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Preliminaries

o Let G be a simple graph on n = |V(G)| vertices and A be its 0-1
adjacency matrix.

e V2 =V(G) x V(G). S is any subset of V2.

3 2 1
Example: S ={(1,1),(1,2),(2,3),(4,6)}.
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Walks of Graphs

o It is well-known that [A*];; is the number of walks of length k in
G starting from ¢ and ending at j.

o Let S C V? and let k be a nonnegative integer. For all (i,5) € S,
find the number of walks of length k in G starting from i and

ending at j, then sum them up.

@ Denote this sum by Ng(S). In other words,

Ni(S) = > [A¥];;.

(i,5)€S
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Walk Matrices

@ A walk matrix Wy, is of the form (b Ab A’ .. A”_lb),
where b is a 0-1 vector (usually the all-ones vector j).

o [Wy]jr = Np—1({s} x B) for all j,k, where B = {i | [b]; = 1}.
o [WWhy]ji = Njii—2(B x B).

e Question: Given S C V2, is there a walk vector v such that
[WIW. ]k = Njyr—o(S) for all j,k?

@ Answer: Yes! (In fact, usually more than one.)
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Pseudo Walk Matrices

Walk Vectors exist for any S

(\I Av ALV .- A""‘V)

Given any S C V?, a walk vector for S is
j:V/E:(uAOESH)(Hu1H>(HU1
- X i\/Z(U,v)ES[[X]]W[[X]]w

A%

£/Zwyes Klun[Xlun

where X is an orthogonal matrix that diagonalizes A.
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Pseudo Walk Matrices

A pseudo walk matrix of G associated with S C V2 is a matrix

WV:(V Av A’v ... A”_lv)

where the skew diagonals of W‘T,Wv contain the numbers
No(S), N1(S), ..., Nap—2(S) (from left to right). If the walk
vector v is a 0—1 vector, then Wy, may be simply called a walk
matrix.
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Walk Matrices
Pseudo Walk Matrices

Pseudo Walk Matrices

A pseudo walk matrix of G associated with S C V2 is a matrix

WV:(V Av A’v ... A”_lv)

where the skew diagonals of W‘T,Wv contain the numbers
No(S), N1(S), ..., Nap—2(S) (from left to right). If the walk
vector v is a 0—1 vector, then Wy, may be simply called a walk
matrix.

@ For some S, the entries of Wy, may not be walk enumerations.
Hence the word pseudo (fake).
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Example

6 4 5
3 2 1

—0.021 — 0.126i1

0.178 — 0.029i

—0.021 — 0.126i1

e For S ={(1,2)}, v may be chosen to be 0.379 — 0.289i

0.204 + 0.268i1
0.204 4 0.268i
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Introduction

Example

6 4 5
3 2 1

—0.021 — 0.126i1

0.178 — 0.029i

—0.021 — 0.126i1

e For S ={(1,2)}, v may be chosen to be 0.379 — 0.289i

0.204 + 0.268i
0.204 + 0.268i

o W, = (V Av A’v Alv Aly A5V) with this v.
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3 2 1

16 63

16 63 183

16 63 183 625

16 63 183 625 1952
16 63 183 625 1952 6401
63 183 625 1952 6401 20433
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Introduction
atrices
o Walk Matrices

Example Continued

0
1
1

1 1 7 16 63

1 7 16 63 183
7 16 63 183 625
7 16 63 183 625 1952
16 63 183 625 1952 6401
63 183 625 1952 6401 20433

o WIW, = . It has rank 4.
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The Rank of Pseudo Walk Matrices

The rank of a pseudo walk matrix W, (and of WI W) is the
number of eigenvalues of G having an eigenvector not orthogonal
to the walk vector v.
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The Rank of Pseudo Walk Matrices

The Rank of Pseudo Walk Matrices

The rank of a pseudo walk matrix W, (and of WI W) is the
number of eigenvalues of G having an eigenvector not orthogonal
to the walk vector v.

For all walk vectors v, the number of distinct eigenvalues of G is
an upper bound for the rank of Wy,.

@ This upper bound is reached by the closed pseudo walk matrix.

9/21



The Rank in terms of 2C
Closed Pseudo Walk Matrices
Another Restriction on the Rank

The Rank of Pseudo Walk Matrices

Closed Pseudo Walk Matrices

@ A closed pseudo walk matrix is a pseudo walk matrix Wy, with a
walk vector v associated with S = {(1,1),(2,2),...,(n,n)}.
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Closed Pseudo Walk Matrices

The Rank of Pseudo Walk Matrices

@ A closed pseudo walk matrix is a pseudo walk matrix Wy, with a
walk vector v associated with S = {(1,1),(2,2),...,(n,n)}.

If v. = Xk where k is any vector whose entries are all +1, then
Wy is a closed pseudo walk matrix.
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The Rank of Pseudo Walk Matrices

Closed Pseudo Walk Matrices

@ A closed pseudo walk matrix is a pseudo walk matrix Wy, with a
walk vector v associated with S = {(1,1),(2,2),...,(n,n)}.

If v. = Xk where k is any vector whose entries are all +1, then
Wy is a closed pseudo walk matrix.

The rank of any closed pseudo walk matrix is the number of
distinct eigenvalues of G.
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The Rank of Pseudo Walk Matrices

Example

° §={(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}.
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The Rank of Pseudo Walk Matrices

Example

o S=1{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6) }.

@ v may be chosen to be the sum of all the orthonormal eigenvectors
of G, that is, (—0.452 0.122 —0.452 0.355 0.313 2.313)T.
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The Rank in terms of
Closed Pseudo Walk
Another Restriction on the Rank

The Rank of Pseudo Walk Matrices

Example

o S=1{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6) }.

@ v may be chosen to be the sum of all the orthonormal eigenvectors
of G, that is, (—0.452 0.122 —0.452 0.355 0.313 2.313)T.

e W, and W] W, have rank 6.
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. The Rank in terms of Eigenvectors
The Rank of Pseudo Walk Matrices Closed Pseudo Walk Matrices
Another Restriction on the Rank

Example Continued

6 4 5

3 2 1
6 0 18 24 126 320
0 18 24 126 320 1170
18 24 126 320 1170 3528

T _
°WeWv=104 126 320 1170 3528 11782

126 320 1170 3528 11782 37248
320 1170 3528 11782 37248 121208
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Another Restriction on the Rank

o Factorize the characteristic polynomial of G over QQ to obtain

O(G, ) = (p1(x))™ (p2(x))® - - - (pe(x)) "
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o Factorize the characteristic polynomial of G over QQ to obtain

O(G, ) = (p1(x))™ (p2(x))® - - - (pe(x)) "

@ The minimal polynomial of G is m(G,x) = p1(z) p2(z) - - - pe(z).
Let \; be a root of pi(z) and d; be the degree of p;(z) for all
je{1,2,... t}.
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. The Rank in terms of
The Rank of Pseudo Walk Matrices Closed Pseudo Walk N

Another Restriction on

Another Restriction on the Rank

o Factorize the characteristic polynomial of G over QQ to obtain
O(G,z) = (p1 ()" (p2(2))® - - (pe()) "

@ The minimal polynomial of G is m(G,x) = p1(z) p2(z) - - - pe(z).
Let \; be a root of pi(z) and d; be the degree of p;(z) for all
je{1,2,... t}.

The rank of any pseudo walk matrix associated with S C V? of a

graph G is dy + cada + - - - + ¢;dy, where ¢; € {0,1} for all
j€{2,...,t}. (The ¢;'s may be different for different pseudo walk

matrices.)
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Controllable and Recalcitrant Pairs
Results on Regular Graphs

Controllable and Recalcitrant Pairs

If r is the rank of a pseudo walk matrix associated with some set .S
of a graph G, then d; < r <dj +---+d;.

@ The pair (A, v) is controllable if the rank of Wy, is n.

@ The pair (A, V) is recalcitrant if the rank of Wy, is d; and d; # n.

If #(G, x) is irreducible over Q, then (A, v) is a controllable pair
for all walk vectors v.
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Graphs with an Irreducible Characteristic Polynomial

Table 1. The number of connected graphs G(n), connected controllable graphs C(1) and connected graphs with
an irreducible characteristic polynomial I(n) on n vertices.

‘ n 1 2 3 4 5 6 7 8 9 10
Gn) 1 1 2 6 21 112 853 11117 261080 11716571
Ckn) 1.0 0 0 O 8 85 2275 83034 5512362

Im) 1.0 0 0 O 7 54 1943 62620 4697820
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Table 1. The number of connected graphs G(n), connected controllable graphs C(1) and connected graphs with
an irreducible characteristic polynomial I(n) on n vertices.

‘ n 1 2 3 4 5 6 7 8 9 10
Gn) 1 1 2 6 21 112 853 11117 261080 11716571
Ckn) 1.0 0 0 O 8 85 2275 83034 5512362
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@ A graph is controllable if (A,j) is controllable. Roughly g of the
controllable graphs on up to ten vertices have an irreducible
characteristic polynomial.
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characteristic polynomial.
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n—00 G(n)
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Table 1. The number of connected graphs G(n), connected controllable graphs C(1) and connected graphs with
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‘ n 1 2 3 4 5 6 7 8 9 10
Gn) 1 1 2 6 21 112 853 11117 261080 11716571
Ckn) 1.0 0 0 O 8 85 2275 83034 5512362

Im) 1.0 0 0 O 7 54 1943 62620 4697820

@ A graph is controllable if (A,j) is controllable. Roughly g of the
controllable graphs on up to ten vertices have an irreducible
characteristic polynomial.

@ It is known that lim M =1.
n—00 (n

I
o Conjecture: nh_}ngo G((Z))

)
=1
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Results on Controllable and Recalcitrant Pairs

@ Let b; and by be indicator vectors of two subsets V; and V5 of
V(G). Moreover, let v be a walk vector for V; x V5.

If (A,b;) and (A, bg) are controllable pairs, then the pair (A, v)
is also controllable.
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Controllable and Recalcitrant Pairs

Results on Controllable and Recalcitrant Pairs

@ Let b; and by be indicator vectors of two subsets V; and V5 of
V(G). Moreover, let v be a walk vector for V; x V5.

If (A,b;) and (A, bg) are controllable pairs, then the pair (A, v)
is also controllable.

If (A,by) or (A, by) is a recalcitrant pair, then the pair (A, V)
is also recalcitrant.
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Controllable and Recalcitrant Pairs

Results on Regular Graphs

If a graph G is not regular, then none of its pseudo walk matrices
has rank one.

Theorem

If G is a regular graph, then the pair (A, V) is recalcitrant for any
walk vector v associated with the set V' x V(G) for all V' C V(G).
Moreover, the pseudo walk matrices of all such walk vectors have

rank one.
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Controllable and Recalcitrant Pairs

Results on Regular Graphs

If a graph G is not regular, then none of its pseudo walk matrices
has rank one.

Theorem

If G is a regular graph, then the pair (A, V) is recalcitrant for any
walk vector v associated with the set V' x V(G) for all V C V(G).
Moreover, the pseudo walk matrices of all such walk vectors have

rank one.

If a non-regular graph has its largest eigenvalue equal to an integer,
then (A, v) is not recalcitrant for any pseudo walk vector v.
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Controllable and Recalcitrant Pairs Resilis @ Ramilkr GEEis

First Example

o ¢(G,z)=(xr—1)(z+1)(z*—82% =8z +1).

@ Since the largest root of ¢(G, ) is a root of #* — 822 — 8z + 1,
every pseudo walk matrix associated with G must have rank 4, 5
or 6.

@ In this case, (A, V) is recalcitrant if Wy, has rank 4; (A,v) is
controllable if Wy, has rank 6.
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Second Example

o ¢(G,x) =23(x —2)(z +2).
o Every pseudo walk matrix associated with K7 4 has rank 1, 2 or 3.

e However, K1 4 is not regular and its largest eigenvalue is an
integer, so rank 1 is not possible.
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Controllable and Recalcitrant Pairs Resilis @ Ramilkr GEEis

Second Example

o ¢(G,x) =23(x —2)(z +2).

Every pseudo walk matrix associated with K 4 has rank 1, 2 or 3.

However, K7 4 is not regular and its largest eigenvalue is an
integer, so rank 1 is not possible.

@ Thus, for any v, (A, V) is neither controllable nor recalcitrant.
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about the rank of Wy, from the ranks of Wy, and W7
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Open Problems

Open Problems

@ Is there a graph G with a factorizable characteristic polynomial
over Q where, for all walk vectors v, (A, v) is controllable?

o Let S7 and Ss be disjoint subsets of V2 with walk vectors v, and
vs. Let v be a walk vector for S; U S5. Can we say something
about the rank of Wy, from the ranks of Wy, and W7

@ Is it true that almost all graphs have an irreducible characteristic
polynomial?
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