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Wigner’s unitary—antiunitary theorem

Theorem (Wigner)

Let (H,(-,-)) and (K, (:,-)) be real or complex inner product
spaces. A mapping f: H — K satisfies

[(FOD F = 1) Xy € H,

if and only if there is a linear or an anti-linear isometry U: H — K
such that
f(x) =o0(x)Ux, xe€H,

where a so-called phase function o takes values in modulus one
scalars; in other words f is phase equivalent to a linear or an
anti-linear isometry.
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Semi-inner product

On each normed space X over F € {R,C} there exists at least one
semi-inner product on X which is a function [-,-]: X x X = F
with the following properties:

O [x+y,2] =[xzl +[y.2], [Ax,y] = Alx, ¥l [x, Av] = Alx, y]
forall A€ F and x,y € X,

Q [x,x] = ||x||? for all x € X,
Q |l yll < [Ix[lllyll for all x,y € X.

However, in general, [x, y] is not equal to [y, x] and [x,y + z] is
not equal to [x,y] + [x, z].
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A generalized Wigner equation

Let X, Y be normed spaces and f: X — Y a mapping such that

FC) FW = byl Xy e X

Is it true that f satisfies the above equation if and only if it is
phase equivalent to either a linear or an anti-linear isometry?

Example

Let X = Y = R? with ||(x1,x2)|| = max{|x1|,|x2|}, and let the
semi-inner product for x = (x1,x2) and y = (y1, y2) be defined by

X1y1 if  [y1] > |y
[x,¥] = 4 x> if  [y1] < |y
Sayi+ sy i |yl =yl

Define a surjective linear isometry f: X — Y by f(x,y) = (y, x).
For x = (1,0), y = (1,1) we have [x,y] = 3 and [f(x), f(y)] = 3.
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Smooth normed spaces

Recall that X is said to have a Gateaux differentiable norm at
x # 0 whenever
t —_
N P R

exists for all y € X.
t—0, teR t

Recall also that a support functional ¢ at x € X is a norm-one
linear functional in X* such that ¢,(x) = ||x]|.

A normed space X is said to be smooth at a nonzero x € X if
there exists a unique support functional at x, and it is said to be
smooth if it is smooth at each of its points.

It is well known that a Banach space X is smooth at x if and only if
the norm is Gateaux differentiable at x. Moreover, in this case, the
real part Re ¢, of a unique support functional ¢, at x is given by

x4yl =l
R —gim X=X
equ(y) ta(l)th]E]R t
If X is smooth, then [x, y] := |ly||¢y(x), where ¢, is the support
functional at y, is the unique semi-inner product on X.
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Isometries satisfy the generalized Wigner equation

Suppose that X and Y are smooth normed spaces. If U is a linear

or an anti-linear isometry, then |Uy + tUx|| = |ly + tx]||, t € R,
hence

Re ¢yy (Ux) = Re ¢y (x).

From this we conclude that ¢y, o U = ¢, if U is linear or
duy o U = ¢, if U is anti-linear. In both cases we get
[[Ux, Uy]| = |[x, y]| for all x,y € X. Then

[FC), FWI = [[o(x) Ux, o (y) Uyl| = [[Ux, Uy]| = [[x, y]I.
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Isometries satisfy the generalized Wigner equation

Suppose that X and Y are smooth normed spaces. If U is a linear
or an anti-linear isometry, then |Uy + tUx|| = |ly + tx]||, t € R,
hence

Re ¢yy (Ux) = Re ¢y (x).

From this we conclude that ¢y, o U = ¢, if U is linear or
duy o U = ¢, if U is anti-linear. In both cases we get
[[Ux, Uy]| = |[x, y]| for all x,y € X. Then

[FC), FWI = [[o(x) Ux, o (y) Uyl| = [[Ux, Uy]| = [[x, y]I.

Note that

[FG), FDI = 1oyl xy € X

is equivalent to

D) (FON] = loy (X)],  x,y € X.
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Wigner’s theorem in smooth normed spaces

Theorem

Let X and Y be smooth normed spaces over F € {R,C} and
suppose that f: X — Y is a surjective mapping satisfying

FC) FWII = 1D x1l Xy € X

Then the following holds.

(i) IfdimX > 2 and F =R, then f is phase equivalent to a linear
surjective isometry.

(ii) IfdimX > 2 and F = C, then f is phase equivalent to a linear
or an anti-linear surjective isometry.
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Can we omit the surjectivity?

Example

Let X = R with the usual norm. Then X is smooth and the unique
semi-inner product is given by [x,y] = xy, x,y € R.
Let Y = R? with the max norm and let f: X — Y be given by

f(x) = (x,sin x), x € R.

Since f(y) is smooth for all y € X, the support functional at f(y)
is ¢r(y)(2) = ﬁzl, z=(z1,n) €Y.
Hence for any semi-inner product on Y we have

[£(x); F)] = IF W)l Dy (F(x)) = Iy\ﬁx =xy, xyeX

Therefore, [f(x), f(y)] = [x,y], x,y € X, but f is not phase
equivalent to any linear isometry.
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It is not enough to consider just one s.i.p. at non smooth points

Example
Let X = Y = R? with the max norm, that is,

|(x1, x2)|| = max{|x1|, |x2|}, and let the semi-inner product for
x = (x1,x2) and y = (y1, y2) be defined by

xiyr if |y > [y
[x,y] = .
xaya if|y1| < yal.

Define f: X — Y by f((A\,A)) = (A, =), F((A,—A)) = (A, A) and
f(x) = x for all other directions.

Then f is surjective and |[f(x), f(¥)]| = |[x, ¥]|, x,y € X.
However, f is not phase equivalent to any linear isometry from X
to Y.
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Another variant of Wigner’'s theorem in normed spaces

Theorem

Let X and Y be normed spaces over F € {R,C} and f: X — Y a
surjective mapping. Suppose that for all semi-inner products on X
and Y we have

[[FC), FDN = 1Byl xy e X

Then the following holds.

(i) Ifdim X =1, then f is phase equivalent to a linear surjective
isometry.

(i) IfdimX >2 and F = R, then f is phase equivalent to a linear
surjective isometry.

(iii) IfdimX > 2 and F = C, then f is phase equivalent to a linear
or an anti-linear surjective isometry.
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Key ingredients of the proofs

To prove that for all «, 8 € F and x,y € X there exist wi,wy € T
={t €F : |t| = 1} such that f(ax + By) = wiaf(x) + w2 Bf(y).
Birkhoff~James orthogonality: x L y =4 |x + Ayl > |Ix]| VA € F.

Theorem (Fundamental theorem of projective geometry)

Let X and Y be vector spaces over F of dimensions at least three.

Let g: {(x) : x € X} = {(y) : y € Y} be a mapping such that

(i) The image of g is not contained in a two-dimensional
subspace of Y.

(ii) 0# c €(a,b),a# 0# b, implies g({c)) € (g({a)),g({b)))-
Then there exists an injective semilinear mapping A: X — Y (that
is, A is additive and A(Ax) = h(\)Ax for all x,y € X and A € F,
where h: F — F is a homomorphism) such that

g((x)) = (Ax), 0#x¢€X.

Moreover, A is unique up to a non-zero scalar factor.
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Another generalization of Wigner’s theorem

Let X and Y be real normed spaces. If f: X — Y is phase
equivalent to a linear isometry, then f satisfies

{FC) +FWILIFC) = FDIIT = ix +yl Ix =y} X,y € H.

f: R — R? (with max norm), f(x) = (x, sin x) satisfies

{FC) +FWIILIFC) = FWIY = Llix +yll lx =y}, xy eR.

but it is not phase equivalent to any linear isometry.
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A generalization of Wigner's theorem to real smooth normed spaces

Recall that a normed space X is said to be strictly convex
whenever the unit sphere Sx does not contain non-trivial line
segments, that is, each point of Sx is an extreme point of the unit

ball Bx.
In a strictly convex normed space the midpoint z = X+y of the
segment [x, y] is characterized by ||z — x|| = ||z — y|| = k521 y”

Proposition

Let X, Y be real smooth normed spaces, Y strictly convex,
f: X — Y surjective. The following assertions are equivalent:

(i) [[F(x),

(ii) f is phase equivalent to a surjective linear isometry;

(i) {IFC) + FWIL IO = £ = {lIx + 1, lIx =

x,y € X.

X,y €X;

Dijana lligevi¢ Wigner's theorem in normed spaces



A generalization of Wigner’s theorem to real normed spaces

Theorem

Let X and Y be real normed spaces. Then a surjective mapping
f: X — Y satisfies

L) + FWIL ) = FDIIY = {lIx +yll lx =y}, xy € X,

if and only if f is phase equivalent to a surjective linear isometry.

<

Our approach to the problem is motivated by the proof of the
Mazur—Ulam theorem on isometries between real normed spaces.

We show that the midpoint of the segment [x, y| is mapped to one
of the midpoints of the segments [+7(x), =1 (y)].
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