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Abstract

We establish necessary and sufficient condition on a non-negative locally
integrable function v guaranteeing the (trace) inequality

‖Iαf ‖Lpv (Rn) ≤ C‖f ‖Lp,1(Rn)

for the Riesz potential Iα, where Lp,1(Rn) is the Lorentz space. The same
problem is studied for potentials defined on spaces of homogeneous type.
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Introduction

Trace inequalities for Riesz potentials Iα deals with non-negative measures
ν such that (∫

Rn

|Iαf (x)|qdν
)1/q

≤ C

(∫
Rn

|f (x)|pdx
)1/p

. (0.1)

D. Adams [1] proved that necessary and sufficient condition on ν
guaranteeing (0.1) for 1 < p < q <∞ and 0 < α < n/p is that measure ν
satisfies the condition: there is a positive constant C such that for all balls
B ⊂ Rn,

ν(B) ≤ C |B|(
α
n
− 1

p
)q
.
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Introduction

Riesz potential operator

Iαf (x) =

∫
Rn

f (y)

|x − y |n−α
dy , 0 < α < n, x ∈ Rn,

plays an important role in PDEs. It is worth mentioning its role in the
theory of Sobolev’s embeddings (see, e.g., V. G. Maz’ya [12]).
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Introduction

The appropriate fractional maximal operator is given by the formula:

Mαf (x) = sup
B3x

1

|B|1−
α
n

∫
B

|f (y)|dy , 0 ≤ α < n, x ∈ Rn.

M0f = Mf is the Hardy–Littlewood maximal function having great
importance in Harmonic Analysis for example, in the theory of Singular
integrals.
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Introduction

Let v be a non-negative locally integrable function on Rn. We are
interested in the inequality (0.1) for dν = vdx , i.e.

‖Iαf ‖Lqv (Rn) ≤ C‖f ‖Lp(Rn). (0.2)
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Introduction

In this case by the result of D. Adams [1] the condition

[v ]p,q,α := sup
B

(
v(B)

)1/q
|B|

α
n
− 1

p <∞, (0.3)

where the supremum is taken over all balls B ⊂ Rn, is simultaneously
necessary and sufficient whenever 1 < p < q <∞ and 0 < α < n/p. In
the case p = q the implication (0.2)⇒ (0.3) can be checked easily by
considering the test functions χB ; however the fact that (0.3)⇒ (0.2) is
not true (see appropriate counterexamples in D. R. Adams [2], R. Kerman
and E. Sawyer [14] for a measure ν, and P. G. Lemarié-Rieusset [8] for
non-negative function v).
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Introduction

Our aim is to find a Lorentz space Lp,s , which is narrower than the class
Lp(Rn) (i.e., s < p) and for which the inequality

‖Iαf ‖Lpv (Rn) ≤ C‖f ‖Lp,s(Rn) (0.4)

holds if and only if (0.3) is satisfied for p = q. In particular we show that
(0.4) is equivalent to the condition (0.3) for s = 1. The question for
1 < s < p remains open.
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Introduction

It should be mentioned that there are known various different criteria for
(0.2) with p = q (see D. R. Adams [2], V. G. Maz’ya [10], V. G. Maz’ya
[11], R. Kerman and E. Sawyer [14], V. G. Maz’ya and I. Verbitsky [13]).
For the solution of the two-weight problem for Riesz potential operators Iα
we refer to M. Gabidzashvili and V. Kokilashvili [6], E. Sawyer [15] (see
also the monograph V. Kokilashvili and M. Krbec [7]).
Inequality (0.2) for p = q implies the estimate:

‖f ‖Lqv (Rn) ≤ C‖∇f ‖Lp(Rn), f ∈ C∞0 , (0.5)

which follows from the estimate

|f (x)| ≤ CI1(|∇f |)(x).
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Introduction

The following Fefferman-Phong C. Fefferman [4] type theorem holds:

Theorem (A)

Let 1 < p <∞ and let 0 < α < n/p. Then the following inequality holds:

‖Iαf ‖Lpv ≤ C [v ]∗p,r ,α‖f ‖Lp

for some p < r , where

[v ]∗p,r ,α := sup
B
|B|

α
n
− 1

r

(∫
B

v r/p(x)dx

)1/r

<∞. (0.6)

Remark 1: It is easy to see that by Hölder’s inequality we have that
condition (0.6) is stronger than (0.3) for p = q, in particular,
[v ]p,α ≤ [v ]∗p,r ,α for r > p, where [v ]p,α = [v ]p,p,α.
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Preliminary

Let f be a measurable function on Rn and let 1 ≤ p <∞, 1 ≤ s ≤ ∞.
We say that f belongs to the Lorentz space Lp,s if

‖f ‖Lp,s =


(
s
∞∫
0

(
|{x ∈ Rn : |f (x)| > τ}|

)s/p
τ s−1dτ

)1/s

, if 1 ≤ s <∞,

sup
s>0

s
(
|{x ∈ Rn : |f (x)| > s}|

)1/p
, if s =∞

is finite.
If p = s, then Lp,s coincides with the weighted Lebesgue space Lp.
It is worth mentioning, that if 1 ≤ p <∞, s2 ≤ s1, then Lp,s2 ↪→ Lp,s1 with
the embedding constant Cp,s1,s2 depending only on p, s1 and s2;
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Main Result

Theorem (1)

Let 1 < p <∞ and let 0 < α < n/p. Then the following statements are
equivalent:
(i) there is a positive constant C such that for all f ∈ Lp,1(Rn),

‖Iαf ‖Lpv (Rn) ≤ C‖f ‖Lp,1(Rn) (0.7)

(ii) there is a positive constant c such that for all f ∈ Lp,1(Rn),

‖Mαf ‖Lpv (Rn) ≤ c‖f ‖Lp,1(Rn) (0.8)

(iii) [v ]p,α = sup
B

(
v(B)

)1/p|B|
α
n
− 1

p <∞.

Moreover, if C and c are best constant in (0.7) and (0.8) respectively,
then

C ≈ c ≈ [v ]p,α.
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The case of Spaces of Homogeneous Type

Let (X , d , µ) be a quasi-metric measure space with a quasi-metric d and
measure µ. A quasi-metric d is a function d : X × X → [0,∞) which
satisfies the following conditions:

(i) d(x , y) = 0 if and only if x = y ;

(ii) for all x , y ∈ X , d(x , y) = d(y , x);

(iii) there is a positive constant κ such that

d(x , y) ≤ κ (d(x , z) + d(z , y))

for all x , y , z ∈ X .
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The case of Spaces of Homogeneous Type

In what follows we will assume that the balls
B(x , r) := {y ∈ X ; d(x , y) < r} are measurable with positive µ measure
for all x ∈ X and r > 0.
If µ satisfies the doubling condition:

µ(B(x , 2r)) ≤ Cµµ(B(x , r)), (0.9)

with a positive constant Cµ independent of x and r , then we say that
(X , d , µ) is a space of homogeneous type (SHT ). We will assume that
(X , d , µ) is an SHT .
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The case of Spaces of Homogeneous Type

For example, rectifiable curves in C with Euclidean distance and arc-length
measure satisfying Carleson (regularity) condition, nilpotent Lie groups
with Haar measure, domains in Rn with so-called A condition are examples
of an SHT . For the definition, examples and some properties of an SHT
see, e.g., the paper R. A. Maćıas and C. Segovia [9] and the monographs
J. O. Strömberg and A. Torchinsky [16], R. R. Coifman and G. Weiss [3].

For a given quasi-metric measure space (X , d , µ) and q satisfying
1 ≤ q ≤ ∞, as usual, we will denote by Lq = Lq(X , µ) the Lebesgue space
equipped with the standard norm. Let Lp,s(X , µ) be the Lorentz space
defined on an SHT (X , d , µ).
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The case of Spaces of Homogeneous Type

Let us denote by Kαf Riesz potential of a µ− measurable function f given
by the formula:

Kαf (x) =

∫
X
µ(Bxy )α−1f (y) dµ(y), x ∈ X ,

where 0 < α < 1, Bxy := B(x , d(x , y)).
The appropriate fractional maximal function has the form

Mαf (x) = sup
B3x

1

µ(B)1−α

∫
B
|f (y)| dµ(y), x ∈ X .
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The case of Spaces of Homogeneous Type

The following trace inequality for an SHT was proved by Gabidzashvili
(see [5]).

Theorem (B)

Let 1 < p < q <∞ and let 0 < α < 1/p. Suppose that (X , d , µ) is an
SHT and ν is another measure on X .Then the inequality

‖Kαf ‖Lq(X ,ν) ≤ C‖f ‖Lp(X ,µ)

holds if and only if

sup
B

(
νB

)1/q

µ(B)α−
1
p <∞.

Analyzing the proof of Theorem (1) we can formulate the same result for
an SHT . In particular, the following Theorem holds:
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The case of Spaces of Homogeneous Type

Theorem (2)

Let 1 < p <∞ and let 0 < α < 1/p. Suppose that (X , d , µ) be an SHT.
Assume that v is non-negative µ locally integrable function on X . Then
the following statements are equivalent:
(i) there is a positive constant C such that for all f ∈ Lp,1(X , µ),

‖Kαf ‖Lpv (X ,µ) ≤ C‖f ‖Lp,1(X ,µ); (0.10)

(ii) there is a positive constant c such that for all f ∈ Lp,1(X , µ),

‖Mαf ‖Lpv (X ,µ) ≤ c‖f ‖Lp,1(X ,µ); (0.11)

(iii) [v ]p,α,X ,µ = sup
B

(∫
B

v(x)dµ(x)

)1/p

µ(B)α−
1
p <∞.

Moreover, if C and c are best constants in (0.10) and (0.11)
respectively, then C ≈ c ≈ [v ]p,α,X ,µ.
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References

[1] D. R. Adams, A trace inequality for generalized potentials, Studia
Math. 48(1973), 99–105.
[2] D. R. Adams, On the existence of capacitary strong type estimates in
Rn Ark. Mat. 14, 125–140.
[3] R. R. Coifman and G. Weiss, Analyse harmonique non-commutative
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Thank you for your attention!
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