Bounded functional calculi for unbounded operators

Charles Batty (University of Oxford)

with Alexander Gomilko and Yuri Tomilov

European Congress of Mathematics Minisymposium on Operator Semigroups 23 June 2021

What is a bounded functional calculus for operators?

Operator A on a Banach space X, a class \mathcal{F} of functions defined on the spectrum $\sigma(A)$. A functional calculus for A is an assignment

 $f \in \mathcal{F} \mapsto f(A)$ (operator on X)

which reflects the structure of \mathcal{F} and relates sensibly to A.

Often \mathcal{F} is a (Banach) algebra, and this assignment is a (bounded) algebra homomorphism of \mathcal{F} into L(X). If $-z \in \rho(A)$ and $r_z(w) = (z+w)^{-1}$, then $r_z(A)$ should be $(z+A)^{-1}$, and so on. In this situation we have a *bounded functional calculus*.

If X is a Hilbert space and A is self-adjoint, there is a bounded functional calculus for bounded measurable functions on $\sigma(A)$.

Otherwise, the functions will normally be holomorphic on a set containing $\sigma(A)$, for example the Riesz-Dunford calculus

$$f(A)=\frac{1}{2\pi i}\int_{\gamma}f(z)(z-A)^{-1}\,dz.$$

Here A may be bounded, or unbounded with special properties.

If A is an (injective) sectorial operator of angle $\theta \in (0, \pi)$, one can define a functional calculus for bounded holomorphic functions on sectors Σ_{ψ} , where $\psi \in (\theta, \pi)$, based on a Riesz-Dunford integral and an extension process (McIntosh, Haase, etc).

This produces a bounded functional calculus for many differential operators, but not for all sectorial operators.

There is a similar procedure for half-planes.

Semigroup generators and Hille-Phillips calculus

Let -A be the generator of a bounded C_0 -semigroup $(T(t))_{t\geq 0}$. on X, and $K = \sup_{t\geq 0} ||T(t)||$. Then, in some sense,

$$T(t) = e_t(A),$$
 $e_t(z) = e^{-tz},$ $z \in \mathbb{C}_+,$
 $(z+A)^{-1}x = \int_0^\infty e^{-tz} T(t)x \, dt,$ $z \in \mathbb{C}_+, x \in X.$

Let $\mathcal{LM} := \{\widehat{\mu} : \mu \in M(\mathbb{R}_+)\}$. Write *m* for $\widehat{\mu}$.

$$\begin{split} m(z) &= \int_{\mathbb{R}_+} e^{-zt} d\mu(t) \quad (z \in \mathbb{C}_+), \\ m(A)x &:= \int_{\mathbb{R}_+} T(t)x d\mu(t), \\ \|m(A)\| &\leq K \|\mu\|_{\mathcal{M}(\mathbb{R}_+)} =: K \|m\|_{\mathsf{HP}}. \end{split}$$

The norm-estimate is often far from sharp.

Cayley transform question

Suppose that -A generates a bounded C_0 -semigroup. The operator $V(A) := (A - I)(A + I)^{-1}$ is the cogenerator. The question was raised whether V(A) is power-bounded. One approach is as follows.

Let

$$f_n(z)=\left(rac{z-1}{z+1}
ight)^n.$$

Then $f_n \in \mathcal{LM}$, $f_1 = \hat{\mu}$, $d\mu = \delta_0 - 2e^{-t}dt$, $||f_1||_{HP} = 3$, $||f_n||_{HP} \asymp n^{1/2}$.

So this tells us that $||V(A)^n||$ do not grow faster than $n^{1/2}$. Can we do better?

• • = • • = •

Assume that $\mu({0}) = 0$. Informally,

$$m(A)x = \int_0^\infty T(t)x \, d\mu(t)$$

= $4 \int_0^\infty \int_0^\infty \tau t^2 e^{-2\tau t} T(t)x \, d\tau \, d\mu(t)$
= $\frac{2}{\pi} \int_{\mathbb{R}} \tau \int_0^\infty \tau t e^{-\tau t} \int_{\mathbb{R}} (\tau - is + A)^{-2} x \, e^{-ist} \, ds \, d\tau \, d\mu(t)$
= $\frac{2}{\pi} \int_{\mathbb{R}} \int_0^\infty \tau (\tau - is + A)^{-2} x \int_0^\infty t e^{-(\tau + is)t} \, d\mu(t) \, d\tau \, ds$
= $-\frac{2}{\pi} \int_{\mathbb{R}} \int_0^\infty \tau (\tau - is + A)^{-2} x \, m'(\tau + is) \, d\tau \, ds$

伺下 イヨト イヨト

э

A definition

Operator A with dense domain and $\sigma(A) \subseteq \overline{\mathbb{C}}_+$,

 $f:\mathbb{C}_+ o\mathbb{C}$ holomorphic, $f(\infty)=\lim_{t o\infty}f(t)$, $x\in X, x^*\in X^*$

$$egin{aligned} &\langle f(A)x,x^*
angle &:= f(\infty) \langle x,x^*
angle \ &- rac{2}{\pi} \int_{\mathbb{R}} \int_0^\infty \tau \langle (au - is + A)^{-2}x,x^*
angle f'(au + is) \, d au \, ds \end{aligned}$$

This double integral is absolutely convergent if $f \in \mathcal{B} := B^0_{\infty,1}(\mathbb{C}_+)$, i.e., f is holomorphic on \mathbb{C}_+ and

$$\int_0^\infty \sup_{s\in\mathbb{R}} |f'(\tau+is)| \, d\tau < \infty,$$

and the functions $z \mapsto \langle (z + A)^{-1}x, x^* \rangle$ all belong to the space $\mathcal{E} := B^0_{1,\infty}(\mathbb{C}_+)$ of all holomorphic functions g on \mathbb{C}_+ such that

$$\sup_{\tau>0}\tau\int_{\mathbb{R}}|g'(\tau+is)|\,ds<\infty$$

伺 と く き と く き と

Gomilko-Shi-Feng

Let A be a densely defined operator, $\sigma(A) \subseteq \overline{\mathbb{C}}_+$, $z \mapsto \langle (z+A)^{-1}x, x^* \rangle \in \mathcal{E}$ for all $x \in X$, $x^* \in X^*$. By the Closed Graph Theorem, there exists Γ_A such that

$$\tau \int_{\mathbb{R}} |\langle (\tau + is + A)^{-2}x, x^* \rangle| \, ds \le \Gamma_A ||x|| \, ||x^*||. \tag{GSF}$$

1999/2000: Gomilko, and independently Shi and Feng, showed that (GSF) implies that -A generates a bounded C_0 -semigroup.

If -A is the generator of a bounded C_0 -semigroup on a Hilbert space, then (GSF) holds.

If A is sectorial of angle less than $\pi/2$, then (GSF) holds (and -A generates a bounded holomorphic semigroup).

Let A be the generator of the C_0 -group of shifts on $L^p(\mathbb{R})$, where $1 \le p < \infty, \ p \ne 2$. Then $\pm A$ do not satisfy (GSF).

The analytic Besov algebra $B^0_{\infty,1}(\mathbb{C}_+)$

Any $f \in \mathcal{B}$ extends to a bounded uniformly continuous function on $\overline{\mathbb{C}}_+$, and moreover $f(\infty) := \lim_{\tau \to \infty} f(\tau)$ exists. Furthermore, \mathcal{B} is a Banach algebra in the norm

$$\|f\|_{\mathcal{B}} := \|f\|_{\infty} + \int_0^\infty \sup_{s \in \mathbb{R}} |f'(\tau + is)| d\tau.$$

There is a partial duality between \mathcal{B} and \mathcal{E} :

$$\langle g,f
angle_{\mathcal{B}} = \int_{\mathbb{R}} \int_{0}^{\infty} g'(\tau - is) f'(\tau + is) \, d\tau \, ds \qquad (g \in \mathcal{E}, f \in \mathcal{B})$$

Moreover

$$f(z) = f(\infty) + \frac{2}{\pi} \langle r_z, f \rangle_{\mathcal{B}}, \quad r_z(w) = (w+z)^{-1}.$$

Examples

1. Hille-Phillips algebra. Let $\mathcal{LM} := \{\widehat{\mu} : \mu \in M(\mathbb{R}_+)\}$. If $m \in \mathcal{LM}$, then $m \in \mathcal{B}$ and $\|m\|_{\mathcal{B}} \le 2\|m\|_{HP}$.

2. Entire functions of exponential type. For $0 < \tau_1 < \tau_2 < \infty$, let $H^{\infty}[\tau_1, \tau_2]$ be the space of all $f \in H^{\infty}(\mathbb{C}_+)$ such that the "spectrum" of $f(i \cdot)$ is contained in $[\tau_1, \tau_2]$. Then f is an entire function of exponential type.

 $H^{\infty}[au_1, au_2] \subset \mathcal{B}$ and $\|f\|_{\mathcal{B}} \leq \left(1 + 4\log\left(1 + rac{ au_2}{ au_1}
ight)
ight)\|f\|_{\infty}$

(earlier partial results by White, Vitse, Haase, following a discrete version by Peller)

The closure of $\bigcup_{0 < \tau_1 < \tau_2} H^{\infty}[\tau_1, \tau_2]$ in \mathcal{B} is $\{f \in \mathcal{B} : f(\infty) = 0\}$.

イロト イポト イラト イラト

3. Cayley transforms.
$$f_n(z) := \left(\frac{z-1}{z+1}\right)^n$$
 is in \mathcal{LM} and hence in \mathcal{B} . Moreover,

$$\|f_n\|_{\mathcal{B}} \asymp \log n, \qquad \|f_n\|_{\mathrm{HP}} \asymp n^{1/2}.$$

4. $e^{-1/z}$ is not in \mathcal{B} —it is not uniformly continuous near 0 $e^{-1/(z+1)}$ is in \mathcal{B} —in fact it is in \mathcal{LM} $\left(\frac{z}{z+1}\right)^2 e^{-1/z}$ is also in \mathcal{B} ; it is in the norm-closure of \mathcal{LM}

5. If f is a Bernstein function, then $(\lambda + f(z^{\alpha})^{\beta})^{-1}$ is in \mathcal{B} , for $\alpha \in (0, 1)$ and $\beta \in (1, 1/\alpha)$, $\lambda \in \mathbb{C}_+$.

通 ト イ ヨ ト イ ヨ ト

Suppose that A satisfies (GSF). For $f \in \mathcal{B}$, define

$$\langle f(A)x, x^* \rangle := f(\infty) \langle x, x^* \rangle - \frac{2}{\pi} \int_{\mathbb{R}} \int_0^\infty \tau \langle (\tau - is + A)^{-2}x, x^* \rangle f'(\tau + is) \, d\tau \, ds$$

Then $f(A)x \in X^{**}$, $f(A) : X \to X^{**}$, $||f(A)|| \le 2\Gamma_A ||f||_{\mathcal{B}}$. Does f(A) map X into X? Does f(A) map X into X?

Yes, if $f \in \mathcal{LM}$; moreover, f(A) agrees with the Hille-Phillips functional calculus, i.e., $f(A)x = \int_0^\infty e^{-tA}x \, d\mu(t)$ if $f(z) = \int_0^\infty e^{-tz} \, d\mu(t)$.

• • = • • = •

-

Does f(A) map X into X?

Yes, if $f \in \mathcal{LM}$; moreover, f(A) agrees with the Hille-Phillips functional calculus, i.e., $f(A)x = \int_0^\infty e^{-tA}x \, d\mu(t)$ if $f(z) = \int_0^\infty e^{-tz} \, d\mu(t)$.

Yes, if $f \in H^{\infty}[\tau_1, \tau_2]$ where $0 < \tau_1 < \tau_2 < \infty$. Let $\delta > 0$,

$$e_{\delta}(z) = rac{1-e^{-\delta z}}{\delta z}$$

Then $e_{\delta} \in \mathcal{LM}$, $fe_{\delta} \in \mathcal{LM}$, and $\lim_{\delta \to 0+} (fe_{\delta})(A) = f(A)$ in the strong operator topology.

- 3 b - 4 3 b

Does f(A) map X into X?

Yes, if $f \in \mathcal{LM}$; moreover, f(A) agrees with the Hille-Phillips functional calculus, i.e., $f(A)x = \int_0^\infty e^{-tA}x \, d\mu(t)$ if $f(z) = \int_0^\infty e^{-tz} \, d\mu(t)$.

Yes, if $f \in H^{\infty}[\tau_1, \tau_2]$ where $0 < \tau_1 < \tau_2 < \infty$. Let $\delta > 0$,

$$e_{\delta}(z) = rac{1-e^{-\delta z}}{\delta z}$$

Then $e_{\delta} \in \mathcal{LM}$, $fe_{\delta} \in \mathcal{LM}$, and $\lim_{\delta \to 0+} (fe_{\delta})(A) = f(A)$ in the strong operator topology.

Yes, for all $f \in \mathcal{B}$ because $f - f(\infty)$ is in the norm-closure of $\bigcup_{0 < \tau_1 < \tau_2} H^{\infty}[\tau_1, \tau_2]$.

So $f \mapsto f(A)$ is a bounded algebra homomorphism from \mathcal{B} to L(X), extending the Hille-Phillips calculus.

b 4 3 b 4 3 b

The \mathcal{B} -calculus

If A is an operator such that $\sigma(A) \subseteq \overline{\mathbb{C}}_+$ and there is a bounded algebra homomorphism $\Phi : \mathcal{B} \to L(X)$ such that

$$\Phi(r_{\lambda})=(\lambda+A)^{-1}, \qquad r_{\lambda}(z)=(\lambda+z)^{-1}, \quad \lambda,z\in\mathbb{C}_+.$$

Then

- A satisfies (GSF),
- Φ is the homomorphism $f \mapsto f(A)$ defined above.

We call this the \mathcal{B} -calculus (or the Besov calculus).

The \mathcal{B} -calculus is compatible with:

- Sectorial calculus
- Half-plane calculus

in the sense that the \mathcal{B} -calculus definition of f(A) agrees with definitions of f(A) in these calculi whenever they can also be defined.

Theorem

Let A be an operator satisfying (GSF). Let (f_n) be a sequence in \mathcal{B} with $\sup_n \|f_n\|_{\mathcal{B}} < \infty$, and assume that

- $f(z) := \lim_{n \to \infty} f_n(z)$ exists for all $z \in \mathbb{C}_+$,
- For all r > 0,

$$\lim_{\delta\to 0+}\int_0^\delta \sup_{|\beta|\leq r} |f_n'(\alpha+i\beta)|\,d\alpha=0,$$

uniformly in n.

Then $f \in \mathcal{B}$ and $\lim_{n\to\infty} f_n(A) = f(A)$ in the strong operator topology.

• • = • • = •

Theorem

Let $f \in \mathcal{B}$.

- If A satisfies (GSF), then $f(\sigma(A)) \subseteq \sigma(f(A))$.
- ② If A is sectorial of angle less than $\pi/2$ then $f(\sigma(A)) \cup \{f(\infty)\} = \sigma(f(A)) \cup \{f(\infty)\}.$

• • = • • =

Theorem (Gomilko 2004)

Assume that -A generates a bounded C_0 -semigroup on a Hilbert space, with $\|e^{-tA}\| \leq M$. Let $V(A) = (A-1)(A+1)^{-1}$. Then

 $\|V(A)^n\| \leq cM^2(1+\log n).$

• • = • • = •

Inverse generator problem

$$e^{-1/z}$$
 is not in \mathcal{B} —it is not uniformly continuous near ($e^{-1/(z+1)}$ is in \mathcal{B} —in fact it is in \mathcal{LM}
 $\left(\frac{z}{z+1}\right)^2 e^{-1/z}$ is also in \mathcal{B} ; it is in \mathcal{LM}

Theorem (*Zwart 2007)

Let -A be the generator of a bounded C_0 -semigroup on a Hilbert space with $\|e^{-tA}\| \le M$, and assume that A has a bounded inverse. Then

$$\|e^{-tA^{-1}}\| \le cM^2 \|(1+A^{-1})^2\|(1+\log(1+t)).$$

*Zwart assumed that -A generates an exponentially stable C_0 -semigroup.

4 3 5 4 3 5

Theorem (Gomilko–Tomilov 2015)

Let A be sectorial of angle $\omega \in [0, \pi/2)$, and let f be a Bernstein function. Then f(A) is sectorial of angle ω (or less).

• • = • • = •

Suppose that A is sectorial of angle less than $\pi/2$, so that $||z(z+A)^{-1}|| \le M_A$ for $z \in \mathbb{C}_+, z \ne 0$.

There is an absolute constant C such that

$$au \int_{\mathbb{R}} \|(au + A)^{-2}\| d au \leq CM_A(\log M_A + 1) \qquad (au > 0)$$

Hence

$$\|f(A)\| \leq CM_A(\log M_A + 1)\|f\|_{\mathcal{B}}$$
 $(f \in \mathcal{B}).$

This was first proved by Vitse, using dyadic decompositions, and with a somewhat larger "constant".

\mathcal{D} -calculus

s>-1, $f:\mathbb{C}_+ o\mathbb{C}$ holomorphic; $f\in\mathcal{D}_s$ if

$$\|f\|_{\mathcal{D}_{s,0}} = \int_0^\infty \int_{\mathbb{R}} \frac{|f'(\alpha + i\beta)|}{(\alpha^2 + \beta^2)^{(s+1)/2}} \, d\beta \, d\alpha < \infty.$$

For A sectorial of angle less than $\pi/2$,

$$f_{\mathcal{D}}(A) := f(\infty) - \frac{2^s}{\pi} \int_0^\infty \int_{\mathbb{R}} f(\alpha + i\beta) (A + \alpha - i\beta)^{-(s+1)/2} d\beta d\alpha.$$

 $\mathcal{B} \subset \mathcal{D}_{s} \subset \mathcal{D}_{ au} \quad (0 < s < au)$

 \mathcal{D}_s is a Banach space, but it is not an algebra; $\bigcup_{s>0} \mathcal{D}_s$ is an algebra but not a Banach space; $\mathcal{D}_s \cap H^{\infty}(\mathbb{C}_+)$ is a Banach algebra.

 $f_{\mathcal{D}}(A)$ does not depend on *s*, and it has the properties of a functional calculus.

Let
$$f_n(z) = \left(\frac{z-1}{z+1}\right)^n$$
. For $s > 0$, the sequence $||f_n||_{\mathcal{D}_s}$ is bounded.

Hence the Cayley transform question has a positive answer for bounded holomorphic C_0 -semigroups (first proved by deLaubenfels in 1985)

If there is a $\mathcal{D}\text{-calculus}$ for an operator A, then A is sectorial of angle less than $\pi/2.$

 $\psi \in (0, \pi)$, $f : \Sigma_{\psi} \to \mathbb{C}$ holomorphic; $f \in \mathcal{H}_{\psi}$ if $f' \in H^1(\Sigma_{\psi})$ \mathcal{H}_{ψ} is a Banach algebra in the norm

$$\|f\|_{\mathcal{H}_{\psi}} = \|f\|_{H^{\infty}(\Sigma_{\psi})} + \|f'\|_{H^{1}(\Sigma_{\psi})}.$$

A sectorial of angle $heta \in (0,\pi/2)$, $\psi \in (heta,\pi/2)$, $\gamma = \pi/(2\psi)$,

 $f \in \mathcal{H}_{\psi}, g(z) = f(z^{1/\gamma}).$ Then $g \in \mathcal{D}_s$ for all s > -1.

$$f_{\mathcal{H}}(A) := g_{\mathcal{D}}(A^{\gamma}).$$

This does not depend on $\psi,$ and it defines a bounded functional calculus.

If there is a \mathcal{H}_{ψ} -calculus for an operator A, then A is sectorial of angle less than ψ .

伺 ト イ ヨ ト イ ヨ ト

-

There is a Banach algebra \mathcal{A} of holomorphic functions on \mathbb{C}_+ such that \mathcal{B} is continuously included in \mathcal{A} , and every operator A which is the negative generator of a bounded C_0 -semigroup on a Hilbert space has a bounded \mathcal{A} -calculus.

Question: Let
$$f_n(z) = \left(\frac{z-1}{z+1}\right)^n$$
. Is the sequence $\|f_n\|_{\mathcal{A}}$ bounded?

If the answer is Yes, then the Cayley transform question has a positive answer for bounded C_0 -semigroups on Hilbert space.

\mathcal{B} -calculus

Batty, Gomilko and Tomilov, Math. Ann. 379 (2021), no. 1-2, 23–93

Batty, Gomilko and Tomilov, JFA 281 (2021), no. 6, 109089

$\mathcal{D}\text{-}calculus$ and $\mathcal{H}\text{-}calculus$

Batty, Gomilko and Tomilov, arxiv.org:2101.05083

ALM-calculus

L. Arnold and C. Le Merdy, arxiv.org:2012.04440

4 E 6 4 E

CJKB

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Let T be a contraction on Hilbert space, and p(z) be a polynomial.

 $\|p(T)\| \le \|p\|_{\infty}$ (sup-norm on the unit disc)

Then we can extend to the disc algebra, by continuity

 $\|f(T)\|\leq \|f\|_{\infty}$

If $S = V^{-1}TV$, $f(S) = V^{-1}f(T)V$

What about power-bounded operators in general?

Peller (1982):

T power-bounded on Hilbert space

Besov norm for holomorphic f on the unit disc \mathbb{D} :

$$\|f\|_B := \int_0^1 \sup_{\theta} |f'(re^{i\theta})| \, dr$$

$$\|p(T)\| \leq C \|p\|_B$$

Hence there is a bounded functional calculus for the analytic Besov space $B^0_{\infty,1}(\mathbb{D})$ of functions $f \in H^{\infty}(\mathbb{D})$ for which $||f||_B < \infty$.

4 3 6 4 3 6

Theorem (Zwart 2012, Haase–Rozendaal 2013)

If $f \in H^{\infty}[\tau, \infty)$ and f extends to a function in H^{∞}_{ω} , and -A generates a bounded C_0 -semigroup on a Hilbert space, where $\|e^{-tA}\| \leq M$, then

$$\|f(A)\| \leq cM^2 e^{-\omega au} \|f\|_{\mathcal{H}^\infty_\omega} \left(2 + rac{1}{2}\log\left(1 + rac{1}{ au\omega}
ight)
ight).$$

伺 ト イヨ ト イヨト

Theorem (Schwenninger–Zwart*)

Assume that -A generates an exponentially stable C_0 -semigroup on a Hilbert space, so that there exist $M, \delta > 0$ such that

$$\|e^{-tA}\| \leq Me^{-\delta t} \qquad (t \geq 0).$$

Let $f \in H^{\infty}(\mathbb{C}_+)$ and assume that there is a monotonic decreasing function $h : \mathbb{R}_+ \to (0, \infty)$ such that

$$|f(\mathit{is})| \leq h(|s|), \qquad \|h\|_{\delta} := \int_0^\infty rac{h(t)}{t+\delta} < \infty.$$

Then

$$\|f(A)\|\leq cM^2\|h\|_{\delta}.$$

*Announced at Bedlewo, April 2017, for $h(s) = (\log(s + e))^{-\alpha}$ where $\alpha > 1$.

Appendix: proof of density

Proposition (Arveson?, Olesen?, Pedersen?)

Let $\{U(t) : t \in \mathbb{R}\}$ be a bounded C_0 -group on a Banach space Y, with generator G, and let Y(K) denote the spectral subspace corresponding to a closed subset K of \mathbb{R} . Assume that G has dense range. Then

$$\bigcup \{Y(K) : K \text{ compact, } 0 \notin K\}$$

is dense in Y.

Let
$$Y = \mathcal{B}_0 := \{f \in \mathcal{B} : f(\infty) = 0\}$$
. For $f \in \mathcal{B}_0$ and $a \in \overline{\mathbb{C}}_+$, let
 $(T_{\mathcal{B}}(a)f)(z) = f(z+a).$

Then $\{T_{\mathcal{B}_0}(a) : a \in \mathbb{C}_+ \cup \{0\}\}$ is a holomorphic C_0 -semigroup of contractions on \mathcal{B}_0 , and $\{T_{\mathcal{B}_0}(is) : s \in \mathbb{R}\}$ is a C_0 -group of isometries. Moreover the generator has dense range and its spectrum is $i\mathbb{R}_+$.

It follows that \mathcal{B} is the space of all functions $f \in H^{\infty}(\mathbb{C}_+)$, such that the boundary function f^b has a Littlewood–Paley decomposition for $(0, \infty)$ of the form

$$f^b = f(\infty) + \sum_{k \in \mathbb{Z}} f^b * \psi_k,$$

which is absolutely convergent in the norm of $L^{\infty}(\mathbb{R})$.