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Background

Let C be the complex plane and D = {z ∈ C : |z | < 1} be the
open unit disc in C. A function f is analytic at a point z0 ∈ D if it
is differentiable in some neighbourhood of z0 and it is analytic in a
domain D if it is analytic at all points in domain D.

Definition

An analytic function f is called univalent in a domain D if it does
not take the same value twice, so that for z1, z2 ∈ D,

f (z1) 6= f (z2) for z1 6= z2.

Geometrically, this means that different points in the domain will
be mapped into different points on the image domain.
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One of the most basic results in the theory of univalent functions
in one variable is the Riemann mapping theorem. Its failure in
several variables is one of the key differences between complex
analysis in one variable and higher dimensions.

Riemann Mapping Theorem

Every simply connected domain D which is a proper subset of C
can be mapped conformally onto the unit disc. Moreover, if
z0 ∈ D, there is a unique conformal map of D onto D such that
f (z0) = 0 and f ′(z0) > 0.

The theory of univalent functions is so vast and complicated that
certain simplifying assumptions are necessary. The most obvious
one is to replace the arbitrary domain D by one that is convenient
and the most attractive selection is the open unit disc D.
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For example, consider the function f (z) = (1 + z)2 in the open
unit disc D. The univalence of this function in D is easy to see on
geometric grounds. Indeed 1 + z shifts the open unit disc to the
right and the effect of squaring 1 + z is easy to visualize. The same
type of argument shows that w = (1 + z)3 is not univalent in D.
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Let A represent the class of functions f of the form

f (z) = z + a2z
2 + a3z

3 + · · · = z +
∞∑
n=2

anz
n, (1)

which are analytic in the open unit disc D and normalized under
the conditions

f (0) = f ′(0)− 1 = 0.

Moreover, by S we shall represent the class of all functions in A
which are univalent in D.
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The function

k(z) =
z

(1− z)2
=
∞∑
n=1

nzn (z ∈ D)

is an element of S and named Koebe function. It maps D onto the
complex plane except for a slit along the half-line

(
−∞,−1

4

]
and is

univalent. This is the best seen by writing

k(z) =
1

4

(
1 + z

1− z

)2

− 1

4

and observe that the function (1 + z)/(1− z) maps D conformally
onto the right half-plane <(w) > 0.
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Koebe initiated in 1907 [15] the study about univalent functions,
while Bieberbach presented in 1916 would soon become a famous
conjecture. In 1916, Bieberbach [3] conjectured that for f ∈ S,

|an| ≤ n (n ≥ 2).

He proved only for the case when n = 2. For many years this
conjecture has remained as a open problem for the mathematicians
and has inspired the development of several remarkable techniques
in the field. In 1985, Louis de Branges [5] proved the Bieberbach’s
conjecture for all the coefficients n. Although almost 70 years had
passed until the Bieberbach conjecture was finally proved in this
paper, bounds for the Taylor coefficients were obtained in the
meantime for some subclasses of univalent functions. After the
proof of the Bieberbach conjecture, the study of different
subclasses of analytic and univalent functions have began to take
shape, still remaining an interesting subject.
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Next, the well known class of functions with positive real part,
consisting of all functions p analytic in D satisfying p(0) = 1 and
< p(z) > 0, is usually denoted by P and called the Carathéodory
class. Each p ∈ P has a Taylor series expansion

p (z) = 1 + x1z + x2z
2 + x3z

3 + · · · (x1 > 0)

with coefficients satisfying |xn| ≤ 2 for n ∈ N (see [20]). More
refinement coefficients bounds in the Carathéodory class was
obtained by Grenander and Szegö [10].
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For example, the function

p(z) =
1 + z

1− z
(z ∈ D)

belongs to P. This function presents a conformal map of D onto
the right-half plane and consequently it plays a fundamental role in
P, similar to the Koebe function in S. Indeed, p is not required to
be univalent. Thus p (z) = 1 + zn is in P for any integer n ≥ 0,
but if n ≥ 2, this function is not univalent.
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An analytic function f1 is subordinate to an analytic function f2,
written

f1 (z) ≺ f2 (z) , (z ∈ D)

provided there is an analytic function w , defined on D with

w (0) = 0 and |w (z)| < 1, (z ∈ D)

such that
f1 (z) = f2 (w (z)) (z ∈ D) .
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Definition

A set D in the plane is said to be starlike respect to w0 an interior
point of D if each ray with initial point w0 intersects the interior of
D in a set that is either a line segment or a ray. If a function f (z)
maps D onto a domain that is starlike with respect to w0, then we
say that f (z) is starlike with respect to w0. In the special case
w0 = 0, we say that f (z) is starlike functions.
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We indicate this set of functions by S∗. The class S∗ of starlike
functions is a collection of functions f ∈ S for which

<
(
zf ′(z)

f (z)

)
> 0 (z ∈ D) .

Without doubt, since the Koebe function is an element of the class
S∗, it is the most studied subclass of univalent functions. The
image domain of starlike functions has followed in a rich set of
properties for functions in S∗, some of which are true for the wider
class S, while other are open problems.
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Now it is a simple matter to conclude that there is a relation
between the classes S∗ and P.

Theorem

f ∈ S∗ if and only if

zf ′(z)

f (z)
∈ P.

This implication reveals that information about the class of S∗ can
be drawn whenever the properties of functions in the class P are
known. For example, assume that the function

f (z) = z +
∞∑
n=2

anz
n

fulfills <(f ′(z)) > 0. Then f ′(z) = p(z) ∈ P and so an =
xn
n

.

Therefore, if the bound on the coefficients of Carathéodory
functions are known, then estimate on |an| can be found easily.
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The relation of subordination is used to establish many classes of
functions encountered in the Theory of Geometric Functions and
to investigate the properties of these classes. Let us recall

S∗[ψ] :=

{
f ∈ A :

zf ′(z)

f (z)
≺ ψ(z), z ∈ D

}
, (2)

where ψ is an analytic function in D with ψ(0) = 1. For
ψ(z) = 1+z

1−z , one can obtain the well-known class S∗ of starlike.
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Many researchers have defined different classes of functions by
using other functions instead of the ψ function in (2). When the
figure of the unit circle under these functions is calculated, very
interesting results are obtained. In [21], Robertson showed that the

figure of the unit circle is <(w) > γ using ψ(z) = 1+(1−2γ)z
1−z . In

this case, the set (2) becomes the class S∗(γ) of starlike functions
of order γ. Janowski obtained that ψ(D) is a disc in [11]. By
taking ψ(z) = ( 1+z

1−z )β (0 < β ≤ 1), the class of strongly starlike
functions of order β is defined by Stankiewicz in [27] and
demonstrated that the figure of unit circle under this class is an
angle.
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With different choices of ψ, it is obtained that ψ(D) is parabola in
[18], is ellipse and hyperbola in [12, 13].
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If ψ(z) =
√

1 + z is chosen in order that
√

1 = 1, then the figure
of ψ(D) is interior of the right side of the Lemniscate. Obtained
class is considered in [22], [23] by Sokol et al.
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Further, Masih and Kanas [17] introduced and studied the classes

SL[ψ] and KL[ψ]
(
ψ(z) = (1 + χz)2 , 0 < χ ≤ 1/

√
2
)

associated

with the limaçon.
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The classes SN [ψ] and KN [ψ]
(
ψ(z) = 1 + z − z3/3

)
endowed

with a nephroid domain were presented by Wani and Swaminathan
[29].

Remark 1
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In a recent paper, Kanas and Masih [14] introduced the Pascal
snail:

For −1 ≤ α ≤ 1, −1 ≤ β ≤ 1, αβ 6= ±1 and 0 ≤ γ < 1 let Lα,β,γ
denote the complex valued mapping

Lα,β,γf (z) =
(2− 2γ) z

(1− αz) (1− βz)

=
∞∑
n=1

Bnz
n =


(2− 2γ)

∑∞
n=1

(
αn−βn

α−β

)
zn α 6= β

(2− 2γ)
∑∞

n=1 nα
n−1zn α = β

,
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where z ∈ D. We note that Lα,β,γ maps D onto a domain
D (α, β, γ) whose boundary is a given by

∂D (α, β, γ) =

{
w = u + iv :

[2(1−γ)u+(α+β)(u2+v2)]
2

(1+αβ)2

+ 4(1−γ)2v2

(1−αβ)2 −
(
u2 + v2

)2
= 0
}
.
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On the other hand, Yılmaz Özgür and Sokó l [28] studied this topic
from a different viewpoint.

Definition

Let k be any positive real number. The function f ∈ S belongs to
the class SLk if satisfies the condition that

zf ′(z)

f (z)
≺ p̃k(z),

where

p̃k(z) =
1 + τ2

k z
2

1− (τ2
k − 1)z − τ2

k z
2
, τk =

k −
√

4 + k2

2
, z ∈ D.

The image of unit circle of p̃k(z) is the curve Ck with equation

x =
k
√
k2 + 4

2 [k2 + 2− 2 cos θ]
, y =

(
4 cos θ − k2

)
sin θ

2 [k2 + 2− 2 cos θ] (1 + cos θ)
, θ ∈ [0, 2π) \ {π} .
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Motivated by the work of Yılmaz Özgür and Sokó l, we study the
function

j̃k(z) =
1 + δ2

kz
2

1− kδkz − 2δ2
kz

2
, δk =

k −
√

8 + k2

2
, z ∈ D,

where k is any positive real number [1].
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[6] Dziok J, Raina RK, Sokó l J, On α-convex functions related
to shell-like functions connected with Fibonacci numbers,
Applied Mathematics and Computation (2011) 218(3):
996-1002.

[7] Duren PL, Univalent Functions, Grundlehren der
Mathematischen Wissenschaften, Springer, New York, USA,
259, 1983.

[8] El-Ashwah RM, Thomas, DK, Some subclasses of
close-to-convex functions, J. Ramanujan Math. Soc. (1987) 2:
86-100.



References

References III
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