < G be any higher rank lattice. Let π : Γ→ U(Hπ) be any
unirep. Then C∗π(Γ) admits a trace.

Assume that G has trivial center. If π is not amenablea, then
λ ≺ π, that is, there is a ∗-homomorphism Θ : C∗π(Γ)→ C∗λ(Γ)
such that Θ(π(γ)) = λ(γ) for every γ ∈ Γ. Moreover:

1 τΓ ◦Θ is the unique trace on C∗π(Γ).

2 ker(Θ) is the unique maximal proper ideal of C∗π(Γ).

aπ is not amenable if and only if 1Γ ⊀ π ⊗ π.

When G has property (T), π weakly mixing ⇒ λ ≺ π & Items 1, 2.
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Structure theorem for topological dynamics

Theorem (BH19, BBHP20)

Let Γ < G be any higher rank lattice. Assume that G has trivial
center. Let Γ y X be any minimal action on a compact space.

Then at least one of the following assertions holds:

There exists a Γ-invariant Borel probability measure on X .

The action Γ y X is topologically free.

If G has property (T), then either X is finite or Γ y X is top free.

In that case, any URS of Γ is finite (Glasner–Weiss’ problem 2014).
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About the overall strategy

Our main results are consequences of a dynamical dichotomy for
faithful normal ucp Γ-maps θ : M → L∞(G/P) defined on ergodic
Γ-von Neumann algebras, where Γ < G is a higher rank lattice.

The proof of the dynamical dichotomy (which is the hard part) uses
von Neumann algebras theory and depends heavily on whether
the ambient connected semisimple Lie group G is simple or not.

In [BH19], we treat the case when G is simple with real rank ≥ 2
(e.g. G = SLn(R) for n ≥ 3). In that case, we prove a much
stronger result: the noncommutative Nevo–Zimmer theorem.
This method cannot work if G has a rank 1 factor such as SL2(R).

In [BBHP20], we treat the case when G = G1 × G2 is a product
group (e.g. G = SL2(R)× SL2(R)). However, the method we
develop in [BBHP20] cannot work if G is simple.

In that respect, [BH19] and [BBHP20] are complementary.
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A dynamical dichotomy for
boundary structures
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Structure theory of G/P

Let G be a real connected semisimple Lie group with finite center,
no compact factor. Choose K < G a maximal compact subgroup
and P < G a minimal parabolic subgroup so that G = KP.

Example

If G = SLn(R), take K = SOn(R) and P < G the subgroup of
upper triangular matrices.

Denote by νP ∈ Prob(G/P) the unique K -invariant Borel
probability measure.

Theorem (Furstenberg 1962)

For every K -invariant admissible Borel probability measure
µG ∈ Prob(G ), (G/P, νP) is the (G , µG )-Poisson boundary

L∞(G/P, νP) ∼= Har∞(G , µG )
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Boundary structures on von Neumann algebras

Let Γ < G be any higher rank lattice. Let M be any Γ-von
Neumann algebra with separable predual.

Definition (Boundary structure)

Let θ : M → L∞(G/P) be any faithful normal ucp Γ-map. We
then say that θ is a boundary structure on M.

We say that θ is invariant if θ(M) ⊂ L∞(G/P)Γ = C1.

A Γ-invariant weakly dense unital separable C∗-subalgebra A ⊂ M
is called a separable model for Γ y M.

Then the restriction θ|A : A→ L∞(G/P) gives rise to a
measurable Γ-map β : G/P → S(A) : b 7→ βb such that

∀a ∈ A, θ(a) : G/P → C : b 7→ βb(a)
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Boundary structures vs. stationary states

Theorem (Furstenberg 1967)

Let Γ < G be any lattice in a real connected semisimple Lie group.
Then there exists a probability measure µΓ ∈ Prob(Γ) with full
support such that (G/P, νP) is the (Γ, µΓ)-Poisson boundary

L∞(G/P, νP) ∼= Har∞(Γ, µΓ)

If θ : M → L∞(G/P) is a boundary structure, then νP ◦ θ is a
faithful normal µΓ-stationary state on M.

Conversely, if ϕ is a faithful normal µΓ-stationary state on M, then

θ : M → Har∞(Γ, µΓ) : x 7→
(
γ 7→ ϕ(γ−1x)

)
is a faithful normal ucp Γ-map, that is, a boundary structure.

Boundary structures generalize stationary states and are useful when

dealing with lattices in semisimple algebraic groups.
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The noncommutative Nevo–Zimmer theorem

Assume that G is a real connected simple Lie group with finite
center and real rank ≥ 2 (e.g. G = SLn(R) for n ≥ 3).

Theorem (BH19)

Let Γ < G be any lattice, M any ergodic Γ-von Neumann algebra
and θ : M → L∞(G/P) any boundary structure.

Then the following dichotomy holds:

Either θ : M → L∞(G/P) is invariant.

Or there is a proper parabolic subgroup P < Q < G such that
mult(θ) ∼= L∞(G/Q) as Γ-von Neumann algebras.

Our theorem extends Nevo–Zimmer’s result (2000) in two ways.

Firstly, we deal with arbitrary (noncommutative) von Neumann algebras.

Secondly, we deal with Γ-actions rather than G -actions.
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Dynamical dichotomy for boundary structures

We say that φ, ψ ∈ S(A) are pairwise singular and write φ ⊥ ψ if
there exists a sequence (ak)k in A such that 0 ≤ ak ≤ 1 and
limk φ(ak) = 1 = limk ψ(1− ak).

For higher rank lattices Γ < G in arbitrary semisimple Lie groups,
we prove the following (weaker yet sufficient) dynamical dichotomy.

Theorem (BH19, BBHP20)

Let Γ < G be any higher rank lattice, M any ergodic Γ-von
Neumann algebra and θ : M → L∞(G/P) any boundary structure.

Then the following dichotomy holds:

Either θ : M → L∞(G/P) is invariant.

Or for some (or every) separable model A ⊂ M, we have
βγb ⊥ βb for every γ ∈ Γ \ Z(Γ) and νP -a.e. b ∈ G/P.
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S-adic generalizations

The framework we develop in [BBHP20] allows us to treat
irreducible lattices Γ <

∏
I Gi (`i ) where for every i ∈ I , `i is a local

field and Gi is a connected semisimple algebraic `i -group.

Example (Borel–Harish-Chandra)

Let n ≥ 2, k ≥ 1 and S = {p1, . . . , pk} any finite set of primes.

SLn(ZS) < SLn(R)× SLn(Qp1)× · · · × SLn(Qpk )

is an irreducible lattice.

The next theorem gives new examples of lattices with finite URS.

Theorem (BBHP20)

Let n ≥ 2 and S ⊂ P a nonempty (possibly infinite) set of primes.
Then any URS and any ergodic IRS of SLn(ZS) is finite.
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