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Abstrat

We onsider 3D Navier � Stokes equations for motiom of inom-

pressible medium and set ourselves the goal of reating a onstrutive

solution method taking into aount of all nonlinear terms. We pro-

poses an approah to this problem the essene of whih is to redue

the basi problem to a set of simple tasks.

1. The Navier � Stokes Equations. Navier � Stokes equa-

tions desribe �uid and gases medium motion in presene of visosity.

Equation of that type are of mathematial interest and have a lot of

appliations to pratial problems [1-2℄.

For 3D motion of a visous inompressible medium the Navier -

Stokes equations in dimensionless variables have the form

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −

∂(p+Φ)

∂x
+

1

Re
·∆u, (1)
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∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −

∂(p+Φ)

∂y
+

1

Re
·∆v, (2)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −

∂(p +Φ)

∂z
+

1

Re
·∆w, (3)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (4)

On equations (1-4) the main unknowns are the omponents of the

veloity vetor u, v, w and pressure p;

∆ is a three-dimentional Laplae operator on spatial oordinates,

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
;

Φ is the popential of external fore;

Re is a positive parameter named the Reynolds number.

2. Approah to problem solution. The essene of the pro-

posed approah is to redue the basi problem of solution of the initial

equations to a set of simple tasks. We fae to �ve more simple tasks

that should be onsistently resolved. They are as follows [3-4℄.

2.1. Free divergene form.

Eah of the separate Navier � Stokes equations, inluding the onti-

nuity one an be represented in free divergene form as

∂Pi

∂x
+

∂Qi

∂y
+

∂Ri

∂z
+

∂Si

∂t
= 0. (5)

Where Pi, Qi, Ri, Si, are some ombinations of main unknowns u,

v, w, p, and �rst derivatives by oordinates. Every equation of the

form (5) allows integration in general

Pi =
∂Ψ2,i

∂y
−

∂Ψ4,i

∂z
−

∂Ψ6,i

∂t
+αi, Qi = −

∂Ψ2,i

∂x
+

∂Ψ5,i

∂z
−

∂Ψ3,i

∂t
+ βi,

Ri =
∂Ψ4,i

∂x
−

∂Ψ5,i

∂y
+
∂Ψ1,i

∂t
+γi, Si = −

∂Ψ6,i

∂x
+
∂Ψ3,i

∂y
−

∂Ψ1,i

∂t
+δi. (6)

Where Ψk,i, k = 1, 2, ..., 6 are some twie di�erentiable funtions in

four variables, αi, βi, γi, δi are an arbitrary funtions in three variables

under onditions

∂αi

∂x
=

∂βi

∂y
=

∂γi

∂z
=

∂δi

∂t
= 0.

While 3D Navier � Stokes equations inluding the ontinuity one om-

bine four ratios so we have relations as (6) for everyone of i = 1, 2, 3, 4.
In total, we have 16 equations of the form (6)
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2.2. Integral of the Navier-Stokes equations.

Equality of the form (6) an be onverted so as to exlude any nonlin-

ear and non-divergent terms. As the result we arrive to nine equations

linked main unknown u, v, w, p, assoiated ones Ψi, (i = 1, 2, ..., 15),
and an arbitrary additive funtions in three variables αi, βi, γi, δi

p− p0 +Φ+
U2

2
+ d+ dt = α4 + β4 + γ4, (7)

u2−v2+
2

Re
(−

∂u

∂x
+
∂v

∂y
) = −

∂2Ψ10

∂x2
+
∂2Ψ10

∂y2
−

∂2Ψ11

∂z2
−

∂2Ψ12

∂z2
+
∂2Ψ15

∂y∂z
+

∂2Ψ14

∂x∂z
+

∂

∂t
(−

∂Ψ1

∂x
+

∂Ψ3

∂y
+

∂(Ψ5 +Ψ6)

∂z
) + 3(α4 − β4), (8)

v2−w2+
2

Re
(−

∂v

∂y
+
∂w

∂z
) =

∂2Ψ10

∂x2
+
∂2Ψ11

∂x2
−

∂2Ψ12

∂y2
+
∂2Ψ12

∂z2
−

∂2Ψ13

∂x∂y
−

∂2Ψ14

∂x∂z
+

∂

∂t
(
∂(Ψ1 +Ψ2)

∂x
+

∂Ψ4

∂y
−

∂Ψ6

∂z
) + 3(β4 − γ4), (9)

uv −
1

Re
(
∂v

∂x
+

∂u

∂y
) = −

∂2Ψ10

∂x∂y
+

1

2

∂

∂z
(−

∂Ψ15

∂x
+

∂Ψ14

∂y
+

∂Ψ13

∂z
)+

1

2

∂

∂t
(−

∂Ψ3

∂x
−

∂Ψ1

∂y
−

∂(Ψ8 +Ψ9)

∂z
)+

1

2
(
∂α1

∂z
−

∂α3

∂t
+
∂β1

∂z
−

∂β2

∂t
), (10)

uw −

1

Re
(
∂w

∂x
+

∂u

∂z
) =

∂2Ψ11

∂x∂z
+

1

2

∂

∂y
(−

∂Ψ15

∂x
−

∂Ψ14

∂y
−

∂Ψ13

∂z
)+

1

2

∂

∂t
(−

∂Ψ5

∂x
+
∂(Ψ9 −Ψ7)

∂y
+
∂Ψ2

∂z
)−

1

2
(
∂α1

∂y
+
∂α2

∂t
−

∂γ1

∂y
+
∂γ3

∂t
), (11)

vw −

1

Re
(
∂w

∂y
+

∂v

∂z
) = −

∂2Ψ12

∂y∂z
+

1

2

∂

∂x
(
∂Ψ14

∂y
+

∂Ψ15

∂x
−

∂Ψ13

∂z
)+

1

2

∂

∂t
(
(∂Ψ7 +Ψ8)

∂x
+

∂Ψ6

∂y
+

∂Ψ4

∂z
)−

1

2
(
∂β1

∂x
+

∂β3

∂t
+

∂γ1

∂x
+

∂γ2

∂t
), (12)

u =
1

2
(
∂

∂y
(−

∂Ψ3

∂x
+

∂Ψ1

∂y
+

∂Ψ7

∂z
) +

∂

∂z
(−

∂Ψ5

∂x
+

∂Ψ8

∂y
−

∂Ψ2

∂z
))+
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1

2
(
∂α2

∂z
+

∂α3

∂y
+

∂δ1

∂y
+

∂δ2

∂z
), (13)

v =
1

2
(
∂

∂x
(
∂Ψ3

∂x
−

∂Ψ1

∂y
−

∂Ψ7

∂z
) +

∂

∂z
(
∂Ψ9

∂x
+

∂Ψ6

∂y
−

∂Ψ4

∂z
))+

1

2
(
∂β2

∂x
+

∂β3

∂z
−

∂δ1

∂x
+

∂δ3

∂z
), (14)

w =
1

2
(
∂

∂x
(
∂Ψ5

∂x
−

∂Ψ8

∂y
+

∂Ψ2

∂z
) +

∂

∂y
(−

∂Ψ9

∂x
−

∂Ψ6

∂y
+

∂Ψ4

∂z
))+

1

2
(
∂γ2

∂y
+

∂γ3

∂x
−

∂δ2

∂x
−

∂δ3

∂y
). (15)

The ratio (7) ontains, on addition, values p0,
U2

2 , d and dt. The

�rst one is the additive pressure onstant, the seond one is the di-

mensionless veloity head

U2

2
=

u2 + v2 + w2

2
.

Values d and dt are dissipative terms de�ned by formulas

d = −

U2

6
−

1

3
(∆xyΨ10−∆xzΨ11+∆yzΨ12+

∂2Ψ13

∂x∂y
−

∂2Ψ14

∂x∂z
+

∂2Ψ15

∂y∂z
),

(16)

dt =
1

3

∂

∂t
(
∂(Ψ2 −Ψ1)

∂x
+

∂(Ψ4 −Ψ3)

∂y
+

∂(Ψ6 −Ψ5)

∂z
). (17)

Symbols ∆yz, ∆xz, ∆xy in (16) denotes the inomplete Laplae

operators with respet to spatial oordinates

∆yz =
∂2

∂y2
+

∂2

∂z2
, ∆xz =

∂2

∂x2
+

∂2

∂z2
, ∆xy =

∂2

∂x2
+

∂2

∂y2
.

For assoiated unknown ompared to (6) introdued more simple

designation and proposed the name as stream pseudo funtion.

Considered together these nine ratios provide the �rst integral of 3D

Navier � Stokes equations.

Of the 9 ratios (7-15), expressions (8-12) are espeially empha-

sized, sine they represent a general struture for the main unknowns

u, v, w, p.
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2.3. Generator of solutions. Of the nine reeived �ve nonlinear

relations. They ontain quadrati nonlinear terms of Riati's type.

These nonlinear equations an be resolved relative to six unknown

Ψj, j = 10, 11, ..., 15 only if two onditions of ompatibility are

ful�lled. They redue to two equations of the �fth order with respet

to nine assoiated unknown Ψn, n = 1, 2, ..., 9

∂2f2

∂x∂y
−

∂2f4

∂x2
+

∂2f4

∂y2
+

∂2f5

∂y∂z
−

∂2f6

∂x∂z
= 0,

∂2f3

∂y∂z
+

∂2f4

∂x∂z
−

∂2f5

∂x∂y
−

∂2f6

∂y2
+

∂2f6

∂z2
= 0. (18)

where eah of the funtion fi (i = 2, 3, 4, 5, 6) represents the

sum of the terms of equations (8-12) respetively, not ontaining

Ψj, j = 10, 11, ..., 15. These two equations represenst a system of two

nonlinear equations with respet to nine unknowns Ψk, k = 1, 2, ..., 9.
Eah set of funtions satisfying these equations leads to an exat so-

lution of the Navier - Stokes equations (1-4). So, the equations (18)

an be onsidered as the generator of solutions for 3D Navier � Stokes

equations.

2.4. Determination of unknownsΨj (j = 10, 11, ..., 15.) To

omplete the solution remains to �nd unknown p. In order to �nd p you

must found out six assoiated unknown Ψj , j = 10, 11, ..., 15. Three of
them an be set arbitrary. These ones are Ψ13,Ψ14,Ψ15. The remain-

ing three are de�ned as solution of linear inhomogeneous equations

F4 = −

∂2Ψ10

∂x∂y
, F5 =

∂2Ψ11

∂x∂z
, F6 = −

∂2Ψ12

∂y∂z
, (19)

where Fi are already known funtions.

2.5. Determination of p.

All values presents in the struture formula (7) for unknown p are de-

�ned. Unknown p is easy to �nd. As a result all of the main unknown

u, v, w, p, are found out. The solution of the Navier � Stokes equations

is fully built.

Note that a similar approah an be applied to solving the 3D Euler

equations for the motion of an inompressible medium. It is enough

to put

1
Re

= 0 in all relations [5℄.

3. Results.

The method desribed above allows one to onstrut exat solutions

of the 3D Navier - Stokes equations. One need to onsistently de-

termine all unknowns, starting with the assoiated ones. First, Ψi

(i = 1, 2, ..., 9) are determined, then u, v, w. Further Ψj (j =
10, 11, ..., 15) and the last one is p. Thus, family of simpler tasks
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are sequentially resolved.

Let's give examples of some solutions obtained by this method [6℄.

3.1. Solution 1.

u =
1

2
(A0µm3e

N
2
1
t

Re
+µ(n3x+m3y+l3z) +B0ξl3e

N
2
2
t

Re
+ξ(n3x+m3y+l3z)),

v =
1

2
(−A0µn3e

N
2
1
t

Re
+µ(n3x+m3y+l3z) + C0l3e

N
2
3
t

Re
+(n3x+m3y+l3z)), (20)

w =
1

2
(−B0ξn3e

N
2
2
t

Re
+ξ(n3x+m3y+l3z)

− C0m3e
N

2
3
t

Re
+(n3x+m3y+l3z)).

p = p0 − gz. (21)

Where g is gravity, N2
3 = n2

3 +m2
3 + l23, N1 = µN3, N2 = ξN3.

This formulas present a set of exat solutions of 3D Navier - Stokes

equations and ontain eight arbitrary onstants n3, m3, l3, µ, ξ, A0,

B0, C0.

3.2. Solution 2.

u = −e
21t

Re (A0e
x−2y−4z +B0e

−x−4y−2z),

v =
1

2
e

21t

Re (−A0e
x−2y−4z + 2C0e

x+4y+2z)

,

w =
1

2
e

21t

Re (B0e
−x−4y−2z

− 4C0e
x+4y+2z). (22)

p− p0 = −gz + e
42t

Re (3A0C0e
2x+2y−2z +

1

4
A0B0e

−6y−6z). (23)

This formulas present a set of new exat solutions to 3D Navier

� Stokes equations and ontain three arbitrarily hosen onstants

A0, B0, C0.

3.3. Solution 3.

u = −

A1sh(
Reθ1
2 )−B1sin(

Reλ1

2 )

2(cos2(Reλ1

4 ) + sh2(Reθ1
4 ))

+
B3sh(

Reθ3
2 ) +A3sin(

Reλ3

2 )

2(cos2(Reλ3

4 ) + sh2(Reθ3
4 ))

,
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v = −

A2sh(
Reθ2
2 )−B2sin(

Reλ2

2 )

2(cos2(Reλ2

4 ) + sh2(Reθ2
4 ))

+
B1sh(

Reθ1
2 ) +A1sin(

Reλ1

2 )

2(cos2(Reλ1

4 ) + sh2(Reθ1
4 ))

, (24)

w = −

A3sh(
Reθ3
2 )−B3sin(

Reθ3
2 )

2(cos2(Reλ3

4 ) + sh2(Reθ3
4 ))

+
B2sh(

Reθ2
2 ) +A2sin(

Reλ2

2 )

2(cos2(Reλ2

4 ) + sh2(Reθ2
4 ))

,

p− p0 = −gz −
u2 + v2 +w2

2
−

∂ϕ

∂t
. (25)

Where notation is used

ϕ = ϕ1 + ϕ2 + ϕ3,

ϕk =
2

Re
ln(cos2

Reλk

4
+ sh2

Reθk

4
), k = 1, 2, 3.

θ1 = A1(x− x0)−B1(y − y0), λ1 = B1(x− x0) +A1(y − y0).

θ2 = A2(y − y0)−B2(z − z0), λ2 = B2(y − y0) +A2(z − z0), (26)

θ3 = A3(z − z0)−B3(x− x0), λ3 = B3(z − z0) +A3(x− x0).

Formulas (24-25) presents set of exat solutions to 3D Navier-

Stokes equations whereas x0, y0, z0 are arbitrary onstants and

Ak(t), Bk(t) k = 1, 2, 3, are arbitrary funtions of time satisfying

the ondition

A2
1 +A2

2 +A2
3 = B2

1 +B2
2 +B2

3 .
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