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Polynomial optimization problems

p = min
x1,…,xn

p x1,…, xn( )

s.t. qj x1,…, xn( ) ≥ 0

where 

and p and qj are polynomials  of 
bounded degree ≤ d.

x = x1,…, xn( )∈ Rn
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where 

and p and qj are polynomials  of 
bounded degree ≤ d.

x = x1,…, xn( )∈ Rn

p 1( ) ≤ p 2( ) ≤…≤ p N( ) → p

p = min
x1,…,xn

p x1,…, xn( )

s.t. qj x1,…, xn( ) ≥ 0

Polynomial optimization problems

Lasserre and Parrilo introduced a hierarchy of semi-definite programming 
relaxations whose optima converge to the searched solution.
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where 

and p and qj are polynomials  of 
bounded degree ≤ d.

x = x1,…, xn( )∈ Rn

Lasserre and Parrilo introduced a hierarchy of semi-definite programming 
relaxations whose optima converge to the searched solution.

Convergence can be proven using Putinar’s result on Positivstellensatz.

p = min
x1,…,xn

p x1,…, xn( )

s.t. qj x1,…, xn( ) ≥ 0

p 1( ) ≤ p 2( ) ≤…≤ p N( ) → p

Polynomial optimization problems
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Non-commutative polynomial optimization

p = min
ψ ,X1,…,Xn

ψ P X1,…,Xn( ) ψ

s.t. Qj X1,…,Xn( ) ≥ 0

where X1,…,Xn are now non-commuting 
bounded operators, of arbitrary dimension, 
and P and Qj are Hermitian polynomial 
operators of bounded degree ≤ d.
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Non-commutative polynomial optimization

We (see also Doherty, Liang, Toner and Wehner) introduced a hierarchy of semi-
definite programming relaxations whose optima converge to the searched solution.

where X1,…,Xn are now non-commuting 
bounded operators, of arbitrary dimension, 
and P and Qj are Hermitian polynomial 
operators of bounded degree ≤ d.

p = min
ψ ,X1,…,Xn

ψ P X1,…,Xn( ) ψ

s.t. Qj X1,…,Xn( ) ≥ 0

p 1( ) ≤ p 2( ) ≤…≤ p N( ) → p
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Non-commutative polynomial optimization

M. Navascués. S. Pironio, AA, Phys. Rev. Lett. 98, 010401 (2007); New J. Phys. 10 (7), 
073013 (2008).

S. Pironio, M. Navascués, AA, SIAM J. Optim. 20, 2157 (2010).

We (see also Doherty, Liang, Toner and Wehner) introduced a hierarchy of semi-
definite programming relaxations whose optima converge to the searched solution.

where X1,…,Xn are now non-commuting 
bounded operators, of arbitrary dimension, 
and P and Qj are Hermitian polynomial 
operators of bounded degree ≤ d.

p = min
ψ ,X1,…,Xn

ψ P X1,…,Xn( ) ψ

s.t. Qj X1,…,Xn( ) ≥ 0

p 1( ) ≤ p 2( ) ≤…≤ p N( ) → p
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Hierarchy of SDP relaxations

We consider the set of monomials of a given degree ≤ k on the previous operators, 
where each monomial is defined by a vector of indices α. The degree of the 
monomial is |α|=k.

Example:
Y
α= 1,3,6,6( ) = X1X3

*X6
2
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Hierarchy of SDP relaxations

We consider the set of monomials of a given degree ≤ k on the previous operators, 
where each monomial is defined by a vector of indices α. The degree of the 
monomial is |α|=k.

Example:
Y
α= 1,3,6,6( ) = X1X3

*X6
2

We consider maps from this set to complex numbers: Λ Yα( ) = yα ∈C
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Hierarchy of SDP relaxations

For a given sequence, we define the moment matrix Mk of degree k as

Mk( )α,β = Λ XαXβ( )

α , β ≤ k
M1 =

1 y1 y2 y1 y2
y1 y11 y12 y11 y12
y2 y21 y22 y21 y22
y1 y11 y12 y11 y12
y2 y21 y22 y21 y22
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Hierarchy of SDP relaxations

For a given sequence, we define the moment matrix Mk of degree k as

Mk( )α,β = Λ XαXβ( )

For a polynomial                                the localizing matrix LP,k of degree k is defined asP X( ) = pδXδ∑

α , β ≤ k
M1 =

1 y1 y2 y1 y2
y1 y11 y12 y11 y12
y2 y21 y22 y21 y22
y1 y11 y12 y11 y12
y2 y21 y22 y21 y22
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LP,k( )α,β = pδ∑ Λ XαXδXβ( )

α , β ≤ k

Mk = L1,k
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Hierarchy of SDP relaxations

Every specific choice of operators Xi and state 𝜓 defines a map Λ:

Λ Xα( ) = ψ Xα ψ

For these maps, all localizing matrices defined for positive polynomials are positive. 
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Hierarchy of SDP relaxations

Every specific choice of operators Xi and state ψ defines a map Λ:

Λ Xα( ) = ψ Xα ψ

For these maps, all localizing matrices defined for positive polynomials are positive. 

Proof:

v LP,k v = vα
*

α,β
∑ LP,k( )α,β vβ = vα

*

α,β
∑ pδ

δ

∑ Λ XαXδXβ( )vβ =

vα
*

α,β
∑ pδ

δ

∑ ψ XαXδXβ ψ vβ = ψ vα
*

α

∑ Xα

#

$
%

&

'
( pδ

δ

∑ Xδ

#

$
%

&

'
( vβ

β

∑ Xβ

#

$
%%

&

'
(( ψ ≥ 0
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Hierarchy of SDP relaxations

p =min ψ P X1,…,Xn( ) ψ
s.t. Qj X1,…,Xn( ) ≥ 0
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Hierarchy of SDP relaxations

p k( ) =min pδyδ∑
s.t. Mk ≥ 0,LQj ,k−deg Qj( )/2 ≥ 0

Relaxation of order k:

p =min ψ P X1,…,Xn( ) ψ
s.t. Qj X1,…,Xn( ) ≥ 0



16

Hierarchy of SDP relaxations

Relaxation of order k:

Clearly:
p 1( ) ≤ p 2( ) ≤…≤ p

p k( ) =min pδyδ∑
s.t. Mk ≥ 0,LQj ,k−deg Qj( )/2 ≥ 0

p =min ψ P X1,…,Xn( ) ψ
s.t. Qj X1,…,Xn( ) ≥ 0
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Convergence of the hierarchy

p =min ψ P X1,…,Xn( ) ψ
s.t. Qj X1,…,Xn( ) ≥ 0

Positivity domain: SQ = X1,…,Xn( )  s.t. Qj X1,…,Xn( ) ≥ 0{ }
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Positivity domain: SQ = X1,…,Xn( )  s.t. Qj X1,…,Xn( ) ≥ 0{ }

Quadratic module: MQ = P s.t. P = Fi
*Fi

i
∑ + Gi, j

* QjGi, j
i, j
∑

"
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p =min ψ P X1,…,Xn( ) ψ
s.t. Qj X1,…,Xn( ) ≥ 0

Convergence of the hierarchy
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Positivity domain: SQ = X1,…,Xn( )  s.t. Qj X1,…,Xn( ) ≥ 0{ }

Quadratic module: MQ = P s.t. P = Fi
*Fi

i
∑ + Gi, j

* QjGi, j
i, j
∑

"
#
$

%$

&
'
$

($

MQ is Archimedean if ∃C  s.t. C − X1
*X1 −…− Xn

*Xn ∈MQ

p =min ψ P X1,…,Xn( ) ψ
s.t. Qj X1,…,Xn( ) ≥ 0

Convergence of the hierarchy
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Positivity domain: SQ = X1,…,Xn( )  s.t. Qj X1,…,Xn( ) ≥ 0{ }

Quadratic module: MQ = P s.t. P = Fi
*Fi

i
∑ + Gi, j

* QjGi, j
i, j
∑

"
#
$

%$

&
'
$

($

MQ is Archimedean if ∃C  s.t. C − X1
*X1 −…− Xn

*Xn ∈MQ

If SQ is bounded, we can make MQ Archimedean by choosing a large enough 
C and adding to the set of polynomial constraints the condition:

C − X1
*X1 −…− Xn

*Xn

p =min ψ P X1,…,Xn( ) ψ
s.t. Qj X1,…,Xn( ) ≥ 0

Convergence of the hierarchy
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Convergence of the hierarchy

If MQ is Archimedean: lim
k→∞

p k( ) = p

The proof is constructed from the primal problem of the relaxations.
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Convergence of the hierarchy

If MQ is Archimedean: lim
k→∞

p k( ) = p

Convergence can be established at a finite step whenever the optimal 
solution yk for relaxation of order k is such that:

rank Mk( ) = rank Mk−max di( )( )

The proof is constructed from the primal problem of the relaxations.
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Convergence of the hierarchy

Consider the problem:
λ k( ) = max

λ,Bi ,Cij
λ

s.t.  P X1,…,Xn( )−λ = Bi
*Bi

i
∑ + Ci, j

* QjCi, j
i, j
∑

     max
i

deg Bi( ) ≤ k, max
i

deg Ci, j( ) ≤ k − di
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Convergence of the hierarchy

Consider the problem:

This problem can be cast in a sdp form, and proven to be the dual of step k before.

λ k( ) ≤ p k( ) ≤ p

λ k( ) = max
λ,Bi ,Cij

λ

s.t.  P X1,…,Xn( )−λ = Bi
*Bi

i
∑ + Ci, j

* QjCi, j
i, j
∑

     max
i

deg Bi( ) ≤ k, max
i

deg Ci, j( ) ≤ k − di
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Convergence of the hierarchy

P X1,…,Xn( )− p −ε( ) is positive in SQ for any ε>0.
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Convergence of the hierarchy

P X1,…,Xn( )− p −ε( ) is positive in SQ for any ε>0.

Helton and McCullough Positivellensatz

P X1,…,Xn( )− p −ε( ) = Bi
*Bi

i
∑ + Ci, j

* QjCi, j
i, j
∑
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Convergence of the hierarchy

P X1,…,Xn( )− p −ε( ) is positive in SQ for any ε>0.

Helton and McCullough Positivellensatz

P X1,…,Xn( )− p −ε( ) = Bi
*Bi

i
∑ + Ci, j

* QjCi, j
i, j
∑

This defines a feasible point for the previous problem, so one has:

p −ε ≤ λ k( ) ≤ p k( ) ≤ p ∀ε > 0
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Relation to classical SDP hierarchies

p =min ψ P X1,…,Xn( ) ψ
s.t. Qj X1,…,Xn( ) ≥ 0
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p =min ψ P X1,…,Xn( ) ψ
s.t. Qj X1,…,Xn( ) ≥ 0

       Xi,Xj
"# $%= 0 ∀i, j

Relation to classical SDP hierarchies
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p =min ψ P X1,…,Xn( ) ψ
s.t. Qj X1,…,Xn( ) ≥ 0

       Xi,Xj
"# $%= 0 ∀i, j

p =min p x1,…, xn( )
s.t. qj x1,…, xn( ) ≥ 0

Relation to classical SDP hierarchies
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p =min ψ P X1,…,Xn( ) ψ
s.t. Xi

2 − Xi = 0

p =min p x1,…, xn( )
s.t. xi

2 − xi = 0

p =min ψ P X1,…,Xn( ) ψ
s.t. Qj X1,…,Xn( ) ≥ 0

       Xi,Xj
"# $%= 0 ∀i, j

p =min p x1,…, xn( )
s.t. qj x1,…, xn( ) ≥ 0

Relation to classical SDP hierarchies
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p =min ψ P X1,…,Xn( ) ψ
s.t. Xi

2 − Xi = 0

p =min p x1,…, xn( )
s.t. xi

2 − xi = 0

p 1( ) = p Easy! NP-hard

p =min ψ P X1,…,Xn( ) ψ
s.t. Qj X1,…,Xn( ) ≥ 0

       Xi,Xj
"# $%= 0 ∀i, j

p =min p x1,…, xn( )
s.t. qj x1,…, xn( ) ≥ 0

Relation to classical SDP hierarchies
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Why do we care about this?
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Quantum physics

The postulates of quantum theory:
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Quantum physics

The postulates of quantum theory:

1. A complex Hilbert space of dimension 𝑑 is associated to any physical 
system. The state of the system is specified by a normalised ray in this 
space, | ⟩𝜓 ∈ ℂ! such that ⟨𝜓| ⟩𝜓 = 1.
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Quantum physics

The postulates of quantum theory:

1. A complex Hilbert space of dimension 𝑑 is associated to any physical 
system. The state of the system is specified by a normalised ray in this 
space, | ⟩𝜓 ∈ ℂ! such that ⟨𝜓| ⟩𝜓 = 1.

2. A measurement is defined by a set of orthogonal projectors 𝑀 acting on 
the same space, 𝑀 = 𝑀 "#$…&, such that ∑"#$…&𝑀" = 1. 
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Quantum physics

The postulates of quantum theory:

1. A complex Hilbert space of dimension 𝑑 is associated to any physical 
system. The state of the system is specified by a normalised ray in this 
space, | ⟩𝜓 ∈ ℂ! such that ⟨𝜓| ⟩𝜓 = 1.

2. A measurement is defined by a set of orthogonal projectors 𝑀 acting on 
the same space, 𝑀 = 𝑀 "#$…&, such that ∑"#$…&𝑀" = 1. 

3. When implementing the measurement defined by 𝑀 on a system in state 
| ⟩𝜓 , result 𝑟 is obtained with probability Pr 𝑟 = ⟨𝜓|𝑀"| ⟩𝜓 .
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Quantum physics

The postulates of quantum theory:

1. A complex Hilbert space of dimension 𝑑 is associated to any physical 
system. The state of the system is specified by a normalised ray in this 
space, | ⟩𝜓 ∈ ℂ! such that ⟨𝜓| ⟩𝜓 = 1.

2. A measurement is defined by a set of orthogonal projectors 𝑀 acting on 
the same space, 𝑀 = 𝑀 "#$…&, such that ∑"#$…&𝑀" = 1. 

3. When implementing the measurement defined by 𝑀 on a system in state 
| ⟩𝜓 , result 𝑟 is obtained with probability Pr 𝑟 = ⟨𝜓|𝑀"| ⟩𝜓 .

4. When combining two systems, 𝐴 and 𝐵, with corresponding Hilbert spaces 
ℂ!! and ℂ!", the Hilbert space of the joint system is the tensor product of 
the two spaces. 
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Statistics in quantum experiments

1 … P 1 … M

1 … R

1 … M

1 … R

Λ

𝑃 𝑟!, 𝑟"$𝑝,𝑚!, 𝑚" = tr Λ 𝜌# 𝑀$!
%! ⊗𝑀$"

%"
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Statistics in quantum experiments

1 … P 1 … M

1 … R

1 … M

1 … R

Λ

𝑃 𝑟!, 𝑟"$𝑝,𝑚!, 𝑚" = tr Λ 𝜌# 𝑀$!
%! ⊗𝑀$"

%"

Quantum physics is a natural source of problems involving polynomials of operators.
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Characterization of 
Quantum Correlations

Navascués, Pironio, Acin, PRL 2007, NJP 2009
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Physical correlations
The object we deal with is a conditional probability distribution of the outputs given the 
inputs, which encapsulates the correlations among devices.

y=1,…,m

a=1,…,r b=1,…,r

x=1,…,m

Alice Bob),,( yxbap
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Physical correlations
The object we deal with is a conditional probability distribution of the outputs given the 
inputs, which encapsulates the correlations among devices.

y=1,…,m

a=1,…,r b=1,…,r

x=1,…,m

Alice Bob),,( yxbap

p a,b x, y( ) =
p 1,11,1( ) p 1,2 1,1( ) ! p r, r 1,1( )!

"

#
#
#
##

$

%

&
&
&
&&

p a,b 1,1( )
a,b
∑ =1
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Physical correlations
The object we deal with is a conditional probability distribution of the outputs given the 
inputs, which encapsulates the correlations among devices.

y=1,…,m

a=1,…,r b=1,…,r

x=1,…,m

Alice Bob),,( yxbap

p a,b x, y( ) =

p 1,11,1( ) p 1,2 1,1( ) ! p r, r 1,1( )
p 1,11, 2( ) p 1,2 1, 2( ) ! p r, r 1,2( )

!

"

#
#
#
#
#

$

%

&
&
&
&
&
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Physical correlations
The object we deal with is a conditional probability distribution of the outputs given the 
inputs, which encapsulates the correlations among devices.

y=1,…,m

a=1,…,r b=1,…,r

x=1,…,m

Alice Bob),,( yxbap

p a,b x, y( ) =

p 1,11,1( ) p 1,2 1,1( ) ! p r, r 1,1( )
p 1,11, 2( ) p 1,2 1, 2( ) ! p r, r 1,2( )
! ! " !

p 1,1m,m( ) p 1,2 m,m( ) ! p r, r m,m( )

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

p a,b x, y( )∈ℜm2r2

p a,b x, y( ) ≥ 0
p a,b x, y( ) =1

a,b
∑
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Example

y=1,…,m

a=1,…,r b=1,…,r

x=1,…,m

Alice Bob𝑝 𝑎𝑏|𝑥𝑦



47

Example

y=0,1

a=+1,-1 b=+1,-1

x=0,1

Alice Bob

𝑝 𝑎𝑏|𝑥𝑦 =

𝑝 +1,+1|0,0 𝑝 +1,−1|0,0 𝑝 −1,+1|0,0 𝑝 −1,−1|0,0
𝑝 +1,+1|0,1 𝑝 +1,−1|0,1 𝑝 −1,+1|0,1 𝑝 −1,−1|0,1
𝑝 +1,+1|1,0 𝑝 +1,−1|1,0 𝑝 −1,+1|1,0 𝑝 −1,−1|1,0
𝑝 +1,+1|1,1 𝑝 +1,−1|1,1 𝑝 −1,+1|1,1 𝑝 −1,−1|1,1

𝑝 𝑎𝑏|𝑥𝑦
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Example

y=0

a=+1 b=+1

x=0

Alice Bob𝑝 +1,+1|0,0 =
1
2

𝑝 𝑎𝑏|𝑥𝑦 =

𝑝 +1,+1|0,0 𝑝 +1,−1|0,0 𝑝 −1,+1|0,0 𝑝 −1,−1|0,0
𝑝 +1,+1|0,1 𝑝 +1,−1|0,1 𝑝 −1,+1|0,1 𝑝 −1,−1|0,1
𝑝 +1,+1|1,0 𝑝 +1,−1|1,0 𝑝 −1,+1|1,0 𝑝 −1,−1|1,0
𝑝 +1,+1|1,1 𝑝 +1,−1|1,1 𝑝 −1,+1|1,1 𝑝 −1,−1|1,1
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Example

y=0

a=+1 b=+1

x=0

Alice Bob𝑝 +1,+1|0,0 =
1
2

𝑝 𝑎𝑏|𝑥𝑦 =

1/2 𝑝 +1,−1|0,0 𝑝 −1,+1|0,0 𝑝 −1,−1|0,0
𝑝 +1,+1|0,1 𝑝 +1,−1|0,1 𝑝 −1,+1|0,1 𝑝 −1,−1|0,1
𝑝 +1,+1|1,0 𝑝 +1,−1|1,0 𝑝 −1,+1|1,0 𝑝 −1,−1|1,0
𝑝 +1,+1|1,1 𝑝 +1,−1|1,1 𝑝 −1,+1|1,1 𝑝 −1,−1|1,1
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Example

y=0

a=-1 b=-1

x=0

Alice Bob𝑝 −1,−1|0,0 =
1
2

𝑝 𝑎𝑏|𝑥𝑦 =

1/2 𝑝 +1,−1|0,0 𝑝 −1,+1|0,0 1/2
𝑝 +1,+1|0,1 𝑝 +1,−1|0,1 𝑝 −1,+1|0,1 𝑝 −1,−1|0,1
𝑝 +1,+1|1,0 𝑝 +1,−1|1,0 𝑝 −1,+1|1,0 𝑝 −1,−1|1,0
𝑝 +1,+1|1,1 𝑝 +1,−1|1,1 𝑝 −1,+1|1,1 𝑝 −1,−1|1,1
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Example

y=0

a=+1 b=-1

x=0

Alice Bob𝑝 +1,−1|0,0 = 𝑝 −1,+1|0,0 = 0

𝑝 𝑎𝑏|𝑥𝑦 =

1/2 0 0 1/2
𝑝 +1,+1|0,1 𝑝 +1,−1|0,1 𝑝 −1,+1|0,1 𝑝 −1,−1|0,1
𝑝 +1,+1|1,0 𝑝 +1,−1|1,0 𝑝 −1,+1|1,0 𝑝 −1,−1|1,0
𝑝 +1,+1|1,1 𝑝 +1,−1|1,1 𝑝 −1,+1|1,1 𝑝 −1,−1|1,1
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Example

y=1

a=+1,-1 b=+1,-1

x=0

Alice Bob

𝑝 𝑎𝑏|𝑥𝑦 =

1/2 0 0 1/2
1/2 0 0 1/2

𝑝 +1,+1|1,0 𝑝 +1,−1|1,0 𝑝 −1,+1|1,0 𝑝 −1,−1|1,0
𝑝 +1,+1|1,1 𝑝 +1,−1|1,1 𝑝 −1,+1|1,1 𝑝 −1,−1|1,1
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Example

y=0

a=+1,-1 b=+1,-1

x=1

Alice Bob

𝑝 𝑎𝑏|𝑥𝑦 =

1/2 0 0 1/2
1/2 0 0 1/2
1/2 0 0 1/2

𝑝 +1,+1|1,1 𝑝 +1,−1|1,1 𝑝 −1,+1|1,1 𝑝 −1,−1|1,1
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Example

y=1

a=+1,-1 b=+1,-1

x=1

Alice Bob

𝑝 𝑎𝑏|𝑥𝑦 =

1/2 0 0 1/2
1/2 0 0 1/2
1/2 0 0 1/2
0 1/2 1/2 0



55

Physical correlations
Physical principles translate into limits on correlations.
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Physical correlations
Physical principles translate into limits on correlations.

No-signalling correlations: correlations compatible with the no-signalling principle, i.e. 
the impossibility of instantaneous communication.
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kkNN xxaapxxaap
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Physical correlations
Physical principles translate into limits on correlations.

No-signalling correlations: correlations compatible with the no-signalling principle, i.e. 
the impossibility of instantaneous communication.

å
+

=
Nk aa

kkNN xxaapxxaap
,,

1111
1

),,,,(),,,,(
!

!!!!

a1 = 1,…,r

x1 = 1,…,m

a2 = 1,…,r

x2 = 1,…,m

)( 11 xap
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Physical correlations
No-signalling correlations: correlations compatible with the no-signalling principle, i.e. 
the impossibility of instantaneous communication.

å
+

=
Nk aa

kkNN xxaapxxaap
,,

1111
1

),,,,(),,,,(
!

!!!!

1/2 0 0 1/2
1/2 0 0 1/2
1/2 0 0 1/2
0 1/2 1/2 0

+ + + − − + − −

00
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Physical correlations
No-signalling correlations: correlations compatible with the no-signalling principle, i.e. 
the impossibility of instantaneous communication.
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Physical correlations
No-signalling correlations: correlations compatible with the no-signalling principle, i.e. 
the impossibility of instantaneous communication.
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Physical correlations

Classical correlations: correlations established by classical means.

These are the standard “EPR” correlations. Independently of fundamental issues, these 
are the correlations achievable by classical resources.  Bell inequalities define the limits 
on these correlations.

p a1,…,aN x1,…, xN( ) = p λ( )D a1 x1,λ( )
λ

∑ …D aN xN ,λ( )
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Physical correlations
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p(a1,…,aN x1,…, xN ) = Ψ Ma1
x1 ⊗!⊗MaN

xN Ψ

Everything is expressed in terms of operators (the quantum state and the 
measurement projectors) acting on a Hilbert space.

Quantum correlations: correlations established by quantum means.
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There exist correlations that cannot be explained by a classical model in which 
(deterministic) classical instructions specify the outcomes of the devices. These 
quantum correlations are known as non-local and they are detected by the 
violation of a Bell inequality.

NSQC ÌÌBell

Physical correlations
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There exist correlations that are 
compatible with the no-signalling
principle but cannot be obtained by 
performing local measurements on a 
quantum (entangled) state.

There exist correlations that cannot be explained by a classical model in which 
(deterministic) classical instructions specify the outcomes of the devices. These 
quantum correlations are known as non-local and they are detected by the 
violation of a Bell inequality.

NSQC ÌÌ
Tsirelson

Popescu-Rohrlich
Bell

Physical correlations
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Example: CHSH scenario

a = +1,-1

x = 1,2

b = +1,-1

y = 1,2

CHSH = A1B1 + A1B2 + A2B1 − A2B2
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Example: CHSH scenario

a = +1,-1

x = 1,2

b = +1,-1

y = 1,2

CHSH = A1B1 + A1B2 + A2B1 − A2B2

CHSH ≤ 2

CHSH ≤ 2 2

CHSH ≤ 41/2 0 0 1/2
1/2 0 0 1/2
1/2 0 0 1/2
0 1/2 1/2 0
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Characterizing quantum correlations

Given p(a,b|x,y), does it have a quantum realization?

p a,b x, y( ) = Ψ Ma
x ⊗Mb
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Characterizing quantum correlations

Given p(a,b|x,y), does it have a quantum realization?

p a,b x, y( ) = Ψ Ma
x ⊗Mb
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Example:

( ) ( ) ( ) ( )32,32,32,32
8
10,1,1,0,0,0, +--+=== bapbapbap

( ) ( )245.0,255.0,255.0,245.01,1, =bap

Previous work by Tsirelson
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NPA hierarchy
Given a probability distribution p(a,b|x,y), we have defined a hierarchy consisting
of a series of tests based on semi-definite programming techniques allowing the
detection of supra-quantum correlations.

01 ³g

NO NO

YES YES

NO

YES
!

The hierarchy is asymptotically convergent.

YES

0³¥g02 ³g
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NPA hierarchy

Every step in the hierarchy defines a convex set that is included in the previous step. 
Convergence is provably attained asymptotically.

01 ³g02 ³g…Quantum correlations
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Characterizing quantum correlations

Example:

( ) ( ) ( ) ( )32,32,32,32
8
10,1,1,0,0,0, +--+=== bapbapbap

( ) ( )245.0,255.0,255.0,245.01,1, =bap

Solution: it is not quantum, that is, there exists no quantum state of two particles and 
local measurements acting on them that produce these correlations.

The experimental observation of these correlations would imply the failure of 
quantum physics, as Bell violations did for classical physics.
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Going beyond NPA
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Ground-state energies

A standard problem in physics is to find the ground state energy of a systems of 
N particles whose interactions are described by a Hamiltonian operator H.

min
ψ

ψ H ψ subject to some constraints
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Ground-state energies

A standard problem in physics is to find the ground state energy of a systems of 
N particles whose interactions are described by a Hamiltonian operator H.

min
ψ

ψ H ψ subject to some constraints

Variational approach: often, one can guess good candidates to solve this 
problem. The minimization is performed over a subset of states èupper bound.



76

Ground-state energies

A standard problem in physics is to find the ground state energy of a systems of 
N particles whose interactions are described by a Hamiltonian operator H.

min
ψ

ψ H ψ subject to some constraints

Variational approach: often, one can guess good candidates to solve this 
problem. The minimization is performed over a subset of states èupper bound.

If the problem can be cast as a non-commutative polynomial optimization, the 
previous hierarchy provides lower bounds. It complements the standard approach!
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Classical spin systems

Classical spin problems: min
(
𝐻 �⃗� ==

),+

𝐽),+𝜎)𝜎+ +=
)

ℎ)𝜎)

min
(
𝐻 �⃗� ==

),+

𝐽),+𝜎)𝜎+ +=
)

ℎ)𝜎)

such that: 

𝜎&" − 1 = 0 for all 𝑖

Commutative polynomial optimization:

𝐸$ ≤ 𝐸, ≤ ⋯ ≤ 𝐸- → 𝐸. ≤ 𝐸/
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Quantum spin systems

Quantum spin problems: min
(
𝐻 �⃗� ==

),+

𝐽),+𝜎)0𝜎+0 +=
)

ℎ)𝜎)1

min
(
𝐻 �⃗� ==

),+

𝐽),+𝜎)0𝜎+0 +=
)

ℎ)𝜎)1

such that: 

𝜎&' − 1 = 0
𝜎(', 𝜎)

* = 2𝑖𝛿()𝜖'*+𝜎)
+

Non-commutative polynomial optimization:

𝐸$ ≤ 𝐸, ≤ ⋯ ≤ 𝐸- → 𝐸. ≤ 𝐸/



79

Quantum spin systems

Quantum spin problems: min
(
𝐻 �⃗� ==

),+

𝐽),+𝜎)0𝜎+0 +=
)

ℎ)𝜎)1

min
(
𝐻 �⃗� ==

),+

𝐽),+𝜎)0𝜎+0 +=
)

ℎ)𝜎)1

such that: 

𝜎&' − 1 = 0
𝜎(', 𝜎)

* = 2𝑖𝛿()𝜖'*+𝜎)
+

Non-commutative polynomial optimization:

𝐸$ ≤ 𝐸, ≤ ⋯ ≤ 𝐸- → 𝐸. ≤ 𝐸/

See Jie Wang’s talk.
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Causal networks

S C

Main question: understand the causes that could be behind the observed 
correlations among a set of random variables.
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Causal networks

S C

Main question: understand the causes that could be behind the observed 
correlations among a set of random variables.

Given two correlated variables, either direct causation is possible.
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Causal networks

S C

Main question: understand the causes that could be behind the observed 
correlations among a set of random variables.

Given two correlated variables, either direct causation is possible.

But even more intricate causation patterns could explain the correlations.

𝜆
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Causal networks
Representation of causality patterns through directed acyiclic graphs. Observed variables 
are represented by circles, hidden variables by squares and causes by directed edges.
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Causal networks
Representation of causality patterns through directed acyiclic graphs. Observed variables 
are represented by circles, hidden variables by squares and causes by directed edges.

Bell setups can be understood in this language. Fritz, NJP’12; Wood & Spekkens, NJP ‘15
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Causal networks
Representation of causality patterns through directed acyiclic graphs. Observed variables 
are represented by circles, hidden variables by squares and causes by directed edges.

Bell setups can be understood in this language. Fritz, NJP’12; Wood & Spekkens, NJP ‘15
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Causal networks
Representation of causality patterns through directed acyiclic graphs. Observed variables 
are represented by circles, hidden variables by squares and causes by directed edges.

Bell setups can be understood in this language. Fritz, NJP’12; Wood & Spekkens, NJP ‘15
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Quantum causality
Bell’s theorem: nonlocal correlations can be explained by a quantum causal model, but 
not by the classical counterpart. 
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Quantum causality
Bell’s theorem: nonlocal correlations can be explained by a quantum causal model, but 
not by the classical counterpart. 
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How is causality affected by 
quantum information?

See Alejandro Pozas-Kerstjens’ talk.
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Quantum 
Foundations

Quantum 
Technologies
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Quantum Computer

Quantum information technologies

Quantum Simulator

Quantum Cryptography QRNG
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Is this a Quantum Computer?

Quantum certification

Does this properly simulate 
a quantum system?

Is this cryptographically secure? Is this quantum random?


