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What is a bounded functional calculus for operators?

Operator A on a Banach space X , a class F of functions defined
on the spectrum σ(A). A functional calculus for A is an assignment

f ∈ F 7→ f (A) (operator on X )

which reflects the structure of F and relates sensibly to A.

Often F is a (Banach) algebra, and this assignment is a (bounded)
algebra homomorphism of F into L(X ). If −z ∈ ρ(A) and
rz(w) = (z + w)−1, then rz(A) should be (z + A)−1, and so on. In
this situation we have a bounded functional calculus.

If X is a Hilbert space and A is self-adjoint, there is a bounded
functional calculus for bounded measurable functions on σ(A).

Otherwise, the functions will normally be holomorphic on a set
containing σ(A), for example the Riesz-Dunford calculus

f (A) =
1

2πi

∫
γ
f (z)(z − A)−1 dz .

Here A may be bounded, or unbounded with special properties.
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Sectorial functional calculus

If A is an (injective) sectorial operator of angle θ ∈ (0, π), one can
define a functional calculus for bounded holomorphic functions on
sectors Σψ, where ψ ∈ (θ, π), based on a Riesz-Dunford integral
and an extension process (McIntosh, Haase, etc).

This produces a bounded functional calculus for many differential
operators, but not for all sectorial operators.

There is a similar procedure for half-planes.
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Semigroup generators and Hille-Phillips calculus

Let −A be the generator of a bounded C0-semigroup (T (t))t≥0.
on X , and K = supt≥0 ‖T (t)‖. Then, in some sense,

T (t) = et(A), et(z) = e−tz , z ∈ C+,

(z + A)−1x =

∫ ∞
0

e−tzT (t)x dt, z ∈ C+, x ∈ X .

Let LM := {µ̂ : µ ∈ M(R+)}. Write m for µ̂.

m(z) =

∫
R+

e−zt dµ(t) (z ∈ C+),

m(A)x :=

∫
R+

T (t)x dµ(t),

‖m(A)‖ ≤ K‖µ‖M(R+) =: K‖m‖HP.

The norm-estimate is often far from sharp.

Charles Batty (University of Oxford) Bounded functional calculi for unbounded operators



Cayley transform question

Suppose that −A generates a bounded C0-semigroup. The
operator V (A) := (A− I )(A + I )−1 is the cogenerator. The
question was raised whether V (A) is power-bounded. One
approach is as follows.

Let

fn(z) =

(
z − 1

z + 1

)n

.

Then fn ∈ LM, f1 = µ̂, dµ = δ0 − 2e−tdt, ‖f1‖HP = 3,

‖fn‖HP � n1/2.

So this tells us that ‖V (A)n‖ do not grow faster than n1/2. Can
we do better?
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An alternative formula

Assume that µ({0}) = 0. Informally,

m(A)x =

∫ ∞
0

T (t)x dµ(t)

= 4

∫ ∞
0

∫ ∞
0

τ t2e−2τ tT (t)x dτ dµ(t)

=
2

π

∫
R
τ

∫ ∞
0

τ te−τ t
∫
R

(τ − is + A)−2x e−ist ds dτ dµ(t)

=
2

π

∫
R

∫ ∞
0

τ(τ − is + A)−2x

∫ ∞
0

te−(τ+is)t dµ(t) dτ ds

= − 2

π

∫
R

∫ ∞
0

τ(τ − is + A)−2x m′(τ + is) dτ ds
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A definition

Operator A with dense domain and σ(A) ⊆ C+,

f : C+ → C holomorphic, f (∞) = limt→∞ f (t), x ∈ X , x∗ ∈ X ∗

〈f (A)x , x∗〉 := f (∞)〈x , x∗〉

− 2

π

∫
R

∫ ∞
0

τ〈(τ − is + A)−2x , x∗〉f ′(τ + is) dτ ds

This double integral is absolutely convergent if
f ∈ B := B0

∞,1(C+), i.e., f is holomorphic on C+ and∫ ∞
0

sup
s∈R
|f ′(τ + is)| dτ <∞,

and the functions z 7→ 〈(z + A)−1x , x∗〉 all belong to the space
E := B0

1,∞(C+) of all holomorphic functions g on C+ such that

sup
τ>0

τ

∫
R
|g ′(τ + is)| ds <∞
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Gomilko–Shi–Feng

Let A be a densely defined operator, σ(A) ⊆ C+,
z 7→ 〈(z + A)−1x , x∗〉 ∈ E for all x ∈ X , x∗ ∈ X ∗.
By the Closed Graph Theorem, there exists ΓA such that

τ

∫
R
|〈(τ + is + A)−2x , x∗〉| ds ≤ ΓA‖x‖ ‖x∗‖. (GSF)

1999/2000: Gomilko, and independently Shi and Feng, showed
that (GSF) implies that −A generates a bounded C0-semigroup.

If −A is the generator of a bounded C0-semigroup on a Hilbert
space, then (GSF) holds.

If A is sectorial of angle less than π/2, then (GSF) holds (and −A
generates a bounded holomorphic semigroup).

Let A be the generator of the C0-group of shifts on Lp(R), where
1 ≤ p <∞, p 6= 2. Then ±A do not satisfy (GSF).
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The analytic Besov algebra B0
∞,1(C+)

Any f ∈ B extends to a bounded uniformly continuous function on
C+, and moreover f (∞) := limτ→∞ f (τ) exists. Furthermore, B is
a Banach algebra in the norm

‖f ‖B := ‖f ‖∞ +

∫ ∞
0

sup
s∈R
|f ′(τ + is)| dτ.

There is a partial duality between B and E :

〈g , f 〉B =

∫
R

∫ ∞
0

g ′(τ − is)f ′(τ + is) dτ ds (g ∈ E , f ∈ B)

Moreover

f (z) = f (∞) +
2

π
〈rz , f 〉B, rz(w) = (w + z)−1.
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Examples

1. Hille-Phillips algebra. Let LM := {µ̂ : µ ∈ M(R+)}. If
m ∈ LM, then m ∈ B and ‖m‖B ≤ 2‖m‖HP.

2. Entire functions of exponential type. For 0 < τ1 < τ2 <∞, let
H∞[τ1, τ2] be the space of all f ∈ H∞(C+) such that the
“spectrum” of f (i ·) is contained in [τ1, τ2]. Then f is an entire
function of exponential type.

H∞[τ1, τ2] ⊂ B and

‖f ‖B ≤
(

1 + 4 log

(
1 +

τ2

τ1

))
‖f ‖∞

(earlier partial results by White, Vitse, Haase, following a discrete
version by Peller)

The closure of
⋃

0<τ1<τ2
H∞[τ1, τ2] in B is {f ∈ B : f (∞) = 0}.
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More examples

3. Cayley transforms. fn(z) :=

(
z − 1

z + 1

)n

is in LM and hence in

B. Moreover,

‖fn‖B � log n, ‖fn‖HP � n1/2.

4. e−1/z is not in B—it is not uniformly continuous near 0

e−1/(z+1) is in B—in fact it is in LM(
z

z + 1

)2

e−1/z is also in B; it is in the norm-closure of LM

5. If f is a Bernstein function, then
(
λ+ f (zα)β

)−1
is in B, for

α ∈ (0, 1) and β ∈ (1, 1/α), λ ∈ C+.
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Back to functional calculus

Suppose that A satisfies (GSF). For f ∈ B, define

〈f (A)x , x∗〉 := f (∞)〈x , x∗〉

− 2

π

∫
R

∫ ∞
0

τ〈(τ − is + A)−2x , x∗〉f ′(τ + is) dτ ds

Then f (A)x ∈ X ∗∗, f (A) : X → X ∗∗, ‖f (A)‖ ≤ 2ΓA‖f ‖B.

Does f (A) map X into X?
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Does f (A) map X into X?

Yes, if f ∈ LM; moreover, f (A) agrees with the Hille-Phillips
functional calculus, i.e., f (A)x =

∫∞
0 e−tAx dµ(t) if

f (z) =
∫∞

0 e−tz dµ(t).

Yes, if f ∈ H∞[τ1, τ2] where 0 < τ1 < τ2 <∞. Let δ > 0,

eδ(z) =
1− e−δz

δz

Then eδ ∈ LM, feδ ∈ LM, and limδ→0+(feδ)(A) = f (A) in the
strong operator topology.

Yes, for all f ∈ B because f − f (∞) is in the norm-closure of⋃
0<τ1<τ2

H∞[τ1, τ2].

So f 7→ f (A) is a bounded algebra homomorphism from B to
L(X ), extending the Hille-Phillips calculus.
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The B-calculus

If A is an operator such that σ(A) ⊆ C+ and there is a bounded
algebra homomorphism Φ : B → L(X ) such that

Φ(rλ) = (λ+ A)−1, rλ(z) = (λ+ z)−1, λ, z ∈ C+.

Then

A satisfies (GSF),

Φ is the homomorphism f 7→ f (A) defined above.

We call this the B-calculus (or the Besov calculus).

The B-calculus is compatible with:

Sectorial calculus

Half-plane calculus

in the sense that the B-calculus definition of f (A) agrees with
definitions of f (A) in these calculi whenever they can also be
defined.
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Convergence Lemma

Theorem

Let A be an operator satisfying (GSF). Let (fn) be a sequence in B
with supn ‖fn‖B <∞, and assume that

f (z) := limn→∞ fn(z) exists for all z ∈ C+,

For all r > 0,

lim
δ→0+

∫ δ

0
sup
|β|≤r

|f ′n(α + iβ)| dα = 0,

uniformly in n.

Then f ∈ B and limn→∞ fn(A) = f (A) in the strong operator
topology.
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Spectral Inclusion

Theorem

Let f ∈ B.

1 If A satisfies (GSF), then f (σ(A)) ⊆ σ(f (A)).

2 If A is sectorial of angle less than π/2 then
f (σ(A)) ∪ {f (∞)} = σ(f (A)) ∪ {f (∞)}.
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Cayley transforms

Theorem (Gomilko 2004)

Assume that −A generates a bounded C0-semigroup on a Hilbert
space, with ‖e−tA‖ ≤ M. Let V (A) = (A− 1)(A + 1)−1. Then

‖V (A)n‖ ≤ cM2(1 + log n).
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Inverse generator problem

e−1/z is not in B—it is not uniformly continuous near 0

e−1/(z+1) is in B—in fact it is in LM(
z

z + 1

)2

e−1/z is also in B; it is in LM

Theorem (*Zwart 2007)

Let −A be the generator of a bounded C0-semigroup on a Hilbert
space with ‖e−tA‖ ≤ M, and assume that A has a bounded
inverse. Then

‖e−tA−1‖ ≤ cM2‖(1 + A−1)2‖(1 + log(1 + t)).

*Zwart assumed that −A generates an exponentially stable
C0-semigroup.
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Bernstein functions preserve sectoriality

Theorem (Gomilko–Tomilov 2015)

Let A be sectorial of angle ω ∈ [0, π/2), and let f be a Bernstein
function. Then f (A) is sectorial of angle ω (or less).
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Bounded holomorphic semigroups

Suppose that A is sectorial of angle less than π/2, so that
‖z(z + A)−1‖ ≤ MA for z ∈ C+, z 6= 0.

There is an absolute constant C such that

τ

∫
R
‖(τ + A)−2‖ dτ ≤ CMA(logMA + 1) (τ > 0)

Hence

‖f (A)‖ ≤ CMA(logMA + 1)‖f ‖B (f ∈ B).

This was first proved by Vitse, using dyadic decompositions, and
with a somewhat larger “constant”.
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D-calculus

s > −1, f : C+ → C holomorphic; f ∈ Ds if

‖f ‖Ds,0 =

∫ ∞
0

∫
R

|f ′(α + iβ)|
(α2 + β2)(s+1)/2

dβ dα <∞.

For A sectorial of angle less than π/2,

fD(A) := f (∞)− 2s

π

∫ ∞
0

∫
R
f (α+ iβ)(A + α− iβ)−(s+1)/2 dβ dα.

B ⊂ Ds ⊂ Dτ (0 < s < τ)

Ds is a Banach space, but it is not an algebra;
⋃

s>0Ds is an
algebra but not a Banach space; Ds ∩ H∞(C+) is a Banach
algebra.

fD(A) does not depend on s, and it has the properties of a
functional calculus.
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Let fn(z) =

(
z − 1

z + 1

)n

. For s > 0, the sequence ‖fn‖Ds is bounded.

Hence the Cayley transform question has a positive answer for
bounded holomorphic C0-semigroups (first proved by deLaubenfels
in 1985)

If there is a D-calculus for an operator A, then A is sectorial of
angle less than π/2.
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H-calculus

ψ ∈ (0, π), f : Σψ → C holomorphic; f ∈ Hψ if f ′ ∈ H1(Σψ)

Hψ is a Banach algebra in the norm

‖f ‖Hψ = ‖f ‖H∞(Σψ) + ‖f ′‖H1(Σψ).

A sectorial of angle θ ∈ (0, π/2), ψ ∈ (θ, π/2), γ = π/(2ψ),

f ∈ Hψ, g(z) = f (z1/γ). Then g ∈ Ds for all s > −1.

fH(A) := gD(Aγ).

This does not depend on ψ, and it defines a bounded functional
calculus.

If there is a Hψ-calculus for an operator A, then A is sectorial of
angle less than ψ.
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ALM-calculus (Arnold–LeMerdy)

There is a Banach algebra A of holomorphic functions on C+ such
that B is continuously included in A, and every operator A which
is the negative generator of a bounded C0-semigroup on a Hilbert
space has a bounded A-calculus.

Question: Let fn(z) =

(
z − 1

z + 1

)n

. Is the sequence ‖fn‖A bounded?

If the answer is Yes, then the Cayley transform question has a
positive answer for bounded C0-semigroups on Hilbert space.
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von Neumann’s inequality

Let T be a contraction on Hilbert space, and p(z) be a polynomial.

‖p(T )‖ ≤ ‖p‖∞ (sup-norm on the unit disc)

Then we can extend to the disc algebra, by continuity

‖f (T )‖ ≤ ‖f ‖∞

If S = V−1TV ,
f (S) = V−1f (T )V

What about power-bounded operators in general?
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Power-bounded operators on Hilbert space

Peller (1982):

T power-bounded on Hilbert space

Besov norm for holomorphic f on the unit disc D:

‖f ‖B :=

∫ 1

0
sup
θ
|f ′(re iθ)| dr

‖p(T )‖ ≤ C‖p‖B

Hence there is a bounded functional calculus for the analytic Besov
space B0

∞,1(D) of functions f ∈ H∞(D) for which ‖f ‖B <∞.
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Applications

Theorem (Zwart 2012, Haase–Rozendaal 2013)

If f ∈ H∞[τ,∞) and f extends to a function in H∞ω , and −A
generates a bounded C0-semigroup on a Hilbert space, where
‖e−tA‖ ≤ M, then

‖f (A)‖ ≤ cM2e−ωτ‖f ‖H∞ω

(
2 +

1

2
log

(
1 +

1

τω

))
.
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Theorem (Schwenninger–Zwart*)

Assume that −A generates an exponentially stable C0-semigroup
on a Hilbert space, so that there exist M, δ > 0 such that

‖e−tA‖ ≤ Me−δt (t ≥ 0).

Let f ∈ H∞(C+) and assume that there is a monotonic decreasing
function h : R+ → (0,∞) such that

|f (is)| ≤ h(|s|), ‖h‖δ :=

∫ ∞
0

h(t)

t + δ
<∞.

Then
‖f (A)‖ ≤ cM2‖h‖δ.

*Announced at Bedlewo, April 2017, for h(s) = (log(s + e))−α

where α > 1.
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Appendix: proof of density

Proposition (Arveson?, Olesen?, Pedersen?)

Let {U(t) : t ∈ R} be a bounded C0-group on a Banach space Y ,
with generator G , and let Y (K ) denote the spectral subspace
corresponding to a closed subset K of R. Assume that G has
dense range. Then⋃

{Y (K ) : K compact, 0 /∈ K}

is dense in Y .

Let Y = B0 := {f ∈ B : f (∞) = 0}. For f ∈ B0 and a ∈ C+, let

(TB(a)f )(z) = f (z + a).

Then {TB0(a) : a ∈ C+ ∪ {0}} is a holomorphic C0-semigroup of
contractions on B0, and {TB0(is) : s ∈ R} is a C0-group of
isometries. Moreover the generator has dense range and its
spectrum is iR+.

Hence
⋃
{H∞[τ1, τ2] : 0 < τ1 < τ2 <∞} is dense in B0.Charles Batty (University of Oxford) Bounded functional calculi for unbounded operators



Littlewood-Paley decomposition

It follows that B is the space of all functions f ∈ H∞(C+), such
that the boundary function f b has a Littlewood–Paley
decomposition for (0,∞) of the form

f b = f (∞) +
∑
k∈Z

f b ∗ ψk ,

which is absolutely convergent in the norm of L∞(R).
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