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Abstract

We consider 3D Navier — Stokes equations for motiom of incom-
pressible medium and set ourselves the goal of creating a constructive
solution method taking into account of all nonlinear terms. We pro-
poses an approach to this problem the essence of which is to reduce
the basic problem to a set of simple tasks.

1. The Navier — Stokes Equations. Navier — Stokes equa-
tions describe fluid and gases medium motion in presence of viscosity.
Equation of that type are of mathematical interest and have a lot of
applications to practical problems [1-2].

For 3D motion of a viscous incompressible medium the Navier -
Stokes equations in dimensionless variables have the form
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On equations (1-4) the main unknowns are the components of the
velocity vector u, v, w and pressure p;

A is a three-dimentional Laplace operator on spatial coordinates,
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® is the popential of external force;

Re is a positive parameter named the Reynolds number.

2. Approach to problem solution. The essence of the pro-
posed approach is to reduce the basic problem of solution of the initial
equations to a set of simple tasks. We face to five more simple tasks
that should be consistently resolved. They are as follows [3-4].

2.1. Free divergence form.

Each of the separate Navier — Stokes equations, including the conti-
nuity one can be represented in free divergence form as
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Where P;, Q;, R;, S;, are some combinations of main unknowns u,
v, w, p, and first derivatives by coordinates. Every equation of the
form (5) allows integration in general
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Where Uy, ;, k = 1,2,...,6 are some twice differentiable functions in
four variables, «;, B;, Vs, §; are an arbitrary functions in three variables

under conditions
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While 3D Navier — Stokes equations including the continuity one com-
bine four ratios so we have relations as (6) for everyone of i = 1,2, 3, 4.
In total, we have 16 equations of the form (6)



2.2. Integral of the Navier-Stokes equations.
Equality of the form (6) can be converted so as to exclude any nonlin-
ear and non-divergent terms. As the result we arrive to nine equations
linked main unknown wu,v,w,p, associated ones W¥;, (i = 1,2,...,15),
and an arbitrary additive functions in three variables a;, 5;, Vs, ;
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The ratio (7) contains, on addition, values py, UTQ, d and d;. The
first one is the additive pressure constant, the second one is the di-

mensionless velocity head
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Values d and d; are dissipative terms defined by formulas
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Symbols Ay, Ay, Ayy in (16) denotes the incomplete Laplace
operators with respect to spatial coordinates
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For associated unknown compared to (6) introduced more simple
designation and proposed the name as stream pseudo function.
Considered together these nine ratios provide the first integral of 3D
Navier — Stokes equations.

Of the 9 ratios (7-15), expressions (8-12) are especially empha-
sized, since they represent a general structure for the main unknowns
U, U, W, P.



2.3. Generator of solutions. Of the nine received five nonlinear
relations. They contain quadratic nonlinear terms of Riccati’s type.
These nonlinear equations can be resolved relative to six unknown
V5 = 10,11,...,15 only if two conditions of compatibility are
fulfilled. They reduce to two equations of the fifth order with respect
to nine associated unknown ¥,,n=1,2,...,9
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where each of the function f; (i = 2,3,4,5,6) represents the
sum of the terms of equations (8-12) respectively, not containing
V;,j = 10,11,...,15. These two equations represenst a system of two
nonlinear equations with respect to nine unknowns Vg, k = 1,2,...,9.
Each set of functions satisfying these equations leads to an exact so-
lution of the Navier - Stokes equations (1-4). So, the equations (18)
can be considered as the generator of solutions for 3D Navier — Stokes
equations.

2.4. Determination of unknowns¥; (j = 10,11,...,15.) To
complete the solution remains to find unknown p. In order to find p you
must found out six associated unknown ¥;, j = 10,11, ...,15. Three of
them can be set arbitrary. These ones are W13, W14, Uy5. The remain-
ing three are defined as solution of linear inhomogeneous equations
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where F; are already known functions.

2.5. Determination of p.

All values presents in the structure formula (7) for unknown p are de-
fined. Unknown p is easy to find. As a result all of the main unknown
u, v, w, p, are found out. The solution of the Navier — Stokes equations
is fully built.

Note that a similar approach can be applied to solving the 3D Euler
equations for the motion of an incompressible medium. It is enough
to put 4= = 0 in all relations [5].

3. Results.

The method described above allows one to construct exact solutions
of the 3D Navier - Stokes equations. One need to consistently de-
termine all unknowns, starting with the associated ones. First, ¥;
(¢ = 1,2,..,9) are determined, then w, v, w. Further ¥; (j =
10,11,...,15) and the last one is p. Thus, family of simpler tasks



are sequentially resolved.
Let’s give examples of some solutions obtained by this method [6].

3.1. Solution 1.

)

1 NZ¢ N3t
" 5(A0Nm3€ﬂ+u(n3x+m3y+l32) + Boglgeﬁ-l-ﬁ(nsx—l-msy-l-lgz))
) 2
Y 1(_Aoﬂnge%Jr“("”er?’yHBZ) + Col3e%+(n3x+m3y+lgz)) (20)
2 Y

1 N2t N2t
w— _(_Bogngeﬁ+£(n3m+m3y+l3@ _ Comgeﬁ—l-(ngw—l-msy—l-ls&)_

P =po— gz. (21)

Where g is gravity, N?? = n?,) + m?,) + l%, Ny = uN3, No = ENs.
This formulas present a set of exact solutions of 3D Navier - Stokes
equations and contain eight arbitrary constants ns, ms, I3, u, &, Ag,

Bo, Co.

3.2. Solution 2.
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This formulas present a set of new exact solutions to 3D Navier
— Stokes equations and contain three arbitrarily chosen constants
A07 BOa CO'

3.3. Solution 3.
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Where notation is used

Y =1+ Y2+ s,

2
VR = Eln(cos2 RZ)\k + sh? R(fk

), k=1,2,3.

61 = Ai(x — x9) — Bi(y — yo), M = Bi(x — x0) + A1(y — vo)-

02 = Az(y —yo) — Ba(z — 20), A2 = Ba(y —yo) + A2(z — 20), (26)

03 = A3(Z — Zo) — B3(l‘ — l‘o), A3 = Bg(z — Z()) + Ag(l‘ — :Eo).

Formulas (24-25) presents set of exact solutions to 3D Navier-

Stokes equations whereas xg,¥0,29 are arbitrary constants and
Ai(t), Bk(t) k = 1,2,3, are arbitrary functions of time satisfying

the condition
A? + A2+ A2 = B? + B2 + B2.
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