Rigid Manifolds via Product Quotients

Christian Gleißner

Bayreuth

Definition

Let X be a compact complex manifold, then

1) X is said to be (locally) rigid, if for each deformation of X,

$$
f:(\mathfrak{X}, X) \rightarrow\left(\mathcal{B}, b_{0}\right)
$$

there is an open neighbourhood $U \subset \mathcal{B}$ of b_{0} such that $X_{t} \simeq X$ for all $t \in U$.
2) X is said to be infinitesimally rigid if $H^{1}\left(X, \Theta_{X}\right)=0$, where Θ_{X} is the sheaf of holomorphic vector fields on X.

Remark

- 2) \Rightarrow 1) (Kodaira-Spencer-Kuranishi)
- 1) \nRightarrow 2) example by Bauer Pignatelli 2019, further examples by Böhning von Bothmer and Pignatelli 2020
- The only rigid curve is \mathbb{P}^{1}
- Bauer Catanese 2018:
- If X is a rigid surface, then $\kappa(X)=2$ or $\kappa(X)=-\infty$.
- For all $n \geq 3$ and for all $2 \leq \kappa \leq n$ there exists a rigid n-fold $X_{n, \kappa}$ with $\kappa\left(X_{n, \kappa}\right)=\kappa$.
- For all $n \geq 4$ there exists a rigid n-fold X_{n} with $\kappa\left(X_{n}\right)=0$.
- Observation: All known examples of rigid manifolds of general type are $K(\pi, 1)$ i.e. they have contractible universal cover.

The questions:
A) Do rigid manifolds X_{n} of dimension $n \geq 3$ with $\kappa\left(X_{n}\right)=1$ exist?
B) Is the universal cover of a rigid manifold of general type always contractible?

Our results:

Theorem A) (2019 Bauer -)

For all $n \geq 3$ there exists a rigid n-fold X_{n} with $\kappa\left(X_{n}\right)=1$.

Theorem B) (2021 Frapporti -)

For all $n \geq 3$ there exists a rigid n-fold X_{n} of general type with a non-contractible universal cover. (Surface case is still open.)

We consider

- $C:=\left\{x_{0}^{3} x_{1}+x_{1}^{3} x_{2}+x_{2}^{3} x_{0}=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}$ Klein quartic
- $E=\mathbb{C} / \mathbb{Z}\left[\zeta_{3}\right]$ Fermat elliptic curve
- $G:=\left\langle s, t \mid s^{3}=1, t^{7}=1, s t s^{-1}=t^{4}\right\rangle$
- There is a G-action ϕ on E defined by

$$
s(z)=\zeta_{3} z \text { and } t(z)=z+\frac{1+3 \zeta_{3}}{7}
$$

on E and

- an action ψ on \boldsymbol{C} by

$$
s=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \quad \text { and } \quad t=\left(\begin{array}{ccc}
\zeta_{7}^{4} & 0 & 0 \\
0 & \zeta_{7}^{2} & 0 \\
0 & 0 & \zeta_{7}
\end{array}\right)
$$

on C.

- We define $Y_{n}:=\left(C \times E^{n-1}\right) / G$ with respect to the product action $\psi \times \phi^{n-1}$.

Proposition

The quotient $Y_{n}:=\left(C \times E^{n-1}\right) / G$ is singular with singularities

$$
\begin{equation*}
3^{n-1} \times \frac{1}{3}(1, \ldots, 1), \quad 3^{n-1} \times \frac{1}{3}(1, \ldots, 1,2) \tag{*}
\end{equation*}
$$

These singularities are isolated and canonical $\Longrightarrow \kappa\left(X_{n}\right)=1$ for any resolution $\rho: X_{n} \rightarrow Y_{n}$.

Proposition

I) It holds $H^{1}\left(\Theta_{C \times E^{n-1}}\right)^{G}=0 \quad \Longrightarrow \quad H^{1}\left(\Theta_{Y_{n}}\right) \simeq H^{1}\left(\Theta_{C \times E^{n-1}}\right)^{G}=0$.
II) Let U be any of (*) then there exists a resolution $\rho: \widehat{U} \rightarrow U$ with

$$
\rho_{*} \Theta_{\widehat{U}}=\Theta_{U} \quad \text { and } \quad R^{1} \rho_{*} \Theta_{\widehat{U}}=0
$$

A) Rigid manifolds with Kodaira dimension one

Assuming Proposition I) and II) we get

Conclusion

- Singularities are isolated \Longrightarrow resolutions glue $\rho: X_{n} \rightarrow Y_{n}$ with same properties.
- The low terms of Leray's spectral sequence give

$$
H^{1}\left(\Theta_{x_{n}}\right) \simeq H^{1}\left(\Theta_{Y_{n}}\right) \simeq H^{1}\left(\Theta_{C \times E^{n-1}}\right)^{G}=0
$$

- We conclude that X_{n} is an infinitesimally rigid manifold of Kodaira dimension 1.

We need to prove the Proposition.
I) Sketch of proof of $H^{1}\left(\Theta_{C \times E^{n-1}}\right)^{G}=0$

- We write $T:=E_{1} \times \ldots \times E_{n-1} \times C$, where $E_{i}=E$.
- $\Theta_{T}:=p_{1}^{*} \Theta_{E_{1}} \oplus \ldots \oplus p_{n-1}^{*} \Theta_{E_{n-1}} \oplus p_{n}^{*} \Theta_{C}$,

$$
\Longrightarrow H^{1}\left(\Theta_{T}\right)=H^{1}\left(p_{1}^{*} \Theta_{E_{1}}\right) \oplus \ldots \oplus H^{1}\left(p_{n-1}^{*} \Theta_{E_{n-1}}\right) \oplus H^{1}\left(p_{n}^{*} \Theta_{C}\right)
$$

- Künneth formula:
- $H^{1}\left(p_{i}^{*} \Theta_{E_{i}}\right)=H^{1}\left(\Theta_{E_{i}}\right) \oplus H^{0}\left(\Theta_{E_{i}}\right) \otimes\left[\bigoplus_{i \neq j} H^{1}\left(\mathcal{O}_{E_{j}}\right) \oplus H^{1}\left(\mathcal{O}_{C}\right)\right]$
- $H^{1}\left(p_{n}^{*} \Theta_{C}\right)=H^{1}\left(\Theta_{C}\right)$, because $H^{0}\left(\Theta_{C}\right)=0$.

Rigidity conditions:

- $H^{1}\left(\Theta_{C}\right)^{G}=H^{1}\left(\Theta_{E_{i}}\right)^{G}=0$ and
- $\left[H^{0}\left(\Theta_{E_{i}}\right) \otimes H^{1}\left(\mathcal{O}_{E_{j}}\right)\right]^{G}=\left[H^{0}\left(\Theta_{E_{i}}\right) \otimes H^{1}\left(\mathcal{O}_{C}\right)\right]^{G}=0$.
- $H^{1}\left(\Theta_{C}\right)^{G}=H^{1}\left(\Theta_{E_{i}}\right)^{G}=0$, holds because

$$
C \rightarrow C / G \simeq \mathbb{P}^{1} \quad \text { and } \quad E_{i} \rightarrow E_{i} / G \simeq \mathbb{P}^{1}
$$

are branched in three points.

Rigidity conditions

- We verify $\left[H^{0}\left(\Theta_{E_{i}}\right) \otimes H^{1}\left(\mathcal{O}_{E_{j}}\right)\right]^{G}=\left[H^{0}\left(\Theta_{E_{i}}\right) \otimes H^{1}\left(\mathcal{O}_{C}\right)\right]^{G}=0$, using the representations

$$
\phi_{C}: G \rightarrow G L\left(H^{0}\left(K_{C}\right)\right) \quad \text { and } \quad \phi_{E_{i}}: G \rightarrow G L\left(H^{0}\left(K_{E_{i}}\right)\right)
$$

and Serre duality.

II) Resolutions

For each of the singularities

$$
\frac{1}{3}(1, \ldots, 1) \quad \text { and } \quad \frac{1}{3}(1, \ldots, 1,2)
$$

we need to construct a resolution $\rho: \widehat{U} \rightarrow U$ with

$$
\rho_{*} \Theta_{\widehat{U}}=\Theta_{U} \quad \text { and } \quad R^{1} \rho_{*} \Theta_{\widehat{U}}=0
$$

Remark

A cyclic quotient singularity $\frac{1}{m}\left(a_{1}, \ldots, a_{n}\right)$ is an affine toric variety, defined by

$$
N:=\mathbb{Z}^{n}+\frac{\mathbb{Z}}{m}\left(a_{1}, \ldots, a_{n}\right) \quad \text { and } \quad \sigma:=\operatorname{cone}\left(e_{1}, \ldots, e_{n}\right)
$$

- We use the powerful tools from toric geometry
\Longrightarrow main ingredient: Euler sequence.
- For simplicity we assume $n=3$ and discuss $\frac{1}{3}(1,1,2)$.
- The singularity $\frac{1}{3}(1,1,2)$ is resolved by two subdivisions of $\sigma=\operatorname{cone}\left(e_{1}, e_{2}, e_{3}\right)$:

- $\rho: \widehat{U} \rightarrow U$ induced by inclusion is proper and birational

A) Rigid manifolds with Kodaira dimension one

- To each ray $\mathbb{R}_{\geq 0} e_{i}$ corresponds a divisor D_{i}
- The exceptional prime divisors of ρ are the divisors E_{i} corresponding to $\mathbb{R}_{\geq 0} v_{i}$
- $E_{2} \simeq \mathbb{P}^{2}$ and $E_{1} \simeq \mathbb{F}_{2}$ (Hirzebruch surface):

A) Rigid manifolds with Kodaira dimension one

- The Euler sequence reads

$$
0 \rightarrow \mathcal{O}_{\widehat{U}}^{\oplus^{2}} \rightarrow \mathcal{O}_{\widehat{U}}\left(E_{1}\right) \oplus \mathcal{O}_{\widehat{U}}\left(E_{2}\right) \oplus \bigoplus_{i=1}^{3} \mathcal{O}_{\widehat{U}}\left(D_{i}\right) \rightarrow \Theta_{\widehat{U}} \rightarrow 0
$$

- Push forward using $R^{i} \rho_{*} \mathcal{O}_{\widehat{U}}=0(i \geq 1)$ we can show

$$
R^{1} \rho_{*} \Theta_{\widehat{U}}=0 \quad \text { and } \quad \rho_{*} \Theta_{\widehat{U}}=\Theta_{u}
$$

Idea:

Construct an infinitesimally rigid product quotient

$$
Y_{n}=\left(C_{1} \times \ldots \times C_{n}\right) / G
$$

of general type with finite $\pi_{1}\left(Y_{n}\right)$.
\Longrightarrow the universal cover of Y_{n} is projective, whence non-contractible.

Conditions:

We need:

- $g\left(C_{i}\right) \geq 2$ and $C_{i} \rightarrow C_{i} / G \simeq \mathbb{P}^{1}$ branched in three points,
- non-free action, otherwise $\pi_{1}\left(Y_{n}\right)$ is infinite,
- nice singularities i.e.canonical so that $\kappa\left(X_{n}\right)=n$, for any resolution $\rho: X_{n} \rightarrow Y_{n}$,
- a resolution $\rho: X_{n} \rightarrow Y_{n}$ with

$$
H^{1}\left(\Theta_{X_{n}}\right) \simeq H^{1}\left(\Theta_{Y_{n}}\right)=H^{1}\left(\Theta_{C^{n}}\right)^{G}=0 .
$$

The example:

- Take $C=\left\{x_{0}^{4}+x_{1}^{4}+x_{2}^{4}=0\right\} \subset \mathbb{P}^{2}$ together with the action

$$
\psi: \mathbb{Z}_{4}^{2} \rightarrow \operatorname{Aut}(C), \quad(a, b) \mapsto\left[\left(x_{0}: x_{1}: x_{2}\right) \mapsto\left(\zeta_{4}^{a} x_{0}: \zeta_{4}^{b} x_{1}: x_{2}\right)\right]
$$

- Define a second action by

$$
\psi^{\prime}:=\psi \circ\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right) .
$$

- Y_{n} is the quotient of C^{n} by the diagonal \mathbb{Z}_{4}^{2}-action $\psi \times \psi^{\prime} \times \ldots \times \psi^{\prime}$.

Proposition

- The quotient Y_{n} is infinitesimally rigid, of general type with $3 \cdot 2^{2 n-3}$ singularities of type $\frac{1}{2}(1, \ldots, 1)$.
- There is a resolution $\rho: X_{n} \rightarrow Y_{n}$ with $H^{1}\left(\Theta_{X_{n}}\right) \simeq H^{1}\left(\Theta_{Y_{n}}\right)=0$.

Caution:

In the surface case $n=2$, we have

$$
H^{1}\left(\Theta_{X_{2}}\right) \simeq H^{1}\left(\Theta_{Y_{2}}\right) \oplus \mathbb{C}^{\# \operatorname{Sing}\left(Y_{2}\right)}=\mathbb{C}^{\# \operatorname{Sing}\left(Y_{2}\right)}
$$

- We still need to show that $\pi_{1}\left(X_{n}\right) \simeq \pi_{1}\left(Y_{n}\right)$ is finite.
- Consider $H:=\langle(2,0),(0,2)\rangle<\mathbb{Z}_{4}^{2}$. Then the natural map

$$
C^{n} / H \rightarrow Y_{n}=C^{n} / \mathbb{Z}_{4}^{2}
$$

is unramified.

- It suffices to show that $Z_{n}:=C^{n} / H$ has a finite fundamental group.

Remark

Note that $C \rightarrow C / H \simeq \mathbb{P}^{1}$ is branched in 6 points $\Longrightarrow Z_{n}$ is not infinitesimally rigid.

Fundamental group of a product quotient:

- Let $X=\left(C_{1} \times \ldots \times C_{n}\right) / G$ be a product quotient obtained by a diagonal G action.
- Let $u_{i}: \mathbb{H} \rightarrow C_{i}$ be the universal cover.
- Let \mathbb{T}_{i} be the group of lifts of the automorphisms of G acting on C_{i} and $\varphi_{i}: \mathbb{T}_{i} \rightarrow G$ be the natural map.
- Let $\mathbb{G}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \varphi_{1}\left(x_{i}\right)=\ldots=\varphi\left(x_{n}\right)\right\}$ be the fibre product, then it holds

$$
\mathbb{H}^{n} / \mathbb{G} \simeq X
$$

Consequence of Armstrong's Theorem

The fundamental group of $X=\left(C_{1} \times \ldots \times C_{n}\right) / G$ is

$$
\pi_{1}(X) \simeq \mathbb{G} / \operatorname{Fix}(\mathbb{G})
$$

where $\operatorname{Fix}(\mathbb{G})$ is the subgroup generated by the elements with non-empty fixed locus.

Proposition

In the case of Z_{n} we have $g^{2} \in \operatorname{Fix}(\mathbb{G})$ for all $g \in \mathbb{G}$.
$\Longrightarrow \pi_{1}\left(Z_{n}\right)$ is abelian and therefore finite, because $b_{1}\left(Z_{n}\right)=0$ and

$$
\pi_{1}(X) \simeq \pi_{1}(X)^{a b} \simeq H_{1}(X, \mathbb{Z})
$$

Thank you for your attention

