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Preliminaries

Let G be a simple graph on n = |V(G)| vertices and A be its 0–1
adjacency matrix.

V2 = V(G)× V(G). S is any subset of V2.

Example: S = {(1, 1), (1, 2), (2, 3), (4, 6)}.
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Walks of Graphs

It is well–known that [[Ak]]ij is the number of walks of length k in
G starting from i and ending at j.

Let S ⊆ V2 and let k be a nonnegative integer. For all (i, j) ∈ S,
find the number of walks of length k in G starting from i and
ending at j, then sum them up.

Denote this sum by Nk(S). In other words,

Nk(S) =
∑

(i,j)∈S

[[Ak]]ij .
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Walk Matrices

A walk matrix Wb is of the form
(
b Ab A2b · · · An−1b

)
,

where b is a 0–1 vector (usually the all-ones vector j).

[[Wb]]jk = Nk−1({j} ×B) for all j, k, where B = {i | [[b]]i = 1}.

[[WT
bWb]]jk = Nj+k−2(B ×B).

Question: Given S ⊆ V2, is there a walk vector v such that
[[WT

vWv]]jk = Nj+k−2(S) for all j, k?

Answer: Yes! (In fact, usually more than one.)
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Walk Vectors exist for any S

Theorem

Given any S ⊆ V2, a walk vector for S is

v = X


±
√∑

(u,v)∈S [[X]]u1[[X]]v1

±
√∑

(u,v)∈S [[X]]u2[[X]]v2

...

±
√∑

(u,v)∈S [[X]]un[[X]]vn

.

where X is an orthogonal matrix that diagonalizes A.

5 / 21



Introduction
The Rank of Pseudo Walk Matrices
Controllable and Recalcitrant Pairs

Open Problems

Walks
Walk Matrices
Pseudo Walk Matrices

Pseudo Walk Matrices

Definition

A pseudo walk matrix of G associated with S ⊆ V2 is a matrix

Wv =
(
v Av A2v · · · An−1v

)
where the skew diagonals of WT

vWv contain the numbers
N0(S), N1(S), . . . , N2n−2(S) (from left to right). If the walk
vector v is a 0–1 vector, then Wv may be simply called a walk
matrix.

For some S, the entries of Wv may not be walk enumerations.
Hence the word pseudo (fake).
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Example

For S = {(1, 2)}, v may be chosen to be



−0.021− 0.126i
0.178− 0.029i
−0.021− 0.126i
0.379− 0.289i
0.204 + 0.268i
0.204 + 0.268i

 .

Wv =
(
v Av A2v A3v A4v A5v

)
with this v.
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Example Continued

WT
vWv =



0 1 1 7 16 63
1 1 7 16 63 183
1 7 16 63 183 625
7 16 63 183 625 1952
16 63 183 625 1952 6401
63 183 625 1952 6401 20433

.

It has rank 4.
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The Rank of Pseudo Walk Matrices

Theorem

The rank of a pseudo walk matrix Wv (and of WT
vWv) is the

number of eigenvalues of G having an eigenvector not orthogonal
to the walk vector v.

Corollary

For all walk vectors v, the number of distinct eigenvalues of G is
an upper bound for the rank of Wv.

This upper bound is reached by the closed pseudo walk matrix.

9 / 21



Introduction
The Rank of Pseudo Walk Matrices
Controllable and Recalcitrant Pairs

Open Problems

The Rank in terms of Eigenvectors
Closed Pseudo Walk Matrices
Another Restriction on the Rank

The Rank of Pseudo Walk Matrices

Theorem

The rank of a pseudo walk matrix Wv (and of WT
vWv) is the

number of eigenvalues of G having an eigenvector not orthogonal
to the walk vector v.

Corollary

For all walk vectors v, the number of distinct eigenvalues of G is
an upper bound for the rank of Wv.

This upper bound is reached by the closed pseudo walk matrix.

9 / 21



Introduction
The Rank of Pseudo Walk Matrices
Controllable and Recalcitrant Pairs

Open Problems

The Rank in terms of Eigenvectors
Closed Pseudo Walk Matrices
Another Restriction on the Rank

The Rank of Pseudo Walk Matrices

Theorem

The rank of a pseudo walk matrix Wv (and of WT
vWv) is the

number of eigenvalues of G having an eigenvector not orthogonal
to the walk vector v.

Corollary

For all walk vectors v, the number of distinct eigenvalues of G is
an upper bound for the rank of Wv.

This upper bound is reached by the closed pseudo walk matrix.

9 / 21



Introduction
The Rank of Pseudo Walk Matrices
Controllable and Recalcitrant Pairs

Open Problems

The Rank in terms of Eigenvectors
Closed Pseudo Walk Matrices
Another Restriction on the Rank

Closed Pseudo Walk Matrices

A closed pseudo walk matrix is a pseudo walk matrix Wv with a
walk vector v associated with S = {(1, 1), (2, 2), . . . , (n, n)}.

Theorem

If v = Xk where k is any vector whose entries are all ±1, then
Wv is a closed pseudo walk matrix.

Theorem

The rank of any closed pseudo walk matrix is the number of
distinct eigenvalues of G.
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Example

S = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}.

v may be chosen to be the sum of all the orthonormal eigenvectors

of G, that is,
(
−0.452 0.122 −0.452 0.355 0.313 2.313

)T
.

Wv and WT
vWv have rank 6.
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Example Continued

WT
vWv =



6 0 18 24 126 320
0 18 24 126 320 1170
18 24 126 320 1170 3528
24 126 320 1170 3528 11782
126 320 1170 3528 11782 37248
320 1170 3528 11782 37248 121298

 .
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Another Restriction on the Rank

Factorize the characteristic polynomial of G over Q to obtain
φ(G, x) = (p1(x))

q1(p2(x))
q2 · · · (pt(x))qt .

The minimal polynomial of G is m(G, x) = p1(x) p2(x) · · · pt(x).
Let λ1 be a root of p1(x) and dj be the degree of pj(x) for all
j ∈ {1, 2, . . . , t}.

Theorem

The rank of any pseudo walk matrix associated with S ⊆ V2 of a
graph G is d1 + c2d2 + · · ·+ ctdt, where cj ∈ {0, 1} for all
j ∈ {2, . . . , t}. (The cj ’s may be different for different pseudo walk
matrices.)
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Controllable and Recalcitrant Pairs

Corollary

If r is the rank of a pseudo walk matrix associated with some set S
of a graph G, then d1 ≤ r ≤ d1 + · · ·+ dt.

The pair (A,v) is controllable if the rank of Wv is n.

The pair (A,v) is recalcitrant if the rank of Wv is d1 and d1 6= n.

Corollary

If φ(G, x) is irreducible over Q, then (A,v) is a controllable pair
for all walk vectors v.
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Graphs with an Irreducible Characteristic Polynomial

A graph is controllable if (A, j) is controllable. Roughly 6
7 of the

controllable graphs on up to ten vertices have an irreducible
characteristic polynomial.

It is known that lim
n→∞

C(n)

G(n)
= 1.

Conjecture: lim
n→∞

I(n)

G(n)
= 1.
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Results on Controllable and Recalcitrant Pairs

Let b1 and b2 be indicator vectors of two subsets V1 and V2 of
V(G). Moreover, let v be a walk vector for V1 × V2.

Theorem

If (A,b1) and (A,b2) are controllable pairs, then the pair (A,v)
is also controllable.

Theorem

If (A,b1) or (A,b2) is a recalcitrant pair, then the pair (A,v)
is also recalcitrant.
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Results on Regular Graphs

Theorem

If a graph G is not regular, then none of its pseudo walk matrices
has rank one.

Theorem

If G is a regular graph, then the pair (A,v) is recalcitrant for any
walk vector v associated with the set V × V(G) for all V ⊆ V(G).
Moreover, the pseudo walk matrices of all such walk vectors have
rank one.

Corollary

If a non-regular graph has its largest eigenvalue equal to an integer,
then (A,v) is not recalcitrant for any pseudo walk vector v.
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First Example

φ(G, x) = (x− 1)(x+ 1)(x4 − 8x2 − 8x+ 1).

Since the largest root of φ(G, x) is a root of x4 − 8x2 − 8x+ 1,
every pseudo walk matrix associated with G must have rank 4, 5
or 6.

In this case, (A,v) is recalcitrant if Wv has rank 4; (A,v) is
controllable if Wv has rank 6.
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Second Example

φ(G, x) = x3(x− 2)(x+ 2).

Every pseudo walk matrix associated with K1,4 has rank 1, 2 or 3.

However, K1,4 is not regular and its largest eigenvalue is an
integer, so rank 1 is not possible.

Thus, for any v, (A,v) is neither controllable nor recalcitrant.
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Open Problems

Is there a graph G with a factorizable characteristic polynomial
over Q where, for all walk vectors v, (A,v) is controllable?

Let S1 and S2 be disjoint subsets of V2 with walk vectors v1 and
v2. Let v be a walk vector for S1 ∪ S2. Can we say something
about the rank of Wv from the ranks of Wv1 and Wv2?

Is it true that almost all graphs have an irreducible characteristic
polynomial?
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