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Wigner’s unitary–antiunitary theorem

Theorem (Wigner)

Let (H, (·, ·)) and (K , (·, ·)) be real or complex inner product
spaces. A mapping f : H → K satisfies

|(f (x), f (y))| = |(x , y)|, x , y ∈ H,

if and only if there is a linear or an anti-linear isometry U : H → K
such that

f (x) = σ(x)Ux , x ∈ H,

where a so-called phase function σ takes values in modulus one
scalars; in other words f is phase equivalent to a linear or an
anti-linear isometry.
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Semi-inner product

On each normed space X over F ∈ {R,C} there exists at least one
semi-inner product on X which is a function [ ·, · ] : X × X → F
with the following properties:

1 [x + y , z ] = [x , z ] + [y , z ], [λx , y ] = λ[x , y ], [x , λy ] = λ[x , y ]
for all λ ∈ F and x , y ∈ X ,

2 [x , x ] = ‖x‖2 for all x ∈ X ,

3 |[x , y ]| ≤ ‖x‖‖y‖ for all x , y ∈ X .

However, in general, [x , y ] is not equal to [y , x ] and [x , y + z ] is
not equal to [x , y ] + [x , z ].
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A generalized Wigner equation

Let X ,Y be normed spaces and f : X → Y a mapping such that

|[f (x), f (y)]| = |[x , y ]|, x , y ∈ X .

Is it true that f satisfies the above equation if and only if it is
phase equivalent to either a linear or an anti-linear isometry?

Example

Let X = Y = R2 with ‖(x1, x2)‖ = max{|x1|, |x2|}, and let the
semi-inner product for x = (x1, x2) and y = (y1, y2) be defined by

[x , y ] =


x1y1 if |y1| > |y2|
x2y2 if |y1| < |y2|
3
4x1y1 + 1

4x2y2 if |y1| = |y2|.

Define a surjective linear isometry f : X → Y by f (x , y) = (y , x).
For x = (1, 0), y = (1, 1) we have [x , y ] = 3

4 and [f (x), f (y)] = 1
4 .
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Smooth normed spaces

Recall that X is said to have a Gateaux differentiable norm at
x 6= 0 whenever

lim
t→0, t∈R

‖x + ty‖ − ‖x‖
t

exists for all y ∈ X .

Recall also that a support functional φx at x ∈ X is a norm-one
linear functional in X ∗ such that φx(x) = ‖x‖.
A normed space X is said to be smooth at a nonzero x ∈ X if
there exists a unique support functional at x , and it is said to be
smooth if it is smooth at each of its points.

It is well known that a Banach space X is smooth at x if and only if
the norm is Gateaux differentiable at x . Moreover, in this case, the
real part Reφx of a unique support functional φx at x is given by

Reφx(y) = lim
t→0, t∈R

‖x + ty‖ − ‖x‖
t

.

If X is smooth, then [x , y ] := ‖y‖φy (x), where φy is the support

functional at y , is the unique semi-inner product on X .
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Isometries satisfy the generalized Wigner equation

Suppose that X and Y are smooth normed spaces. If U is a linear
or an anti-linear isometry, then ‖Uy + tUx‖ = ‖y + tx‖, t ∈ R,
hence

ReφUy (Ux) = Reφy (x).

From this we conclude that φUy ◦ U = φy if U is linear or
φUy ◦ U = φy if U is anti-linear. In both cases we get
|[Ux ,Uy ]| = |[x , y ]| for all x , y ∈ X . Then

|[f (x), f (y)]| = |[σ(x)Ux , σ(y)Uy ]| = |[Ux ,Uy ]| = |[x , y ]|.

Note that

|[f (x), f (y)]| = |[x , y ]|, x , y ∈ X

is equivalent to

|φf (y)(f (x))| = |φy (x)|, x , y ∈ X .
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Wigner’s theorem in smooth normed spaces

Theorem

Let X and Y be smooth normed spaces over F ∈ {R,C} and
suppose that f : X → Y is a surjective mapping satisfying

|[f (x), f (y)]| = |[x , y ]|, x , y ∈ X .

Then the following holds.

(i) If dimX ≥ 2 and F = R, then f is phase equivalent to a linear
surjective isometry.

(ii) If dimX ≥ 2 and F = C, then f is phase equivalent to a linear
or an anti-linear surjective isometry.
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Can we omit the surjectivity?

Example

Let X = R with the usual norm. Then X is smooth and the unique
semi-inner product is given by [x , y ] = xy , x , y ∈ R.
Let Y = R2 with the max norm and let f : X → Y be given by

f (x) = (x , sin x), x ∈ R.

Since f (y) is smooth for all y ∈ X , the support functional at f (y)
is φf (y)(z) = y

|y |z1, z = (z1, z2) ∈ Y .
Hence for any semi-inner product on Y we have

[f (x), f (y)] = ‖f (y)‖φf (y)(f (x)) = |y | y
|y |

x = xy , x , y ∈ X .

Therefore, [f (x), f (y)] = [x , y ], x , y ∈ X , but f is not phase
equivalent to any linear isometry.
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It is not enough to consider just one s.i.p. at non smooth points

Example

Let X = Y = R2 with the max norm, that is,
‖(x1, x2)‖ = max{|x1|, |x2|}, and let the semi-inner product for
x = (x1, x2) and y = (y1, y2) be defined by

[x , y ] =

{
x1y1 if |y1| ≥ |y2|
x2y2 if |y1| < |y2|.

Define f : X → Y by f ((λ, λ)) = (λ,−λ), f ((λ,−λ)) = (λ, λ) and
f (x) = x for all other directions.
Then f is surjective and |[f (x), f (y)]| = |[x , y ]|, x , y ∈ X .
However, f is not phase equivalent to any linear isometry from X
to Y .
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Another variant of Wigner’s theorem in normed spaces

Theorem

Let X and Y be normed spaces over F ∈ {R,C} and f : X → Y a
surjective mapping. Suppose that for all semi-inner products on X
and Y we have

|[f (x), f (y)]| = |[x , y ]|, x , y ∈ X .

Then the following holds.

(i) If dimX = 1, then f is phase equivalent to a linear surjective
isometry.

(ii) If dimX ≥ 2 and F = R, then f is phase equivalent to a linear
surjective isometry.

(iii) If dimX ≥ 2 and F = C, then f is phase equivalent to a linear
or an anti-linear surjective isometry.
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Key ingredients of the proofs

To prove that for all α, β ∈ F and x , y ∈ X there exist ω1, ω2 ∈ T
= {t ∈ F : |t| = 1} such that f (αx + βy) = ω1αf (x) + ω2βf (y).

Birkhoff–James orthogonality: x ⊥ y
def⇔ ‖x + λy‖ ≥ ‖x‖ ∀λ ∈ F.

Theorem (Fundamental theorem of projective geometry)

Let X and Y be vector spaces over F of dimensions at least three.
Let g : {〈x〉 : x ∈ X} → {〈y〉 : y ∈ Y } be a mapping such that

(i) The image of g is not contained in a two-dimensional
subspace of Y .

(ii) 0 6= c ∈ 〈a, b〉, a 6= 0 6= b, implies g(〈c〉) ∈ 〈g(〈a〉), g(〈b〉)〉.
Then there exists an injective semilinear mapping A : X → Y (that
is, A is additive and A(λx) = h(λ)Ax for all x , y ∈ X and λ ∈ F,
where h : F→ F is a homomorphism) such that

g(〈x〉) = 〈Ax〉, 0 6= x ∈ X .

Moreover, A is unique up to a non-zero scalar factor.
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Another generalization of Wigner’s theorem

Let X and Y be real normed spaces. If f : X → Y is phase
equivalent to a linear isometry, then f satisfies

{‖f (x) + f (y)‖, ‖f (x)− f (y)‖} = {‖x + y‖, ‖x − y‖}, x , y ∈ H.

Example

f : R→ R2 (with max norm), f (x) = (x , sin x) satisfies

{‖f (x) + f (y)‖, ‖f (x)− f (y)‖} = {‖x + y‖, ‖x − y‖}, x , y ∈ R.

but it is not phase equivalent to any linear isometry.
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A generalization of Wigner’s theorem to real smooth normed spaces

Recall that a normed space X is said to be strictly convex
whenever the unit sphere SX does not contain non-trivial line
segments, that is, each point of SX is an extreme point of the unit
ball BX .
In a strictly convex normed space the midpoint z = x+y

2 of the

segment [x , y ] is characterized by ‖z − x‖ = ‖z − y‖ = ‖x−y‖
2 .

Proposition

Let X , Y be real smooth normed spaces, Y strictly convex,
f : X → Y surjective. The following assertions are equivalent:

(i) |[f (x), f (y)]| = |[x , y ]|, x , y ∈ X ;

(ii) f is phase equivalent to a surjective linear isometry;

(iii) {‖f (x) + f (y)‖, ‖f (x)− f (y)‖} = {‖x + y‖, ‖x − y‖},
x , y ∈ X .
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A generalization of Wigner’s theorem to real normed spaces

Theorem

Let X and Y be real normed spaces. Then a surjective mapping
f : X → Y satisfies

{‖f (x) + f (y)‖, ‖f (x)− f (y)‖} = {‖x + y‖, ‖x − y‖}, x , y ∈ X ,

if and only if f is phase equivalent to a surjective linear isometry.

Our approach to the problem is motivated by the proof of the
Mazur–Ulam theorem on isometries between real normed spaces.

We show that the midpoint of the segment [x , y ] is mapped to one
of the midpoints of the segments [±f (x),±f (y)].
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