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Introduction

Spatio-temporal model for temperature dynamics

Model Fitting

Pricing of temperature index insurance

Conclusion



Introduction: Weather Risk and Weather Derivatives

I Weather risk plays a major role in weather-dependent industry such
as agriculture, tourism and energy.

I Hedging such risk using the weather derivatives showing a success
story since 1997 when the Chicago Mercantile Exchange (CME)
began trading weather derivatives on the exchange.

I Weather contracts are settled agains an objectively measurable
index heating-degree-days (HDD), cooling-degree-days (CDD) or
cumulative average temperature (CAT),

HDD(τ1, τ2) =

τ2∑
t=τ1

max (c − T (t) , 0) ,

CDD(τ1, τ2) =

τ2∑
t=τ1

max (T (t)− c, 0) ,

CAT(τ1, τ2) =

τ2∑
t=τ1

T (t) .



Introduction: From weather derivatives to weather index
insurance

I In many developing countries, the weather contracts are not
available which makes hedging using weather derivatives is not
possible. Weather index insurance has gradually become an
interesting hedging tool and designed for households in developing
countries.

I Premium of the insurance contract for CDD-type is given as (Taib
and Benth [11])

P(t) = e−r(τ1−t)EQ [X (τ1, τ2) | Ft ] , (1)

where X (τ1, τ2) = k × CDD(τ1, τ2).

I The insurance contract is solely depends on the index observed at
certain weather station. However, the farmers usually live in the
suburban which is far from the place where the index is measured.
The spatial dependency structure of temperature is important to
assess the correlation risk since the local weather variations are not
fully covered by the stations where contracts are traded.



Introduction

Figure: Map of peninsular Malaysia with five weather stations.

I The most problematic issue in designing temperature insurance
contract is the prediction of temperature at any location far from
the weather station. One of the methods to estimate weather at
certain location is by using kriging.



Continuous model (Barth et al. [3])

I Denote C (A) as space of real-valued continuous functions on some
Borel subset A ⊂ Rd and L2(A) is the space of square-integrable
functions on A with respect to the Lebesgue measure. In addition,
the space of continuous function on R+ ×A is denoted by
C 1,0(R+ ×A), which are continuously differentiable in the first
variable. Suppose D is a compact domain in R2 with piecewise
smooth boundary ∂D, equipped with Euclidean metric and
C (R+ ×D) be the space of continuous function on R+ ×D.

I Let (Ω,F , {Ft}t≥0,P) be a complete filtered probability space
which satisfies the usual conditions. For t ∈ R+ and x ∈ D, the
spatial-temporal model for temperature T (t, x) is given as

dT (t, x) =

(
∂

∂t
Λ(t, x)− α(t, x)(T (t, x)− Λ(t, x))

)
dt

+ σ(t, x)dW (t, x) ,

(2)

where α ∈ C (R+ ×D) and σ ∈ C (R+ ×D) are the space-time
speed of mean reversion and space-time volatility respectively.



Continuous model (Barth et al. [3])

I The Λ ∈ C 1,0(R+ ×D) describes the seasonal mean function of the
temperature in D and W (t, x) is a centered Gaussian random field
with covariance,

Cov (W (t, x),W (s, y)) = min(s, t)q(x , y), s, t ∈ R+, x , y ∈ D.
(3)

I The covariance is modelled by a symmetric and strictly positive
definite function q ∈ C (D ×D). It can also be represented as
integral kernel of an operator Q which acting on L2(D). Following
assumption on D and q, the Q is a symmetric Hilbert-Schmidt
operator on L2(D) with a positive spectrum. We may show Q in
terms of Mercer expansion by

Q =
∞∑
i=1

λiei ⊗ ei ,

where {λi}i∈N and {ei}i∈N are sequences of eigenvalues of Q and
the associated set of eigenfunctions respectively.



Continuous model (Barth et al. [3])

I The eigenfunctions is Qei = λiei for i ∈ N. Hence, the W (t), for
every t ∈ R+ given by

W (t) =
∞∑
i=1

√
λiβi (t)ei ,

where {βi}i∈N is known as independent sequence of standard
one-dimensional Brownian motion,

β(t) =
1√
λi

(W (t), ei )L2(D) , i ∈ N.

I The explicit solution of T (τ, x) given T (t, x) for τ ≥ t is

T (τ, x) =Λ(t, x) + (T (t, x)− Λ(t, x))e−α(t,x)(τ−t)

+

∫ τ

t

σ(s, x)e−α(t,x)(τ−t)dW (s, x).
(4)



Continuous model (Barth et al. [3])

I For a single location, the spatio-temporal model in Eq. (2) with
constant mean reversion rate turn to

dT (t) =
∂

∂t
Λ(t)− α (T (t)− Λ(t)) dt + σ(t)dW (t) (5)

and its corresponding solution is

T (τ) =Λ(t) + (T (t)− Λ(t)) e−α(τ−t)

+

∫ τ

t

σ(s)e−α(τ−s)dW (s).
(6)



Discrete model (Šaltytė-Benth et al. [10])

I The model contains two main components namely the seasonal
mean µ(t, x) which explains the trend and residual ε(t, x) modelling
the random fluctuations around the trend in both space and time
respectively. In a simple form, the spatial-temporal model can be
written as

T (t, x) = µ(t, x) + ε (t, x) . (7)

where

µ(t, x) = Λ (t, x) + α (x) (T (t − 1, x)− Λ (t − 1, x)) .

I The seasonal mean function at any given time t ∈ [0,∞) and
location x ∈ D is determined by a deterministic seasonal function
Λ(t, x) of space and time and deseasonalized temperatures weighted
by non-random mean reversion parameter α(x).



Discrete model (Šaltytė-Benth et al. [10])

I The residual component ε (t, x) is simply a factorization of
non-random seasonal function σ(t, x) and stationary Gaussian
spatial-temporal random field with zero mean B(t, x),

ε(t, x) = σ(t, x)B(t, x).

I For any time t ∈ [0,∞) and x ∈ D ⊂ R2, we assume that σ(t, x)
satisfies the following condition

σ(t, x) = σ(t + 365, x).

I For all x , y ∈ D, B(t, ·) is assumed to be independent in time with
spatial correlation function

corr{B(t, x),B(t, y)} = q(x , y).

Here, the random field ε(t, x) are uncorrelated in time but
correlated in space.



Discrete model (Šaltytė-Benth et al. [10])

I Given Σx(θ) as diagonal variance matrix at the location x ∈ D, then
the covariance function of ε(t, x) can be expressed as

Cov(B(t, x),B(t, y); θ) = q(x , y)Σx(θt)Σy (θt). (8)

The notation θ = (θx ; θt)
T ∈ Θ refers to the k × 1 parameter

vector, where Θ is an open subset of Rk and T is transposing.

I We now discuss temporal model for certain temperature field at a
single location (for example the weather station where temperatures
data are recorded). The temperature at single location i = 1, ..., n
can be expressed as

Ti (t) = µi (t) + εi (t), (9)

where µi (t) and εi (t) are the mean and residual process at time
t = 1, ..., τ for spatial location si ∈ D respectively.



Discrete model (Šaltytė-Benth et al. [10])

I The mean is represented as

µi (t) = Λi (t) + αi (Ti (t − 1)− Λi (t − 1)) , (10)

and the seasonal function is expressed as

Λi (t) = ai0 + ai1t + ai2 sin

(
2π(t − ai3)

365

)
, (11)

with constant ai0 and ai1 are describing the average level of
temperature and slope of linear trend respectively. The other two
parameters ai2 and ai3 represent amplitude of the mean and phase
angle respectively.



Discrete model (Šaltytė-Benth et al. [10])

I Finally, the residual process ε(t) is given as

εi (t) = σi (t)Bi (t) (12)

where σi (t) is a seasonal dependent standard deviation function and
Bi (t) is a zero-mean independent Gaussian random process.

I The seasonal variance function

σ2
i (t) = c i0 +

4∑
k=1

[
c ik cos

(
2kπt

365

)
+ c ik+1 sin

(
2kπt

365

)]
(13)

is used to explain the empirical seasonal variance observed in the
data.



Model Fitting

I In Table 1, we summarize descriptive statistics of DATs. The
temperatures are not deviate much for all stations with the lowest
temperatures are between 22.80 to 23.20 and the highest
temperatures are in the interval [29.90, 31.70]. A small standard
deviation in all stations indicates the low volatility of temperatures
variation.

Table: Discriptive statistics of DATs

Stations Min Max Q1 Med Q3 Mean Std.
Alor Setar 23.20 31.40 27.00 27.70 28.50 27.70 1.14
Chuping 23.20 31.70 26.70 27.40 28.10 27.41 1.16
Kota Bharu 22.80 30.90 26.60 27.30 28.10 27.32 1.15
Senai 22.90 29.90 25.80 26.50 27.20 26.50 1.04
Subang 23.10 31.50 27.10 27.90 28.70 27.88 1.15



Pricing of temperature index insurance

I For a period of [τ1, τ2], the policyholder at certain location x will
receive indemnity equivalent to

X (τ1, τ2, x) = k ×
τ2∑

u=τ1

max(T (τ, x)− c , 0). (14)

I Price of the temperature index insurance can be represented as

P(t, τ1, τ2, x) = exp(−r(τ2 − t))E[X (τ1, τ2, x) | Ft ] . (15)

I The pricing procedure includes the prediction of temperature at
certain location x , T (t0, x0) using universal Kriging, and simulate
the temperature for certain time t ∈ [τ1, τ2] using (??). By setting
r = 0.05, c = 28 and k = RM50, we proceed with finding the
expected claim size E[X |Ft ] and discount it to obtain the present
value.



Pricing of temperature index insurance
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Figure: Evolution of the insurance price for contract month July 2016.



Conclusion

I The spatio-temporal temperature models able to predict the
temperature at any location and time by using the information
revealed at the closest stations as reference. The prediction enables
us to calculate the premium of the insurance contract based on
temperature index as proposed in weather derivatives.

I The advantage of considering the index based pricing is avoiding
moral hazard problem. However, the index may not represents the
real damage experienced by farmers. There is situation where
farmers get paid without losing and there also farmers who did not
get indemnity eventhough the crop damages.

I For the insurance company, the risk can be hedged using weather
derivatives traded at, for example CME. However, there is no
weather derivatives contract traded in developing countries. They
may in fact use the so called geographical hedging for that reason,
that is using other place which has a correlation to the country of
origin.
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