Noncommutative ergodic theory of higher rank lattices

Cyril HOUDAYER

Université Paris-Saclay & Institut Universitaire de France

8ECM Mini-Symposium Operator Algebras June 24, 2021

Let G be any real connected semisimple Lie group with finite center, no compact factor and real rank ≥ 2 .

Let $\Gamma < G$ be any **irreducible lattice**, meaning that $\Gamma < G$ is a discrete subgroup with finite covolume such that $\Gamma \cdot N < G$ is dense for every noncentral closed normal subgroup $N \lhd G$.

Let G be any real connected semisimple Lie group with finite center, no compact factor and real rank ≥ 2 .

Let $\Gamma < G$ be any **irreducible lattice**, meaning that $\Gamma < G$ is a discrete subgroup with finite covolume such that $\Gamma \cdot N < G$ is dense for every noncentral closed normal subgroup $N \lhd G$.

Examples (Minkowski, Borel–Harish-Chandra)

- If $G = SL_n(\mathbb{R})$ for $n \geq 3$, take $\Gamma = SL_n(\mathbb{Z})$
- If $G = SL_n(\mathbb{R}) \times SL_n(\mathbb{R})$ for $n \ge 2$, take $\Gamma = SL_n(\mathbb{Z}[\sqrt{d}])$ where $d \in \mathbb{N}$ is square free.

In this talk, we simply say that $\Gamma < G$ is a higher rank lattice.

Margulis' Normal Subgroup Theorem (1978)

Let $\Gamma < G$ be any higher rank lattice. Then any normal subgroup $N \lhd \Gamma$ is either finite or has finite index.

Margulis' Normal Subgroup Theorem (1978)

Let $\Gamma < G$ be any higher rank lattice. Then any normal subgroup $N \lhd \Gamma$ is either finite or has finite index.

In this talk, we present a new framework to study **higher rank lattices** using operator algebras.

Main Problem

Given a higher rank lattice $\Gamma < G$, we want to understand:

- **1 IRS**^a and **URS**^b of Γ
- **2** Structure of group C^{*}-algebras $C^*_{\pi}(\Gamma)$ where $\pi : \Gamma \to \mathcal{U}(\mathcal{H}_{\pi})$
- **③** Dynamical properties of the affine action $\Gamma \curvearrowright \mathsf{PD}(\Gamma)$

^aA IRS is a Γ -invariant Borel probability measure on Sub(Γ). ^bA URS is a nonempty minimal Γ -invariant closed subset of Sub(Γ). The present talk is based on two joint works:

[BH19] R. BOUTONNET, C. HOUDAYER, Stationary characters on lattices of semisimple Lie groups. Publications mathématiques de l'IHÉS, to appear. arXiv:1908.07812

[BBHP20] U. BADER, R. BOUTONNET, C. HOUDAYER, J. PETERSON, Charmenability of arithmetic groups of product type. arXiv:2009.09952

Main results

The dynamical system $\Gamma \curvearrowright PD(\Gamma)$

For any countable discrete group Γ , set

 $\mathsf{PD}(\Gamma) \doteq \{\varphi : \Gamma \to \mathbb{C} \mid \text{normalized positive definite function}\}\$

Then $PD(\Gamma) \subset \ell^{\infty}(\Gamma)$ is a weak-* compact convex set.

We consider the affine action $\Gamma \curvearrowright PD(\Gamma)$ given by conjugation

 $\forall \gamma \in \mathsf{\Gamma}, \quad \gamma \varphi \doteq \varphi \circ \mathsf{Ad}(\gamma^{-1})$

The dynamical system $\Gamma \curvearrowright PD(\Gamma)$

For any countable discrete group Γ , set

 $\mathsf{PD}(\Gamma) \doteq \{\varphi : \Gamma \to \mathbb{C} \mid \text{normalized positive definite function} \}$

Then $PD(\Gamma) \subset \ell^{\infty}(\Gamma)$ is a weak-* compact convex set.

We consider the affine action $\Gamma \curvearrowright PD(\Gamma)$ given by conjugation

$$\forall \gamma \in \mathsf{\Gamma}, \quad \gamma \varphi \doteq \varphi \circ \mathsf{Ad}(\gamma^{-1})$$

Definition

A character $\varphi \in \mathsf{PD}(\Gamma)$ is a fixed point for $\Gamma \curvearrowright \mathsf{PD}(\Gamma)$.

Examples

- For any tracial von Neumann algebra (M, τ) and any unirep π : Γ → U(M), φ = τ ∘ π is a character.
- $\varphi \doteq \delta_e$ is called the regular character: $\pi_{\varphi} = \lambda$.

Theorem (BH19, BBHP20)

Let $\Gamma < G$ be any higher rank lattice. Then

- Any nonempty Γ-invariant weak-* compact convex subset
 C ⊂ PD(Γ) contains a character.
- Any extremal character φ is either supported on Z(Γ) or the corresponding GNS tracial factor π_φ(Γ)" is amenable.

Theorem (BH19, BBHP20)

Let $\Gamma < G$ be any higher rank lattice. Then

- Any nonempty Γ-invariant weak-* compact convex subset
 C ⊂ PD(Γ) contains a character.
- **2** Any extremal character φ is either supported on $\mathcal{Z}(\Gamma)$ or the corresponding GNS tracial factor $\pi_{\varphi}(\Gamma)''$ is amenable.

When G has property (T) (e.g. $G = SL_n(\mathbb{R})$ for $n \ge 3$), we can strengthen the above second item as follows:

Any extremal character φ is either supported on Z(Γ) or the corresponding GNS tracial factor π_φ(Γ)" is finite dimensional.

Our theorem strengthens celebrated results by Margulis (1978), Stuck–Zimmer (1992), Bekka (2006), Peterson (2014).

Structure theorem for group C^{*}-algebras $C^*_{\pi}(\Gamma)$

When $\pi: \Gamma \to \mathcal{U}(\mathcal{H}_{\pi})$ is a unirep, we may regard

 $\mathfrak{S}(\mathsf{C}^*_{\pi}(\Gamma)) \hookrightarrow \mathsf{PD}(\Gamma) : \psi \mapsto \psi \circ \pi$

as a Γ -invariant weak-* compact convex subset. We obtain:

Theorem (BH19, BBHP20)

Let $\Gamma < G$ be any higher rank lattice. Let $\pi : \Gamma \to \mathcal{U}(\mathcal{H}_{\pi})$ be any unirep. Then $C^*_{\pi}(\Gamma)$ admits a trace.

Structure theorem for group C^{*}-algebras $C^*_{\pi}(\Gamma)$

When $\pi: \Gamma \to \mathcal{U}(\mathcal{H}_{\pi})$ is a unirep, we may regard

 $\mathfrak{S}(\mathsf{C}^*_{\pi}(\Gamma)) \hookrightarrow \mathsf{PD}(\Gamma) : \psi \mapsto \psi \circ \pi$

as a Γ -invariant weak-* compact convex subset. We obtain:

Theorem (BH19, BBHP20)

Let $\Gamma < G$ be any higher rank lattice. Let $\pi : \Gamma \to \mathcal{U}(\mathcal{H}_{\pi})$ be any unirep. Then $C^*_{\pi}(\Gamma)$ admits a trace.

Assume that G has trivial center. If π is not amenable^a, then $\lambda \prec \pi$, that is, there is a *-homomorphism $\Theta : C^*_{\pi}(\Gamma) \to C^*_{\lambda}(\Gamma)$ such that $\Theta(\pi(\gamma)) = \lambda(\gamma)$ for every $\gamma \in \Gamma$. Moreover:

• $\tau_{\Gamma} \circ \Theta$ is the unique trace on $C^*_{\pi}(\Gamma)$.

2 ker(Θ) is the unique maximal proper ideal of $C^*_{\pi}(\Gamma)$.

 ${}^{*}\pi$ is not amenable if and only if $1_{\Gamma} \not\prec \pi \otimes \overline{\pi}$.

When G has property (T), π weakly mixing $\Rightarrow \lambda \prec \pi$ & Items 1, 2.

Theorem (BH19, BBHP20)

Let $\Gamma < G$ be any higher rank lattice. Assume that G has trivial center. Let $\Gamma \curvearrowright X$ be any minimal action on a compact space. Then at least one of the following assertions holds:

- There exists a *Γ*-invariant Borel probability measure on *X*.
- The action $\Gamma \curvearrowright X$ is topologically free.

If G has property (T), then either X is finite or $\Gamma \curvearrowright X$ is top free. In that case, any **URS** of Γ is finite (Glasner–Weiss' problem 2014).

The proof of the dynamical dichotomy (which is the hard part) uses **von Neumann algebras** theory and depends heavily on whether the ambient connected semisimple Lie group G is simple or not.

The proof of the dynamical dichotomy (which is the hard part) uses **von Neumann algebras** theory and depends heavily on whether the ambient connected semisimple Lie group G is simple or not.

In [BH19], we treat the case when G is simple with real rank ≥ 2 (e.g. $G = SL_n(\mathbb{R})$ for $n \geq 3$). In that case, we prove a much stronger result: the **noncommutative Nevo–Zimmer theorem**. This method cannot work if G has a rank 1 factor such as $SL_2(\mathbb{R})$.

The proof of the dynamical dichotomy (which is the hard part) uses **von Neumann algebras** theory and depends heavily on whether the ambient connected semisimple Lie group G is simple or not.

In [BH19], we treat the case when G is simple with real rank ≥ 2 (e.g. $G = SL_n(\mathbb{R})$ for $n \geq 3$). In that case, we prove a much stronger result: the **noncommutative Nevo–Zimmer theorem**. This method cannot work if G has a rank 1 factor such as $SL_2(\mathbb{R})$. In [BBHP20], we treat the case when $G = G_1 \times G_2$ is a product group (e.g. $G = SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$). However, the method we develop in [BBHP20] cannot work if G is simple.

The proof of the dynamical dichotomy (which is the hard part) uses **von Neumann algebras** theory and depends heavily on whether the ambient connected semisimple Lie group G is simple or not.

In [BH19], we treat the case when G is simple with real rank ≥ 2 (e.g. $G = SL_n(\mathbb{R})$ for $n \geq 3$). In that case, we prove a much stronger result: the **noncommutative Nevo–Zimmer theorem**. This method cannot work if G has a rank 1 factor such as $SL_2(\mathbb{R})$. In [BBHP20], we treat the case when $G = G_1 \times G_2$ is a product group (e.g. $G = SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$). However, the method we develop in [BBHP20] cannot work if G is simple.

In that respect, [BH19] and [BBHP20] are complementary.

A dynamical dichotomy for boundary structures

Structure theory of G/P

Let G be a real connected semisimple Lie group with finite center, no compact factor. Choose K < G a maximal compact subgroup and P < G a minimal parabolic subgroup so that G = KP.

Example

If $G = SL_n(\mathbb{R})$, take $K = SO_n(\mathbb{R})$ and P < G the subgroup of upper triangular matrices.

Structure theory of G/P

Let G be a real connected semisimple Lie group with finite center, no compact factor. Choose K < G a maximal compact subgroup and P < G a minimal parabolic subgroup so that G = KP.

Example

If $G = SL_n(\mathbb{R})$, take $K = SO_n(\mathbb{R})$ and P < G the subgroup of upper triangular matrices.

Denote by $\nu_P \in \operatorname{Prob}(G/P)$ the unique K-invariant Borel probability measure.

Theorem (Furstenberg 1962)

For every K-invariant admissible Borel probability measure $\mu_G \in \text{Prob}(G)$, $(G/P, \nu_P)$ is the (G, μ_G) -Poisson boundary

 $L^{\infty}(G/P,\nu_P) \cong \operatorname{Har}^{\infty}(G,\mu_G)$

Let $\Gamma < G$ be any higher rank lattice. Let M be any Γ -von Neumann algebra with separable predual.

Definition (Boundary structure)

Let $\theta: M \to L^{\infty}(G/P)$ be any faithful normal ucp Γ -map. We then say that θ is a **boundary structure** on M. We say that θ is **invariant** if $\theta(M) \subset L^{\infty}(G/P)^{\Gamma} = \mathbb{C}1$. Let $\Gamma < G$ be any **higher rank lattice**. Let *M* be any Γ -von Neumann algebra with separable predual.

Definition (Boundary structure)

Let $\theta: M \to L^{\infty}(G/P)$ be any faithful normal ucp Γ -map. We then say that θ is a **boundary structure** on M. We say that θ is **invariant** if $\theta(M) \subset L^{\infty}(G/P)^{\Gamma} = \mathbb{C}1$.

A Γ -invariant weakly dense unital separable C^{*}-subalgebra $A \subset M$ is called a **separable model** for $\Gamma \curvearrowright M$.

Then the restriction $\theta|_A : A \to L^{\infty}(G/P)$ gives rise to a measurable Γ -map $\beta : G/P \to \mathfrak{S}(A) : b \mapsto \beta_b$ such that

$$\forall a \in A, \quad \theta(a) : G/P \to \mathbb{C} : b \mapsto \beta_b(a)$$

Theorem (Furstenberg 1967)

Let $\Gamma < G$ be any lattice in a real connected semisimple Lie group. Then there exists a probability measure $\mu_{\Gamma} \in \text{Prob}(\Gamma)$ with full support such that $(G/P, \nu_P)$ is the (Γ, μ_{Γ}) -Poisson boundary

 $L^{\infty}(G/P,\nu_P) \cong Har^{\infty}(\Gamma,\mu_{\Gamma})$

Theorem (Furstenberg 1967)

Let $\Gamma < G$ be any lattice in a real connected semisimple Lie group. Then there exists a probability measure $\mu_{\Gamma} \in \text{Prob}(\Gamma)$ with full support such that $(G/P, \nu_P)$ is the (Γ, μ_{Γ}) -Poisson boundary

 $L^{\infty}(G/P,\nu_P) \cong Har^{\infty}(\Gamma,\mu_{\Gamma})$

If $\theta: M \to L^{\infty}(G/P)$ is a boundary structure, then $\nu_P \circ \theta$ is a faithful normal μ_{Γ} -stationary state on M.

Conversely, if φ is a faithful normal μ_{Γ} -stationary state on M, then

$$\theta: M \to \operatorname{Har}^{\infty}(\Gamma, \mu_{\Gamma}): x \mapsto (\gamma \mapsto \varphi(\gamma^{-1}x))$$

is a faithful normal ucp Γ -map, that is, a boundary structure.

Theorem (Furstenberg 1967)

Let $\Gamma < G$ be any lattice in a real connected semisimple Lie group. Then there exists a probability measure $\mu_{\Gamma} \in \operatorname{Prob}(\Gamma)$ with full support such that $(G/P, \nu_P)$ is the (Γ, μ_{Γ}) -Poisson boundary

 $L^{\infty}(G/P,\nu_P) \cong Har^{\infty}(\Gamma,\mu_{\Gamma})$

If $\theta: M \to L^{\infty}(G/P)$ is a boundary structure, then $\nu_P \circ \theta$ is a faithful normal μ_{Γ} -stationary state on M.

Conversely, if φ is a faithful normal μ_{Γ} -stationary state on M, then

$$\theta: M \to \operatorname{Har}^{\infty}(\Gamma, \mu_{\Gamma}): x \mapsto (\gamma \mapsto \varphi(\gamma^{-1}x))$$

is a faithful normal ucp Γ -map, that is, a boundary structure.

Boundary structures generalize stationary states and are useful when dealing with lattices in **semisimple algebraic groups**.

Assume that G is a real connected **simple** Lie group with finite center and real rank ≥ 2 (e.g. $G = SL_n(\mathbb{R})$ for $n \geq 3$).

Theorem (BH19)

Let $\Gamma < G$ be any lattice, M any ergodic Γ -von Neumann algebra and $\theta : M \to L^{\infty}(G/P)$ any boundary structure.

Then the following dichotomy holds:

- Either $\theta: M \to L^{\infty}(G/P)$ is invariant.
- Or there is a proper parabolic subgroup P < Q < G such that mult(θ) ≃ L[∞](G/Q) as Γ-von Neumann algebras.

Assume that G is a real connected **simple** Lie group with finite center and real rank ≥ 2 (e.g. $G = SL_n(\mathbb{R})$ for $n \geq 3$).

Theorem (BH19)

Let $\Gamma < G$ be any lattice, M any ergodic Γ -von Neumann algebra and $\theta : M \to L^{\infty}(G/P)$ any boundary structure.

Then the following dichotomy holds:

- Either $\theta: M \to L^{\infty}(G/P)$ is invariant.
- Or there is a proper parabolic subgroup P < Q < G such that mult(θ) ≃ L[∞](G/Q) as Γ-von Neumann algebras.

Our theorem extends Nevo–Zimmer's result (2000) in two ways. Firstly, we deal with arbitrary (noncommutative) von Neumann algebras. Secondly, we deal with Γ -actions rather than *G*-actions.

We say that $\phi, \psi \in \mathfrak{S}(A)$ are **pairwise singular** and write $\phi \perp \psi$ if there exists a sequence $(a_k)_k$ in A such that $0 \leq a_k \leq 1$ and $\lim_k \phi(a_k) = 1 = \lim_k \psi(1 - a_k)$.

For higher rank lattices $\Gamma < G$ in arbitrary semisimple Lie groups, we prove the following (weaker yet sufficient) dynamical dichotomy.

We say that $\phi, \psi \in \mathfrak{S}(A)$ are **pairwise singular** and write $\phi \perp \psi$ if there exists a sequence $(a_k)_k$ in A such that $0 \leq a_k \leq 1$ and $\lim_k \phi(a_k) = 1 = \lim_k \psi(1 - a_k)$.

For higher rank lattices $\Gamma < G$ in arbitrary semisimple Lie groups, we prove the following (weaker yet sufficient) dynamical dichotomy.

Theorem (BH19, BBHP20)

Let $\Gamma < G$ be any higher rank lattice, M any ergodic Γ -von Neumann algebra and $\theta : M \to L^{\infty}(G/P)$ any boundary structure.

Then the following dichotomy holds:

We say that $\phi, \psi \in \mathfrak{S}(A)$ are **pairwise singular** and write $\phi \perp \psi$ if there exists a sequence $(a_k)_k$ in A such that $0 \le a_k \le 1$ and $\lim_k \phi(a_k) = 1 = \lim_k \psi(1 - a_k)$.

For higher rank lattices $\Gamma < G$ in arbitrary semisimple Lie groups, we prove the following (weaker yet sufficient) dynamical dichotomy.

Theorem (BH19, BBHP20)

Let $\Gamma < G$ be any higher rank lattice, M any ergodic Γ -von Neumann algebra and $\theta : M \to L^{\infty}(G/P)$ any boundary structure.

Then the following dichotomy holds:

- Either $\theta: M \to L^{\infty}(G/P)$ is invariant.
- Or for some (or every) separable model A ⊂ M, we have β_{γb} ⊥ β_b for every γ ∈ Γ \ Z(Γ) and ν_P-a.e. b ∈ G/P.

S-adic generalizations

The framework we develop in [BBHP20] allows us to treat irreducible lattices $\Gamma < \prod_{I} \mathbb{G}_{i}(\ell_{i})$ where for every $i \in I$, ℓ_{i} is a local field and \mathbb{G}_{i} is a connected semisimple algebraic ℓ_{i} -group.

Example (Borel–Harish-Chandra)

Let $n \ge 2$, $k \ge 1$ and $S = \{p_1, \ldots, p_k\}$ any finite set of primes.

 $\mathsf{SL}_n(\mathbb{Z}_S) < \mathsf{SL}_n(\mathbb{R}) \times \mathsf{SL}_n(\mathbb{Q}_{p_1}) \times \cdots \times \mathsf{SL}_n(\mathbb{Q}_{p_k})$

is an irreducible lattice.

The next theorem gives new examples of lattices with finite URS.

S-adic generalizations

The framework we develop in [BBHP20] allows us to treat irreducible lattices $\Gamma < \prod_{I} \mathbb{G}_{i}(\ell_{i})$ where for every $i \in I$, ℓ_{i} is a local field and \mathbb{G}_{i} is a connected semisimple algebraic ℓ_{i} -group.

Example (Borel–Harish-Chandra)

Let $n \ge 2$, $k \ge 1$ and $S = \{p_1, \ldots, p_k\}$ any finite set of primes.

 $\mathsf{SL}_n(\mathbb{Z}_S) < \mathsf{SL}_n(\mathbb{R}) \times \mathsf{SL}_n(\mathbb{Q}_{p_1}) \times \cdots \times \mathsf{SL}_n(\mathbb{Q}_{p_k})$

is an irreducible lattice.

The next theorem gives new examples of lattices with finite URS.

Theorem (BBHP20)

Let $n \ge 2$ and $S \subset \mathcal{P}$ a nonempty (possibly infinite) set of primes. Then any **URS** and any ergodic **IRS** of $SL_n(\mathbb{Z}_S)$ is finite.