On the Rank of Pseudo Walk Matrices

Alexander Farrugia

24 June 2021

Table of Contents

(1) Introduction

- Walks
- Walk Matrices
- Pseudo Walk Matrices
(2) The Rank of Pseudo Walk Matrices
- The Rank in terms of Eigenvectors
- Closed Pseudo Walk Matrices
- Another Restriction on the Rank
(3) Controllable and Recalcitrant Pairs
- Graphs with an Irreducible Characteristic Polynomial
- Results on Controllable and Recalcitrant Pairs
- Results on Regular Graphs

4 Open Problems

Preliminaries

- Let G be a simple graph on $n=|\mathcal{V}(G)|$ vertices and \mathbf{A} be its $0-1$ adjacency matrix.

Preliminaries

- Let G be a simple graph on $n=|\mathcal{V}(G)|$ vertices and \mathbf{A} be its $0-1$ adjacency matrix.
- $\mathcal{V}^{2}=\mathcal{V}(G) \times \mathcal{V}(G) . S$ is any subset of \mathcal{V}^{2}.

Preliminaries

- Let G be a simple graph on $n=|\mathcal{V}(G)|$ vertices and \mathbf{A} be its $0-1$ adjacency matrix.
- $\mathcal{V}^{2}=\mathcal{V}(G) \times \mathcal{V}(G) . S$ is any subset of \mathcal{V}^{2}.

Example: $S=\{(1,1),(1,2),(2,3),(4,6)\}$.

Walks of Graphs

- It is well-known that $\llbracket \mathbf{A}^{k} \rrbracket_{i j}$ is the number of walks of length k in G starting from i and ending at j.

Walks of Graphs

- It is well-known that $\llbracket \mathbf{A}^{k} \rrbracket_{i j}$ is the number of walks of length k in G starting from i and ending at j.
- Let $S \subseteq \mathcal{V}^{2}$ and let k be a nonnegative integer. For all $(i, j) \in S$, find the number of walks of length k in G starting from i and ending at j, then sum them up.

Walks of Graphs

- It is well-known that $\llbracket \mathbf{A}^{k} \rrbracket_{i j}$ is the number of walks of length k in G starting from i and ending at j.
- Let $S \subseteq \mathcal{V}^{2}$ and let k be a nonnegative integer. For all $(i, j) \in S$, find the number of walks of length k in G starting from i and ending at j, then sum them up.
- Denote this sum by $N_{k}(S)$. In other words,

$$
N_{k}(S)=\sum_{(i, j) \in S} \llbracket \mathbf{A}^{k} \rrbracket_{i j} .
$$

Walk Matrices

- A walk matrix $\mathbf{W}_{\mathbf{b}}$ is of the form ($\left.\begin{array}{llllll}\mathbf{b} & \mathbf{A} \mathbf{b} & \mathbf{A}^{2} \mathbf{b} & \cdots & \mathbf{A}^{n-1} \mathbf{b}\end{array}\right)$, where \mathbf{b} is a $0-1$ vector (usually the all-ones vector \mathbf{j}).

Walk Matrices

- A walk matrix $\mathbf{W}_{\mathbf{b}}$ is of the form ($\left.\begin{array}{llllll}\mathbf{b} & \mathbf{A b} & \mathbf{A}^{2} \mathbf{b} & \cdots & \mathbf{A}^{n-1} \mathbf{b}\end{array}\right)$, where \mathbf{b} is a $0-1$ vector (usually the all-ones vector \mathbf{j}).
- $\llbracket \mathbf{W}_{\mathbf{b}} \rrbracket_{j k}=N_{k-1}(\{j\} \times B)$ for all j, k, where $B=\left\{i \mid \llbracket \mathbf{b} \rrbracket_{i}=1\right\}$.

Walk Matrices

- A walk matrix $\mathbf{W}_{\mathbf{b}}$ is of the form ($\left.\begin{array}{llllll}\mathbf{b} & \mathbf{A b} & \mathbf{A}^{2} \mathbf{b} & \cdots & \mathbf{A}^{n-1} \mathbf{b}\end{array}\right)$, where \mathbf{b} is a $0-1$ vector (usually the all-ones vector \mathbf{j}).
- $\llbracket \mathbf{W}_{\mathbf{b}} \rrbracket_{j k}=N_{k-1}(\{j\} \times B)$ for all j, k, where $B=\left\{i \mid \llbracket \mathbf{b} \rrbracket_{i}=1\right\}$.
- $\llbracket \mathbf{W}_{\mathbf{b}}^{\top} \mathbf{W}_{\mathbf{b}} \rrbracket_{j k}=N_{j+k-2}(B \times B)$. 1
0
1
0

Walk Matrices

- A walk matrix $\mathbf{W}_{\mathbf{b}}$ is of the form ($\left.\begin{array}{lllll}\mathbf{b} & \mathbf{A b} & \mathbf{A}^{2} \mathbf{b} & \cdots & \mathbf{A}^{n-1} \mathbf{b}\end{array}\right)$, where \mathbf{b} is a $0-1$ vector (usually the all-ones vector \mathbf{j}).
- $\llbracket \mathbf{W}_{\mathbf{b}} \rrbracket_{j k}=N_{k-1}(\{j\} \times B)$ for all j, k, where $B=\left\{i \mid \llbracket \mathbf{b} \rrbracket_{i}=1\right\}$.
- $\llbracket \mathbf{W}_{\mathbf{b}}^{\top} \mathbf{W}_{\mathbf{b}} \rrbracket_{j k}=N_{j+k-2}(B \times B)$.
- Question: Given $S \subseteq \mathcal{V}^{2}$, is there a walk vector \mathbf{v} such that $\llbracket \mathbf{W}_{\mathbf{v}}^{\top} \mathbf{W}_{\mathbf{v}} \rrbracket_{j k}=N_{j+k-2}(S)$ for all j, k ?

Walk Matrices

- A walk matrix $\mathbf{W}_{\mathbf{b}}$ is of the form ($\left.\begin{array}{lllll}\mathbf{b} & \mathbf{A b} & \mathbf{A}^{2} \mathbf{b} & \cdots & \mathbf{A}^{n-1} \mathbf{b}\end{array}\right)$, where \mathbf{b} is a $0-1$ vector (usually the all-ones vector \mathbf{j}).
- $\llbracket \mathbf{W}_{\mathbf{b}} \rrbracket_{j k}=N_{k-1}(\{j\} \times B)$ for all j, k, where $B=\left\{i \mid \llbracket \mathbf{b} \rrbracket_{i}=1\right\}$.
- $\llbracket \mathbf{W}_{\mathbf{b}}^{\top} \mathbf{W}_{\mathbf{b}} \rrbracket_{j k}=N_{j+k-2}(B \times B)$.
- Question: Given $S \subseteq \mathcal{V}^{2}$, is there a walk vector \mathbf{v} such that $\llbracket \mathbf{W}_{\mathbf{v}}^{\top} \mathbf{W}_{\mathbf{v}} \rrbracket_{j k}=N_{j+k-2}(S)$ for all j, k ?
- Answer: Yes! (In fact, usually more than one.)

Walk Vectors exist for any S

$$
\left(\begin{array}{lllll}
v & A_{v} & A^{2} v & \cdots & A^{n-1} v
\end{array}\right)
$$

Theorem

Given any $S \subseteq \mathcal{V}^{2}$, a walk vector for S is

$$
\mathbf{v}=\mathbf{X}\left(\begin{array}{c}
\pm \sqrt{\sum_{(u, v) \in S} \llbracket \mathbf{X} \rrbracket_{u 1} \llbracket \mathbf{X} \rrbracket_{v 1}} \\
\pm \sqrt{\sum_{(u, v) \in S} \llbracket \mathbf{X} \rrbracket_{u 2} \llbracket \mathbf{X} \rrbracket_{v 2}} \\
\vdots \\
\pm \sqrt{\sum_{(u, v) \in S} \llbracket \mathbf{X} \rrbracket_{u n} \llbracket \mathbf{X} \rrbracket_{v n}}
\end{array}\right) .
$$

where \mathbf{X} is an orthogonal matrix that diagonalizes \mathbf{A}.

Pseudo Walk Matrices

Definition

A pseudo walk matrix of G associated with $S \subseteq \mathcal{V}^{2}$ is a matrix

$$
\mathbf{W}_{\mathbf{v}}=\left(\begin{array}{lllll}
\mathbf{v} & \mathbf{A} \mathbf{v} & \mathbf{A}^{2} \mathbf{v} & \cdots & \mathbf{A}^{n-1} \mathbf{v}
\end{array}\right)
$$

where the skew diagonals of $\mathbf{W}_{\mathbf{v}}^{\top} \mathbf{W}_{\mathbf{v}}$ contain the numbers $N_{0}(S), N_{1}(S), \ldots, N_{2 n-2}(S)$ (from left to right). If the walk vector \mathbf{v} is a $0-1$ vector, then $\mathbf{W}_{\mathbf{v}}$ may be simply called a walk matrix.

Pseudo Walk Matrices

Definition

A pseudo walk matrix of G associated with $S \subseteq \mathcal{V}^{2}$ is a matrix

$$
\mathbf{W}_{\mathbf{v}}=\left(\begin{array}{lllll}
\mathbf{v} & \mathbf{A} \mathbf{v} & \mathbf{A}^{2} \mathbf{v} & \cdots & \mathbf{A}^{n-1} \mathbf{v}
\end{array}\right)
$$

where the skew diagonals of $\mathbf{W}_{\mathbf{v}}^{\top} \mathbf{W}_{\mathbf{v}}$ contain the numbers $N_{0}(S), N_{1}(S), \ldots, N_{2 n-2}(S)$ (from left to right). If the walk vector \mathbf{v} is a $0-1$ vector, then $\mathbf{W}_{\mathbf{v}}$ may be simply called a walk matrix.

- For some S, the entries of $\mathbf{W}_{\mathbf{v}}$ may not be walk enumerations. Hence the word pseudo (fake).

Example

Example

- For $S=\{(1,2)\}$, \mathbf{v} may be chosen to be

$$
\left(\begin{array}{c}
-0.021-0.126 \mathrm{i} \\
0.178-0.029 \mathrm{i} \\
-0.021-0.126 \mathrm{i} \\
0.379-0.289 \mathrm{i} \\
0.204+0.268 \mathrm{i} \\
0.204+0.268 \mathrm{i}
\end{array}\right)
$$

Example

- For $S=\{(1,2)\}$, \mathbf{v} may be chosen to be

$$
\left(\begin{array}{c}
-0.021-0.126 \mathrm{i} \\
0.178-0.029 \mathrm{i} \\
-0.021-0.126 \mathrm{i} \\
0.379-0.289 \mathrm{i} \\
0.204+0.268 \mathrm{i} \\
0.204+0.268 \mathrm{i}
\end{array}\right) .
$$

- $\mathbf{W}_{\mathbf{v}}=\left(\begin{array}{llllll}\mathbf{v} & \mathbf{A v} & \mathbf{A}^{2} \mathbf{v} & \mathbf{A}^{3} \mathbf{v} & \mathbf{A}^{4} \mathbf{v} & \mathbf{A}^{5} \mathbf{v}\end{array}\right)$ with this \mathbf{v}.

Example Continued

- $\mathbf{W}_{\mathbf{v}}^{\top} \mathbf{W}_{\mathbf{v}}=\left(\begin{array}{cccccc}0 & \boldsymbol{y} & 1 & 7 & 16 & 63 \\ 1 & 1 & 7 & 16 & 63 & 183 \\ 1 & 7 & 16 & 63 & 183 & 625 \\ 7 & 16 & 63 & 183 & 625 & 1952 \\ 16 & 63 & 183 & 625 & 1952 & 6401 \\ 63 & 183 & 625 & 1952 & 6401 & 20433\end{array}\right)$.

Example Continued

- $\mathbf{W}_{\mathbf{v}}^{\top} \mathbf{W}_{\mathbf{v}}=\left(\begin{array}{cccccc}0 & 1 & 1 & 7 & 16 & 63 \\ 1 & 1 & 7 & 16 & 63 & 183 \\ 1 & 7 & 16 & 63 & 183 & 625 \\ 7 & 16 & 63 & 183 & 625 & 1952 \\ 16 & 63 & 183 & 625 & 1952 & 6401 \\ 63 & 183 & 625 & 1952 & 6401 & 20433\end{array}\right)$. It has rank 4.

The Rank of Pseudo Walk Matrices

Theorem

The rank of a pseudo walk matrix $\mathbf{W}_{\mathbf{v}}$ (and of $\mathbf{W}_{\mathbf{v}}^{\top} \mathbf{W}_{\mathbf{v}}$) is the number of eigenvalues of G having an eigenvector not orthogonal to the walk vector \mathbf{v}.

The Rank of Pseudo Walk Matrices

Theorem

The rank of a pseudo walk matrix $\mathbf{W}_{\mathbf{v}}$ (and of $\mathbf{W}_{\mathbf{v}}^{\top} \mathbf{W}_{\mathbf{v}}$) is the number of eigenvalues of G having an eigenvector not orthogonal to the walk vector \mathbf{v}.

Corollary

For all walk vectors \mathbf{v}, the number of distinct eigenvalues of G is an upper bound for the rank of $\mathbf{W}_{\mathbf{v}}$.

The Rank of Pseudo Walk Matrices

Theorem

The rank of a pseudo walk matrix $\mathbf{W}_{\mathbf{v}}$ (and of $\mathbf{W}_{\mathbf{v}}^{\top} \mathbf{W}_{\mathbf{v}}$) is the number of eigenvalues of G having an eigenvector not orthogonal to the walk vector \mathbf{v}.

Corollary

For all walk vectors \mathbf{v}, the number of distinct eigenvalues of G is an upper bound for the rank of $\mathbf{W}_{\mathbf{v}}$.

- This upper bound is reached by the closed pseudo walk matrix.

Closed Pseudo Walk Matrices

- A closed pseudo walk matrix is a pseudo walk matrix $\mathbf{W}_{\mathbf{v}}$ with a walk vector \mathbf{v} associated with $S=\{(1,1),(2,2), \ldots,(n, n)\}$.

Closed Pseudo Walk Matrices

- A closed pseudo walk matrix is a pseudo walk matrix $\mathbf{W}_{\mathbf{v}}$ with a walk vector \mathbf{v} associated with $S=\{(1,1),(2,2), \ldots,(n, n)\}$.

Theorem

If $\mathbf{v}=\mathbf{X} \mathbf{k}$ where \mathbf{k} is any vector whose entries are all ± 1, then $\mathbf{W}_{\mathbf{v}}$ is a closed pseudo walk matrix.

Closed Pseudo Walk Matrices

- A closed pseudo walk matrix is a pseudo walk matrix $\mathbf{W}_{\mathbf{v}}$ with a walk vector \mathbf{v} associated with $S=\{(1,1),(2,2), \ldots,(n, n)\}$.

Theorem

If $\mathbf{v}=\mathbf{X} \mathbf{k}$ where \mathbf{k} is any vector whose entries are all ± 1, then $\mathbf{W}_{\mathbf{v}}$ is a closed pseudo walk matrix.

Theorem

The rank of any closed pseudo walk matrix is the number of distinct eigenvalues of G.

Example

- $S=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$.

Example

- $S=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$.
- \mathbf{v} may be chosen to be the sum of all the orthonormal eigenvectors of G, that is, $\left(\begin{array}{llllll}-0.452 & 0.122 & -0.452 & 0.355 & 0.313 & 2.313\end{array}\right)^{\top}$.

Example

- $S=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$.
- \mathbf{v} may be chosen to be the sum of all the orthonormal eigenvectors of G, that is, $\left(\begin{array}{llllll}-0.452 & 0.122 & -0.452 & 0.355 & 0.313 & 2.313\end{array}\right)^{\top}$.
- $\mathbf{W}_{\mathbf{v}}$ and $\mathbf{W}_{\mathbf{v}}^{\top} \mathbf{W}_{\mathbf{v}}$ have rank 6 .

Example Continued

- $\mathbf{W}_{\mathbf{v}}^{\top} \mathbf{W}_{\mathbf{v}}=\left(\begin{array}{cccccc}6 & 0 & 18 & 24 & 126 & 320 \\ 0 & 18 & 24 & 126 & 320 & 1170 \\ 18 & 24 & 126 & 320 & 1170 & 3528 \\ 24 & 126 & 320 & 1170 & 3528 & 11782 \\ 126 & 320 & 1170 & 3528 & 11782 & 37248 \\ 320 & 1170 & 3528 & 11782 & 37248 & 121298\end{array}\right)$.

Another Restriction on the Rank

- Factorize the characteristic polynomial of G over \mathbb{Q} to obtain $\phi(G, x)=\left(p_{1}(x)\right)^{q_{1}}\left(p_{2}(x)\right)^{q_{2}} \cdots\left(p_{t}(x)\right)^{q_{t}}$.

Another Restriction on the Rank

- Factorize the characteristic polynomial of G over \mathbb{Q} to obtain $\phi(G, x)=\left(p_{1}(x)\right)^{q_{1}}\left(p_{2}(x)\right)^{q_{2}} \cdots\left(p_{t}(x)\right)^{q_{t}}$.
- The minimal polynomial of G is $m(G, x)=p_{1}(x) p_{2}(x) \cdots p_{t}(x)$. Let λ_{1} be a root of $p_{1}(x)$ and d_{j} be the degree of $p_{j}(x)$ for all $j \in\{1,2, \ldots, t\}$.

Another Restriction on the Rank

- Factorize the characteristic polynomial of G over \mathbb{Q} to obtain $\phi(G, x)=\left(p_{1}(x)\right)^{q_{1}}\left(p_{2}(x)\right)^{q_{2}} \cdots\left(p_{t}(x)\right)^{q_{t}}$.
- The minimal polynomial of G is $m(G, x)=p_{1}(x) p_{2}(x) \cdots p_{t}(x)$. Let λ_{1} be a root of $p_{1}(x)$ and d_{j} be the degree of $p_{j}(x)$ for all $j \in\{1,2, \ldots, t\}$.

Theorem

The rank of any pseudo walk matrix associated with $S \subseteq \mathcal{V}^{2}$ of a graph G is $d_{1}+c_{2} d_{2}+\cdots+c_{t} d_{t}$, where $c_{j} \in\{0,1\}$ for all $j \in\{2, \ldots, t\}$. (The c_{j} 's may be different for different pseudo walk matrices.)

Controllable and Recalcitrant Pairs

Corollary

If r is the rank of a pseudo walk matrix associated with some set S of a graph G, then $d_{1} \leq r \leq d_{1}+\cdots+d_{t}$.

Controllable and Recalcitrant Pairs

Corollary

If r is the rank of a pseudo walk matrix associated with some set S of a graph G, then $d_{1} \leq r \leq d_{1}+\cdots+d_{t}$.

- The pair (\mathbf{A}, \mathbf{v}) is controllable if the rank of $\mathbf{W}_{\mathbf{v}}$ is n.

Controllable and Recalcitrant Pairs

Corollary

If r is the rank of a pseudo walk matrix associated with some set S of a graph G, then $d_{1} \leq r \leq d_{1}+\cdots+d_{t}$.

- The pair (\mathbf{A}, \mathbf{v}) is controllable if the rank of $\mathbf{W}_{\mathbf{v}}$ is n.
- The pair (\mathbf{A}, \mathbf{v}) is recalcitrant if the rank of $\mathbf{W}_{\mathbf{v}}$ is d_{1} and $d_{1} \neq n$.

Controllable and Recalcitrant Pairs

Corollary

If r is the rank of a pseudo walk matrix associated with some set S of a graph G, then $d_{1} \leq r \leq d_{1}+\cdots+d_{t}$.

- The pair (\mathbf{A}, \mathbf{v}) is controllable if the rank of $\mathbf{W}_{\mathbf{v}}$ is n.
- The pair (\mathbf{A}, \mathbf{v}) is recalcitrant if the rank of $\mathbf{W}_{\mathbf{v}}$ is d_{1} and $d_{1} \neq n$.

Corollary

If $\phi(G, x)$ is irreducible over \mathbb{Q}, then (\mathbf{A}, \mathbf{v}) is a controllable pair for all walk vectors \mathbf{v}.

Graphs with an Irreducible Characteristic Polynomial

Table 1. The number of connected graphs $G(n)$, connected controllable graphs $C(n)$ and connected graphs with an irreducible characteristic polynomial $I(n)$ on n vertices.

n	1	2	3	4	5	6	7	8	9	10
$G(n)$	1	1	2	6	21	112	853	11117	261080	11716571
$C(n)$	1	0	0	0	0	8	85	2275	83034	5512362
$I(n)$	1	0	0	0	0	7	54	1943	62620	4697820

x (——)

Graphs with an Irreducible Characteristic Polynomial

Table 1. The number of connected graphs $G(n)$, connected controllable graphs $C(n)$ and connected graphs with an irreducible characteristic polynomial $I(n)$ on n vertices.

n	1	2	3	4	5	6	7	8	9	10
$G(n)$	1	1	2	6	21	112	853	11117	261080	11716571
$C(n)$	1	0	0	0	0	8	85	2275	83034	5512362
$I(n)$	1	0	0	0	0	7	54	1943	62620	4697820

- A graph is controllable if (\mathbf{A}, \mathbf{j}) is controllable. Roughly $\frac{6}{7}$ of the controllable graphs on up to ten vertices have an irreducible characteristic polynomial.

Graphs with an Irreducible Characteristic Polynomial

Table 1. The number of connected graphs $G(n)$, connected controllable graphs $C(n)$ and connected graphs with an irreducible characteristic polynomial $I(n)$ on n vertices.

n	1	2	3	4	5	6	7	8	9	10
$G(n)$	1	1	2	6	21	112	853	11117	261080	11716571
$C(n)$	1	0	0	0	0	8	85	2275	83034	5512362
$I(n)$	1	0	0	0	0	7	54	1943	62620	4697820

- A graph is controllable if (\mathbf{A}, \mathbf{j}) is controllable. Roughly $\frac{6}{7}$ of the controllable graphs on up to ten vertices have an irreducible characteristic polynomial.
- It is known that $\lim _{n \rightarrow \infty} \frac{C(n)}{G(n)}=1$.

Graphs with an Irreducible Characteristic Polynomial

Table 1. The number of connected graphs $G(n)$, connected controllable graphs $C(n)$ and connected graphs with an irreducible characteristic polynomial $I(n)$ on n vertices.

n	1	2	3	4	5	6	7	8	9	10
$G(n)$	1	1	2	6	21	112	853	11117	261080	11716571
$C(n)$	1	0	0	0	0	8	85	2275	83034	5512362
$I(n)$	1	0	0	0	0	7	54	1943	62620	4697820

- A graph is controllable if (\mathbf{A}, \mathbf{j}) is controllable. Roughly $\frac{6}{7}$ of the controllable graphs on up to ten vertices have an irreducible characteristic polynomial.
- It is known that $\lim _{n \rightarrow \infty} \frac{C(n)}{G(n)}=1$.
- Conjecture: $\lim _{n \rightarrow \infty} \frac{I(n)}{G(n)}=1$.

Results on Controllable and Recalcitrant Pairs

- Let \mathbf{b}_{1} and \mathbf{b}_{2} be indicator vectors of two subsets V_{1} and V_{2} of $\mathcal{V}(G)$. Moreover, let \mathbf{v} be a walk vector for $V_{1} \times V_{2}$.

Results on Controllable and Recalcitrant Pairs

- Let \mathbf{b}_{1} and \mathbf{b}_{2} be indicator vectors of two subsets V_{1} and V_{2} of $\mathcal{V}(G)$. Moreover, let \mathbf{v} be a walk vector for $V_{1} \times V_{2}$.

Theorem

If $\left(\mathbf{A}, \mathbf{b}_{1}\right)$ and $\left(\mathbf{A}, \mathbf{b}_{2}\right)$ are controllable pairs, then the pair (\mathbf{A}, \mathbf{v}) is also controllable.

Results on Controllable and Recalcitrant Pairs

- Let \mathbf{b}_{1} and \mathbf{b}_{2} be indicator vectors of two subsets V_{1} and V_{2} of $\mathcal{V}(G)$. Moreover, let \mathbf{v} be a walk vector for $V_{1} \times V_{2}$.

Theorem

If $\left(\mathbf{A}, \mathbf{b}_{1}\right)$ and $\left(\mathbf{A}, \mathbf{b}_{2}\right)$ are controllable pairs, then the pair (\mathbf{A}, \mathbf{v}) is also controllable.

Theorem

If $\left(\mathbf{A}, \mathbf{b}_{1}\right)$ or $\left(\mathbf{A}, \mathbf{b}_{2}\right)$ is a recalcitrant pair, then the pair (\mathbf{A}, \mathbf{v}) is also recalcitrant.

Introduction

Graphs with an Irreducible Characteristic Polynomial Results on Controllable and Recalcitrant Pairs
Results on Regular Graphs

Results on Regular Graphs

Theorem

If a graph G is not regular, then none of its pseudo walk matrices has rank one.

Results on Regular Graphs

Theorem

If a graph G is not regular, then none of its pseudo walk matrices has rank one.

Theorem

If G is a regular graph, then the pair (\mathbf{A}, \mathbf{v}) is recalcitrant for any walk vector \mathbf{v} associated with the set $V \times \mathcal{V}(G)$ for all $V \subseteq \mathcal{V}(G)$. Moreover, the pseudo walk matrices of all such walk vectors have rank one.

Results on Regular Graphs

Theorem

If a graph G is not regular, then none of its pseudo walk matrices has rank one.

Theorem

If G is a regular graph, then the pair (\mathbf{A}, \mathbf{v}) is recalcitrant for any walk vector \mathbf{v} associated with the set $V \times \mathcal{V}(G)$ for all $V \subseteq \mathcal{V}(G)$. Moreover, the pseudo walk matrices of all such walk vectors have rank one.

Corollary

If a non-regular graph has its largest eigenvalue equal to an integer, then (\mathbf{A}, \mathbf{v}) is not recalcitrant for any pseudo walk vector \mathbf{v}.

First Example

- $\phi(G, x)=(x-1)(x+1)\left(x^{4}-8 x^{2}-8 x+1\right)$.

First Example

- $\phi(G, x)=(x-1)(x+1)\left(x^{4}-8 x^{2}-8 x+1\right)$.
- Since the largest root of $\phi(G, x)$ is a root of $x^{4}-8 x^{2}-8 x+1$, every pseudo walk matrix associated with G must have rank 4,5 or 6 .

First Example

- $\phi(G, x)=(x-1)(x+1)\left(x^{4}-8 x^{2}-8 x+1\right)$.
- Since the largest root of $\phi(G, x)$ is a root of $x^{4}-8 x^{2}-8 x+1$, every pseudo walk matrix associated with G must have rank 4,5 or 6 .
- In this case, (\mathbf{A}, \mathbf{v}) is recalcitrant if $\mathbf{W}_{\mathbf{v}}$ has rank $4 ;(\mathbf{A}, \mathbf{v})$ is controllable if $\mathbf{W}_{\mathbf{v}}$ has rank 6 .

Second Example

- $\phi(G, x)=x^{3}(x-2)(x+2)$.

Second Example

- $\phi(G, x)=x^{3}(x-2)(x+2)$.
- Every pseudo walk matrix associated with $K_{1,4}$ has rank 1,2 or 3 .

Second Example

- $\phi(G, x)=x^{3}(x-2)(x+2)$.
- Every pseudo walk matrix associated with $K_{1,4}$ has rank 1,2 or 3 .
- However, $K_{1,4}$ is not regular and its largest eigenvalue is an integer, so rank 1 is not possible.

Second Example

- $\phi(G, x)=x^{3}(x-2)(x+2)$.
- Every pseudo walk matrix associated with $K_{1,4}$ has rank 1,2 or 3 .
- However, $K_{1,4}$ is not regular and its largest eigenvalue is an integer, so rank 1 is not possible.
- Thus, for any $\mathbf{v},(\mathbf{A}, \mathbf{v})$ is neither controllable nor recalcitrant.

Open Problems

- Is there a graph G with a factorizable characteristic polynomial over \mathbb{Q} where, for all walk vectors $\mathbf{v},(\mathbf{A}, \mathbf{v})$ is controllable?

Open Problems

- Is there a graph G with a factorizable characteristic polynomial over \mathbb{Q} where, for all walk vectors $\mathbf{v},(\mathbf{A}, \mathbf{v})$ is controllable?
- Let S_{1} and S_{2} be disjoint subsets of \mathcal{V}^{2} with walk vectors \mathbf{v}_{1} and \mathbf{v}_{2}. Let \mathbf{v} be a walk vector for $S_{1} \cup S_{2}$. Can we say something about the rank of $\mathbf{W}_{\mathbf{v}}$ from the ranks of $\mathbf{W}_{\mathbf{v}_{1}}$ and $\mathbf{W}_{\mathbf{v}_{2}}$?

Open Problems

- Is there a graph G with a factorizable characteristic polynomial over \mathbb{Q} where, for all walk vectors $\mathbf{v},(\mathbf{A}, \mathbf{v})$ is controllable?
- Let S_{1} and S_{2} be disjoint subsets of \mathcal{V}^{2} with walk vectors \mathbf{v}_{1} and \mathbf{v}_{2}. Let \mathbf{v} be a walk vector for $S_{1} \cup S_{2}$. Can we say something about the rank of $\mathbf{W}_{\mathbf{v}}$ from the ranks of $\mathbf{W}_{\mathbf{v}_{1}}$ and $\mathbf{W}_{\mathbf{v}_{2}}$?
- Is it true that almost all graphs have an irreducible characteristic polynomial?

References

- D. Cvetković, P. Rowlinson, Z. Stanić and M. G. Yoon, Controllable Graphs. Bulletin Classe des Sciences Mathématiques et Naturelles, 143(36) (2011), 81-88.
- A. Farrugia, On Pseudo Walk Matrices. Discrete Mathematics Letters, 1 (2019), 8-15.
- A. Farrugia, The Rank of Pseudo Walk Matrices: Controllable and Recalcitrant Pairs. Open Journal of Discrete Applied Mathematics, 3(3) (2020), 41-52.
- C. Godsil, Controllable Subsets in Graphs. Annals of Combinatorics, 16 (2012), 733-744.
- S. O'Rourke and B. Touri, On a Conjecture of Godsil Concerning Controllable Random Graphs. SIAM Journal on Control and Optimization, 54(6) (2016), 3347-3378.

Thank you

