Atkin-Lehner theory for Drinfeld modular forms

Maria Valentino

8th European Congress of Mathematics 20-26 June 2021 Portorož - Slovenia

Minisymposium Number Theory 22 June 2021

< ロト < 部 ト < 注</p>

Atkin-Lehner theory

Let $k, N \in \mathbb{N}$ and $p \in \mathbb{Z}$ a prime.

Let $S_k(\Gamma_0(N))$ be the \mathbb{C} -vector space of cusp forms of level N and weight k.

Let \mathbf{T}_p be the Hecke operator if $p \nmid N$, and let \mathbf{U}_p be the Atkin-Lehner operator if p|N.

・ロト ・日子・ ・ ヨト・

Atkin-Lehner theory

Let $k, N \in \mathbb{N}$ and $p \in \mathbb{Z}$ a prime.

Let $S_k(\Gamma_0(N))$ be the \mathbb{C} -vector space of cusp forms of level N and weight k.

Let \mathbf{T}_p be the Hecke operator if $p \neq N$, and let \mathbf{U}_p be the Atkin-Lehner operator if p|N.

If M|N, we observe that $\Gamma_0(N) \subset \Gamma_0(M) \implies S_k(\Gamma_0(M)) \subset S_k(\Gamma_0(N))$. Then, forms in $S_k(\Gamma_0(N))$ can be divided in

Oldforms

All cusp forms coming from a lower level.

Newforms

The orthogonal complement of oldforms wrt the Petersson inner product.

 \mathbf{T}_p is self-adjoint and a diagonalizing basis is made of *eigenforms* (simultaneous eigenvectors).

イロト イヨト イヨト イヨ

Atkin-Lehner theory

Let $k,N\in\mathbb{N}$ and $p\in\mathbb{Z}$ a prime.

Let $S_k(\Gamma_0(N))$ be the \mathbb{C} -vector space of cusp forms of level N and weight k.

Let \mathbf{T}_p be the Hecke operator if $p \nmid N$, and let \mathbf{U}_p be the Atkin-Lehner operator if p|N.

If M|N, we observe that $\Gamma_0(N) \subset \Gamma_0(M) \implies S_k(\Gamma_0(M)) \subset S_k(\Gamma_0(N))$. Then, forms in $S_k(\Gamma_0(N))$ can be divided in

Oldforms

All cusp forms coming from a lower level.

Newforms

The orthogonal complement of oldforms wrt the Petersson inner product.

 \mathbf{T}_p is self-adjoint and a diagonalizing basis is made of *eigenforms* (simultaneous eigenvectors).

Consequences:

- \mathbf{U}_p eigenvalues have slope, i.e. *p*-adic valuation, < k 1 in case of oldforms and k/2 1 in case of newforms;
- Gouvêa-Mazur conjectures, Coleman families and much more.

(ロ) (日) (日) (日) (日)

Let $q = p^r$ for a fixed prime $p \in \mathbb{Z}$.

	$A = \mathbb{F}_q[t]$	\mathbb{Z}	Ω , $\mathbb{m}^{1}(\mathbb{C})$, $\mathbb{m}^{1}(\mathbb{K})$	ππ
	$K = \mathbb{F}_q(t)$	Q	$\Omega := \mathbb{P}^{-}(\mathbb{C}_{\infty}) - \mathbb{P}^{-}(K_{\infty})$	IHI
			$GL_2(A)$	$SL_2(\mathbb{Z})$
	$K_{\infty} = \mathbb{F}_{q}((1/t))$	R		512(2)
-		• C	$\Gamma \setminus \mathbb{P}^1(K)$	cusps
	$\mathbb{C}_{\infty} = K_{\infty}$			I

Let $q = p^r$ for a fixed prime $p \in \mathbb{Z}$.

$A = \mathbb{F}_q[t]$	\mathbb{Z}	$\Omega := \mathbb{D}^1(\mathbb{C}) = \mathbb{D}^1(\mathbb{K})$	тат
$K = \mathbb{F}_q(t)$	\mathbb{Q}	$\frac{1}{2} = r \left(\mathbb{C}_{\infty} \right) - r \left(\Lambda_{\infty} \right)$	
$K_{\infty} = \mathbb{F}_q((1/t))$	R	$GL_2(A)$	$SL_2(\mathbb{Z})$
$\mathbb{C}_{\infty} = \hat{\overline{K}}_{\infty}$	\mathbb{C}	$\Gamma \setminus \mathbb{P}^{1}(K)$	cusps

For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(K_{\infty}), k, m \in \mathbb{Z}$ and $f : \Omega \to \mathbb{C}_{\infty}$, we define

 $(f|_{k,m}\gamma)(z) \coloneqq f(\gamma z)(\det \gamma)^m(cz+d)^{-k}.$

Let $q = p^r$ for a fixed prime $p \in \mathbb{Z}$.

$A = \mathbb{F}_q[t]$	\mathbb{Z}	$\Omega := \mathbb{D}^1(\mathbb{C}) = \mathbb{D}^1(K)$	тл
$K = \mathbb{F}_q(t)$	Q	$\frac{\Sigma = \mathbb{E} \left(\mathbb{C}_{\infty} \right) - \mathbb{E} \left(\mathbb{A}_{\infty} \right)}{\mathbb{C} \mathbb{E} \left(\mathbb{A} \right)}$	
$K_{\infty} = \mathbb{F}_q((1/t))$	R	$\frac{GL_2(A)}{\Gamma(M)}$	$SL_2(\mathbb{Z})$
$\mathbb{C}_{\infty} = \hat{\overline{K}}_{\infty}$	\mathbb{C}	$1 \setminus \mathbb{P}^{2}(K)$	cusps

For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(K_{\infty}), k, m \in \mathbb{Z}$ and $f : \Omega \to \mathbb{C}_{\infty}$, we define

 $(f|_{k,m}\gamma)(z) \coloneqq f(\gamma z)(\det \gamma)^m(cz+d)^{-k}.$

Fix $\Gamma = \Gamma_0(\mathfrak{m}) = \{\gamma \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \pmod{\mathfrak{m}}\}, \mathfrak{m} \text{ ideal of } A.$

Let $q = p^r$ for a fixed prime $p \in \mathbb{Z}$.

$A = \mathbb{F}_q[t]$	Z	$\Omega := \mathbb{D}^1(\mathbb{C}) = \mathbb{D}^1(K)$	गमा
$K = \mathbb{F}_q(t)$	Q	$\Omega := \mathbb{E} \left(\mathbb{C}_{\infty} \right) - \mathbb{E} \left(\mathbb{K}_{\infty} \right)$	111
$V \equiv ((1/4))$	$= \mathbb{F}_q((1/t)) \mathbb{R}$	$GL_2(A)$	$SL_2(\mathbb{Z})$
$\Lambda_{\infty} = \mathbb{F}_q((1/t))$		$\Gamma \setminus \mathbb{P}^1(K)$	cusps
$\mathbb{C}_{\infty} = \overline{K}_{\infty}$	\mathbb{C}		1

For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(K_{\infty}), k, m \in \mathbb{Z}$ and $f : \Omega \to \mathbb{C}_{\infty}$, we define

$$(f|_{k,m}\gamma)(z) \coloneqq f(\gamma z)(\det \gamma)^m(cz+d)^{-k}.$$

Fix $\Gamma = \Gamma_0(\mathfrak{m}) = \{\gamma \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \pmod{\mathfrak{m}}\}, \mathfrak{m} \text{ ideal of } A.$

Definition

A rigid analytic function $f: \Omega \to \mathbb{C}_{\infty}$ is called a *Drinfeld modular form of weight* k and type $m \in \mathbb{Z}/(q-1)\mathbb{Z}$ for Γ if

- f is holomorphic on Ω and at all cusps;
- $(f|_{k,m}\gamma)(z) = f(z) \quad \forall \gamma \in \Gamma.$

A Drinfeld modular form f is called a *cusp form* if it vanishes at all cusps.

- We denote by $M_{k,m}(\Gamma_0(\mathfrak{m}))$ and $S_{k,m}(\Gamma_0(\mathfrak{m}))$ the finite dimensional \mathbb{C}_{∞} -vector spaces of Drinfeld modular forms and Drinfeld cusp forms of weight k, type m and level \mathfrak{m} .
- From now on $\mathfrak{m} = (\pi)$, $\mathfrak{p} = (P)$ with $\pi, P \in A$ monic and P irreducible of degree d with $(\pi, P) = 1$.
- We have Hecke operators $\mathbf{T}_{\mathfrak{p}}$ ($\mathfrak{p} \neq \mathfrak{m}$) and $\mathbf{U}_{\mathfrak{p}}$ ($\mathfrak{p}|\mathfrak{m}$) acting on $M_{k,m}(\Gamma_0(\mathfrak{m}))$.

- We denote by $M_{k,m}(\Gamma_0(\mathfrak{m}))$ and $S_{k,m}(\Gamma_0(\mathfrak{m}))$ the finite dimensional \mathbb{C}_{∞} -vector spaces of Drinfeld modular forms and Drinfeld cusp forms of weight k, type m and level \mathfrak{m} .
- From now on $\mathfrak{m} = (\pi)$, $\mathfrak{p} = (P)$ with $\pi, P \in A$ monic and P irreducible of degree d with $(\pi, P) = 1$.
- We have Hecke operators $\mathbf{T}_{\mathfrak{p}}$ ($\mathfrak{p} \nmid \mathfrak{m}$) and $\mathbf{U}_{\mathfrak{p}}$ ($\mathfrak{p} \mid \mathfrak{m}$) acting on $M_{k,m}(\Gamma_0(\mathfrak{m}))$.
- Consider the *degeneracy maps*:

$$\begin{aligned} \mathbf{D}_{1}, \mathbf{D}_{\mathfrak{p}} : S_{k,m}(\Gamma_{0}(\mathfrak{m})) \to S_{k,m}(\Gamma_{0}(\mathfrak{m}\mathfrak{p})) \\ f \mapsto f \\ f \mapsto f |_{k,m} \begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix} \end{aligned}$$

- We denote by $M_{k,m}(\Gamma_0(\mathfrak{m}))$ and $S_{k,m}(\Gamma_0(\mathfrak{m}))$ the finite dimensional \mathbb{C}_{∞} -vector spaces of Drinfeld modular forms and Drinfeld cusp forms of weight k, type m and level \mathfrak{m} .
- From now on $\mathfrak{m} = (\pi)$, $\mathfrak{p} = (P)$ with $\pi, P \in A$ monic and P irreducible of degree d with $(\pi, P) = 1$.
- We have Hecke operators $\mathbf{T}_{\mathfrak{p}}$ ($\mathfrak{p} \nmid \mathfrak{m}$) and $\mathbf{U}_{\mathfrak{p}}$ ($\mathfrak{p} \mid \mathfrak{m}$) acting on $M_{k,m}(\Gamma_0(\mathfrak{m}))$.
- Consider the *degeneracy maps*:

$$\begin{aligned} \mathbf{D}_{1}, \mathbf{D}_{\mathfrak{p}} &: S_{k,m}(\Gamma_{0}(\mathfrak{m})) \to S_{k,m}(\Gamma_{0}(\mathfrak{m}\mathfrak{p})) \\ & f \mapsto f \\ & f \mapsto f \mid_{k,m} \begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix} \end{aligned}$$

Definition

The space of \mathfrak{p} -oldforms of level $\mathfrak{m}\mathfrak{p}$, denoted by $S_{k,m}^{\mathfrak{p}-old}(\Gamma_0(\mathfrak{m}\mathfrak{p}))$, is the subspace of $S_{k,m}(\Gamma_0(\mathfrak{m}\mathfrak{p}))$ generated by the set

$$\{(\mathbf{D}_1,\mathbf{D}_{\mathfrak{p}})(f_1,f_2)=\mathbf{D}_1f_1+\mathbf{D}_{\mathfrak{p}}f_2:(f_1,f_2)\in S_{k,m}(\Gamma_0(\mathfrak{m}))^2\}.$$

Let $R_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}}$ be a set of representatives for $\Gamma_0(\mathfrak{m}\mathfrak{p})\backslash\Gamma_0(\mathfrak{m})$.

▲□ > ▲圖 > ▲ 国 > ▲ 国 >

Let $R_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}}$ be a set of representatives for $\Gamma_0(\mathfrak{m}\mathfrak{p})\backslash\Gamma_0(\mathfrak{m})$. The *trace map* is

$$Tr_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}}: S_{k,m}(\Gamma_{0}(\mathfrak{m}\mathfrak{p})) \to S_{k,m}(\Gamma_{0}(\mathfrak{m}))$$
$$f \mapsto \sum_{\gamma \in R_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}}} f|_{k,m} \gamma.$$

Let $R_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}}$ be a set of representatives for $\Gamma_0(\mathfrak{m}\mathfrak{p})\backslash\Gamma_0(\mathfrak{m})$. The *trace map* is

$$Tr_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}}: S_{k,m}(\Gamma_{0}(\mathfrak{m}\mathfrak{p})) \to S_{k,m}(\Gamma_{0}(\mathfrak{m}))$$
$$f \mapsto \sum_{\gamma \in R_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}}} f|_{k,m}\gamma.$$

and the *twisted trace map* is

$$Tr_{\mathfrak{m}}^{'\mathfrak{mp}}: S_{k,m}(\Gamma_{0}(\mathfrak{mp})) \to S_{k,m}(\Gamma_{0}(\mathfrak{m}))$$
$$f \mapsto \sum_{\gamma \in R_{\mathfrak{m}}^{\mathfrak{mp}}} (f|_{k,m} \begin{pmatrix} 0 & -1 \\ \pi P & 0 \end{pmatrix})|_{k,m} \gamma$$

where $\begin{pmatrix} 0 & -1 \\ \pi P & 0 \end{pmatrix}$ is a matrix representing the *Fricke involution* of level mp

$$Fr^{(\mathfrak{mp})}: S_{k,m}(\Gamma_0(\mathfrak{mp})) \to S_{k,m}(\Gamma_0(\mathfrak{mp}))$$
$$f \mapsto f|_{k,m} \begin{pmatrix} 0 & -1 \\ \pi P & 0 \end{pmatrix}$$

Let $R_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}}$ be a set of representatives for $\Gamma_0(\mathfrak{m}\mathfrak{p})\backslash\Gamma_0(\mathfrak{m})$. The *trace map* is

$$Tr_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}}: S_{k,m}(\Gamma_{0}(\mathfrak{m}\mathfrak{p})) \to S_{k,m}(\Gamma_{0}(\mathfrak{m}))$$
$$f \mapsto \sum_{\gamma \in R_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}}} f|_{k,m}\gamma.$$

and the *twisted trace map* is

$$\boldsymbol{Tr}_{\mathfrak{m}}^{'\mathfrak{m}\mathfrak{p}}:S_{k,m}(\Gamma_{0}(\mathfrak{m}\mathfrak{p}))\to S_{k,m}(\Gamma_{0}(\mathfrak{m}))$$
$$f\mapsto \sum_{\gamma\in R_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}}}(f|_{k,m}\begin{pmatrix} 0 & -1\\ \pi P & 0 \end{pmatrix})|_{k,m}\gamma$$

where $\begin{pmatrix} 0 & -1 \\ \pi P & 0 \end{pmatrix}$ is a matrix representing the *Fricke involution* of level mp

$$Fr^{(\mathfrak{mp})}: S_{k,m}(\Gamma_0(\mathfrak{mp})) \to S_{k,m}(\Gamma_0(\mathfrak{mp}))$$
$$f \mapsto f|_{k,m} \begin{pmatrix} 0 & -1 \\ \pi P & 0 \end{pmatrix}$$

Definition

The space of \mathfrak{p} -newforms of level \mathfrak{mp} , denoted by $S_{k,m}^{\mathfrak{p}-new}(\Gamma_0(\mathfrak{mp}))$, is given by $Ker(\mathbf{Tr}_{\mathfrak{m}}^{\mathfrak{mp}}) \cap Ker(\mathbf{Tr}_{\mathfrak{m}}^{'\mathfrak{mp}})$.

Maria Valentino (8ECM)

・ロト ・日下・ ・ ヨト・

Proposition (Bandini, V. - 2020)

If $\dim_{\mathbb{C}_{\infty}} S_{k,m}(GL_2(A)) \leq 1$, then $S_{k,m}(\Gamma_0(t))$ is direct sum of oldforms and newforms.

Proposition (Bandini, V. - 2020)

If $\dim_{\mathbb{C}_{\infty}} S_{k,m}(GL_2(A)) \leq 1$, then $S_{k,m}(\Gamma_0(t))$ is direct sum of oldforms and newforms.

 $S_{k,m}(\Gamma_{0}(\mathfrak{p})) \qquad \text{Theorem (Bandini, V. - 2020)}$ $We have that S_{k,m}(\Gamma_{0}(\mathfrak{p})) = S_{k,m}^{\mathfrak{p}-new}(\Gamma_{0}(\mathfrak{p})) \oplus S_{k,m}^{\mathfrak{p}-old}(\Gamma_{0}(\mathfrak{p})) \text{ if and}$ only if the map $\mathcal{D} \coloneqq Id - P^{k-2m}(Tr'_{(1)})^{2}$ is bijective on $S_{k,m}(\Gamma_{0}(\mathfrak{p})).$

(日)

Proposition (Bandini, V. - 2020)

If $\dim_{\mathbb{C}_{\infty}} S_{k,m}(GL_2(A)) \leq 1$, then $S_{k,m}(\Gamma_0(t))$ is direct sum of oldforms and newforms.

$$S_{k,m}(\Gamma_{0}(\mathfrak{p})) \qquad \text{Theorem (Bandini, V. - 2020)} \\ We have that S_{k,m}(\Gamma_{0}(\mathfrak{p})) = S_{k,m}^{\mathfrak{p}-new}(\Gamma_{0}(\mathfrak{p})) \oplus S_{k,m}^{\mathfrak{p}-old}(\Gamma_{0}(\mathfrak{p})) \text{ if and} \\ \text{only if the map } \mathcal{D} \coloneqq Id - P^{k-2m}(Tr_{(1)}^{'\mathfrak{p}})^{2} \text{ is bijective on } S_{k,m}(\Gamma_{0}(\mathfrak{p})). \\ \\ S_{k,m}(\Gamma_{0}(\mathfrak{m})) \qquad \text{If the map } \mathcal{D} \coloneqq Id - (\pi P)^{k-2m}(Tr_{\mathfrak{m}}^{'\mathfrak{m}\mathfrak{p}})^{2} \text{ is bijective on } S_{k,m}(\Gamma_{0}(\mathfrak{m})), \\ \text{then we have the direct sum decomposition} \\ S_{k,m}(\Gamma_{0}(\mathfrak{m})) = S_{k,m}^{\mathfrak{p}-new}(\Gamma_{0}(\mathfrak{m}\mathfrak{p})) \oplus S_{k,m}^{\mathfrak{p}-old}(\Gamma_{0}(\mathfrak{m}\mathfrak{p})) \\ \text{Problem: to get the full equivalence } Ker(\mathcal{D}) \text{ should contain a form} \\ f \neq 0 \text{ and also } Fr^{(\mathfrak{m})}(f) \text{ for a suitable } f \in S_{k,m}(\Gamma_{0}(\mathfrak{m})). \\ \end{array}$$

-

・ロト ・日下・ ・ ヨト・

• Let $\mathfrak{n} = (\nu), \mathfrak{d} = (\delta) \subset A$ be ideals such that $\mathfrak{d} || \mathfrak{n}$. Denote by $W_{\mathfrak{d}}^{\mathfrak{n}}$ a matrix of the form

$$\left(\begin{array}{cc} \delta a & b \\ \nu c & \delta d \end{array}\right) \quad \text{with} \quad a, b, c, d \in A, \ \delta^2 a d - \nu c b = \zeta \delta \ \text{and} \ \zeta \in \mathbb{F}_q^* .$$

• It is easy to verify that such matrices are in the normalizer of $\Gamma_0(\mathfrak{n})$.

• Let $\mathfrak{n} = (\nu), \mathfrak{d} = (\delta) \subset A$ be ideals such that $\mathfrak{d} || \mathfrak{n}$. Denote by $W_{\mathfrak{d}}^{\mathfrak{n}}$ a matrix of the form

$$\left(\begin{array}{cc} \delta a & b \\ \nu c & \delta d \end{array} \right) \quad \text{with} \quad a, b, c, d \in A, \ \delta^2 a d - \nu c b = \zeta \delta \ \text{and} \ \zeta \in \mathbb{F}_q^*$$

• It is easy to verify that such matrices are in the normalizer of $\Gamma_0(\mathfrak{n})$.

Definition

Let $\mathfrak{n} = (\nu), \mathfrak{d} = (\delta) \subset A$ be ideals such that $\mathfrak{d} || \mathfrak{n}$. The *(partial) Atkin–Lehner involution* $\mathbf{W}^{\mathfrak{n}}_{\mathfrak{d}}$ acting on $S_{k,m}(\Gamma_0(\mathfrak{n}))$ is:

$$\mathbf{W}^{\mathfrak{n}}_{\mathfrak{d}}: S_{k,m}(\Gamma_{0}(\mathfrak{n})) \to S_{k,m}(\Gamma_{0}(\mathfrak{n}))$$
$$f(z) \mapsto (f|_{k,m}W^{\mathfrak{n}}_{\mathfrak{d}})(z)$$

for any $W^{\mathfrak{n}}_{\mathfrak{d}}$ as above.

メロト メロト メヨト メヨ

• Let $\mathfrak{n} = (\nu), \mathfrak{d} = (\delta) \subset A$ be ideals such that $\mathfrak{d} || \mathfrak{n}$. Denote by $W_{\mathfrak{d}}^{\mathfrak{n}}$ a matrix of the form

$$\left(\begin{array}{cc} \delta a & b \\ \nu c & \delta d \end{array} \right) \quad \text{with} \quad a, b, c, d \in A, \ \delta^2 a d - \nu c b = \zeta \delta \ \text{and} \ \zeta \in \mathbb{F}_q^*$$

• It is easy to verify that such matrices are in the normalizer of $\Gamma_0(\mathfrak{n})$.

Definition

Let $\mathfrak{n} = (\nu), \mathfrak{d} = (\delta) \subset A$ be ideals such that $\mathfrak{d} || \mathfrak{n}$. The *(partial) Atkin–Lehner involution* $\mathbf{W}^{\mathfrak{n}}_{\mathfrak{d}}$ acting on $S_{k,m}(\Gamma_0(\mathfrak{n}))$ is:

$$\mathbf{W}^{\mathfrak{n}}_{\mathfrak{d}}: S_{k,m}(\Gamma_{0}(\mathfrak{n})) \to S_{k,m}(\Gamma_{0}(\mathfrak{n}))$$
$$f(z) \mapsto (f|_{k,m}W^{\mathfrak{n}}_{\mathfrak{d}})(z)$$

for any $W^{\mathfrak{n}}_{\mathfrak{d}}$ as above.

• If $\mathfrak{d} = \mathfrak{n}$ we have that $\mathbf{W}_{\mathfrak{n}}^{\mathfrak{n}}$ is the *(full) Atkin–Lehner involution* (Fricke involution) and it can be represented by the matrix

$$W_{\mathfrak{n}}^{\mathfrak{n}} = \left(\begin{array}{cc} 0 & -1 \\ \nu & 0 \end{array}\right)$$

Let $\mathfrak{n} = (\nu), \mathfrak{d} = (\delta) \subset A$ be ideals such that $\mathfrak{d} || \mathfrak{n}$. If $f \in S_{k,m}(\Gamma_0(\mathfrak{d}))$ then

$$f|_{k,m} \begin{pmatrix} \frac{\nu}{\delta} & 0\\ 0 & 1 \end{pmatrix} \coloneqq \mathbf{D}_{\frac{\mathfrak{n}}{\mathfrak{d}}}(f) = f|_{k,m} W_{\frac{\mathfrak{n}}{\mathfrak{d}}}^{\mathfrak{n}} \in S_{k,m}(\Gamma_0(\mathfrak{n})).$$

Let $\mathfrak{n} = (\nu), \mathfrak{d} = (\delta) \subset A$ be ideals such that $\mathfrak{d} || \mathfrak{n}$. If $f \in S_{k,m}(\Gamma_0(\mathfrak{d}))$ then

$$f|_{k,m} \begin{pmatrix} \frac{\nu}{\delta} & 0\\ 0 & 1 \end{pmatrix} \coloneqq \mathbf{D}_{\frac{\mathfrak{n}}{\mathfrak{d}}}(f) = f|_{k,m} W_{\frac{\mathfrak{n}}{\mathfrak{d}}}^{\mathfrak{n}} \in S_{k,m}(\Gamma_0(\mathfrak{n})).$$

• If $\mathfrak{m} = (\pi), \mathfrak{p} = (P) \subset A$ with $(\pi, P) = 1$ and P irreducible

Let $\mathfrak{n} = (\nu), \mathfrak{d} = (\delta) \subset A$ be ideals such that $\mathfrak{d} || \mathfrak{n}$. If $f \in S_{k,m}(\Gamma_0(\mathfrak{d}))$ then

$$f|_{k,m} \begin{pmatrix} \frac{\nu}{\delta} & 0\\ 0 & 1 \end{pmatrix} \coloneqq \mathbf{D}_{\frac{\mathfrak{n}}{\mathfrak{d}}}(f) = f|_{k,m} W_{\frac{\mathfrak{n}}{\mathfrak{d}}}^{\mathfrak{n}} \in S_{k,m}(\Gamma_0(\mathfrak{n})).$$

• If $\mathfrak{m} = (\pi), \mathfrak{p} = (P) \subset A$ with $(\pi, P) = 1$ and P irreducible

Let $\mathfrak{n} = (\nu), \mathfrak{d} = (\delta) \subset A$ be ideals such that $\mathfrak{d} || \mathfrak{n}$. If $f \in S_{k,m}(\Gamma_0(\mathfrak{d}))$ then

$$f|_{k,m} \begin{pmatrix} \frac{\nu}{\delta} & 0\\ 0 & 1 \end{pmatrix} \coloneqq \mathbf{D}_{\frac{\mathfrak{n}}{\mathfrak{d}}}(f) = f|_{k,m} W_{\frac{\mathfrak{n}}{\mathfrak{d}}}^{\mathfrak{n}} \in S_{k,m}(\Gamma_0(\mathfrak{n})).$$

• If $\mathfrak{m} = (\pi), \mathfrak{p} = (P) \subset A$ with $(\pi, P) = 1$ and P irreducible

イロト イヨト イヨト イヨト 一日

Let $\mathfrak{n} = (\nu), \mathfrak{d} = (\delta) \subset A$ be ideals such that $\mathfrak{d} || \mathfrak{n}$. If $f \in S_{k,m}(\Gamma_0(\mathfrak{d}))$ then

$$f|_{k,m} \begin{pmatrix} \frac{\nu}{\delta} & 0\\ 0 & 1 \end{pmatrix} \coloneqq \mathbf{D}_{\frac{\mathfrak{n}}{\mathfrak{d}}}(f) = f|_{k,m} W_{\frac{\mathfrak{n}}{\mathfrak{d}}}^{\mathfrak{n}} \in S_{k,m}(\Gamma_0(\mathfrak{n})).$$

• If $\mathfrak{m} = (\pi), \mathfrak{p} = (P) \subset A$ with $(\pi, P) = 1$ and P irreducible

 $S_{k,m}(\Gamma_{0}(\mathfrak{m}\mathfrak{p})) \mathbf{D}_{\mathfrak{p}}(f), \mathbf{D}_{1}(f)$ $D_{\mathfrak{p}}(f) = \mathbf{W}_{\mathfrak{p}}^{\mathfrak{m}\mathfrak{p}}(f)$ $D_{1}(f) = \mathbf{W}_{1}^{\mathfrak{m}\mathfrak{p}}(f)$ $S_{k,m}(\Gamma_{0}(\mathfrak{m})) \ni f$

 $S_{k,m}^{\mathfrak{p}-old}(\Gamma_0(\mathfrak{m}\mathfrak{p})) = Span\{\mathbf{W}_1^{\mathfrak{m}\mathfrak{p}}(S_{k,m}(\Gamma_0(\mathfrak{m}))), \mathbf{W}_{\mathfrak{p}}^{\mathfrak{m}\mathfrak{p}}(S_{k,m}(\Gamma_0(\mathfrak{m})))\}.$

(日) (四) (三) (三) (三)

Let $\mathfrak{n} = (\nu), \mathfrak{d} = (\delta) \subset A$ be ideals such that $\mathfrak{d} || \mathfrak{n}$. If $f \in S_{k,m}(\Gamma_0(\mathfrak{d}))$ then

$$f|_{k,m} \begin{pmatrix} \frac{\nu}{\delta} & 0\\ 0 & 1 \end{pmatrix} \coloneqq \mathbf{D}_{\frac{\mathfrak{n}}{\mathfrak{d}}}(f) = f|_{k,m} W_{\frac{\mathfrak{n}}{\mathfrak{d}}}^{\mathfrak{n}} \in S_{k,m}(\Gamma_0(\mathfrak{n})).$$

• If $\mathfrak{m} = (\pi), \mathfrak{p} = (P) \subset A$ with $(\pi, P) = 1$ and P irreducible

 $S_{k,m}(\Gamma_{0}(\mathfrak{m}\mathfrak{p})) \mathbf{D}_{\mathfrak{p}}(f), \mathbf{D}_{1}(f)$ $\mathbf{D}_{\mathfrak{p}}(f) = \mathbf{W}_{\mathfrak{p}}^{\mathfrak{m}\mathfrak{p}}(f)$ $\mathbf{D}_{1}(f) = \mathbf{W}_{1}^{\mathfrak{m}\mathfrak{p}}(f)$ $S_{k,m}(\Gamma_{0}(\mathfrak{m})) \ni f$

 $S_{k,m}^{\mathfrak{p}-old}(\Gamma_0(\mathfrak{m}\mathfrak{p})) = Span\{\mathbf{W}_1^{\mathfrak{m}\mathfrak{p}}(S_{k,m}(\Gamma_0(\mathfrak{m}))), \mathbf{W}_{\mathfrak{p}}^{\mathfrak{m}\mathfrak{p}}(S_{k,m}(\Gamma_0(\mathfrak{m})))\}.$

Theorem (V. - 2021)

With assumptions on \mathfrak{m} and \mathfrak{p} as above, let $\mathfrak{d} = (\delta)$ be such that $\delta || \pi$. Then

$$\mathbf{W}_{\mathfrak{d}}^{\mathfrak{m}}(\mathbf{T}_{\mathfrak{p}}(f)) = \mathbf{T}_{\mathfrak{p}}(\mathbf{W}_{\mathfrak{d}}^{\mathfrak{m}}(f)) \text{ if } f \in S_{k,m}(\Gamma_{0}(\mathfrak{m}))$$
$$\mathbf{W}_{\mathfrak{d}}^{\mathfrak{m}\mathfrak{p}}(\mathbf{U}_{\mathfrak{p}}(f)) = \mathbf{U}_{\mathfrak{p}}(\mathbf{W}_{\mathfrak{d}}^{\mathfrak{m}\mathfrak{p}}(f)) \text{ if } f \in S_{k,m}(\Gamma_{0}(\mathfrak{m}\mathfrak{p}))$$

イロト イヨト イヨト イヨト

• Recall that for $f \in S_{k,m}(\Gamma_0(\mathfrak{mp}))$, the trace is $Tr_{\mathfrak{m}}^{\mathfrak{mp}}(f) = \sum_{\gamma \in R_{\mathfrak{m}}^{\mathfrak{mp}}} f|_{k,m} \gamma$.

• Recall that for $f \in S_{k,m}(\Gamma_0(\mathfrak{m}\mathfrak{p}))$, the trace is $\mathbf{Tr}_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}}(f) = \sum_{\gamma \in R_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}}} f|_{k,m} \gamma$.

Definition

For a $f \in S_{k,m}(\Gamma_0(\mathfrak{mp}))$ and any divisor \mathfrak{d} of \mathfrak{mp} such that $\mathfrak{d}||\mathfrak{mp}$, we define the \mathfrak{d} -twisted trace map as

$$Tr_{\mathfrak{m}}^{\mathfrak{mp}(\mathfrak{d})} \coloneqq Tr_{\mathfrak{m}}^{\mathfrak{mp}} \circ \mathbf{W}_{\mathfrak{d}}^{\mathfrak{mp}} \colon S_{k,m}(\Gamma_{0}(\mathfrak{mp})) \to S_{k,m}(\Gamma_{0}(\mathfrak{m}))$$
$$f \mapsto \sum_{\gamma \in R_{\mathfrak{m}}^{\mathfrak{mp}}} (f|_{k,m} W_{\mathfrak{d}}^{\mathfrak{mp}})|_{k,m} \gamma.$$

• Recall that for $f \in S_{k,m}(\Gamma_0(\mathfrak{mp}))$, the trace is $Tr_{\mathfrak{m}}^{\mathfrak{mp}}(f) = \sum_{\gamma \in R_{\mathfrak{m}}^{\mathfrak{mp}}} f|_{k,m}\gamma$.

Definition

For a $f \in S_{k,m}(\Gamma_0(\mathfrak{mp}))$ and any divisor \mathfrak{d} of \mathfrak{mp} such that $\mathfrak{d}||\mathfrak{mp}$, we define the \mathfrak{d} -twisted trace map as

$$Tr_{\mathfrak{m}}^{\mathfrak{mp}(\mathfrak{d})} \coloneqq Tr_{\mathfrak{m}}^{\mathfrak{mp}} \circ \mathbf{W}_{\mathfrak{d}}^{\mathfrak{mp}} \colon S_{k,m}(\Gamma_{0}(\mathfrak{mp})) \to S_{k,m}(\Gamma_{0}(\mathfrak{m}))$$
$$f \mapsto \sum_{\gamma \in R_{\mathfrak{m}}^{\mathfrak{mp}}} (f|_{k,m} W_{\mathfrak{d}}^{\mathfrak{mp}})|_{k,m} \gamma.$$

Proposition (V. - 2021)

With notations as above, we have:

$$\mathbf{W}_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}} \circ \boldsymbol{T}\boldsymbol{r}_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}(\mathfrak{d})} = \begin{cases} \delta^{2m-k}\boldsymbol{T}\boldsymbol{r}_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}\left(\frac{\mathfrak{m}}{\mathfrak{d}}\right)} & \text{if } \mathfrak{p} + \mathfrak{d} \\ \\ & \\ & \\ & \left(\frac{\delta}{P}\right)^{2m-k}\boldsymbol{T}\boldsymbol{r}_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}\left(\frac{\mathfrak{m}\mathfrak{p}^{2}}{\mathfrak{d}}\right)} & \text{if } \mathfrak{p}|\mathfrak{d} \end{cases}$$

• Recall that for $f \in S_{k,m}(\Gamma_0(\mathfrak{mp}))$, the trace is $Tr_{\mathfrak{m}}^{\mathfrak{mp}}(f) = \sum_{\gamma \in R_{\mathfrak{m}}^{\mathfrak{mp}}} f|_{k,m\gamma}$.

Definition

For a $f \in S_{k,m}(\Gamma_0(\mathfrak{mp}))$ and any divisor \mathfrak{d} of \mathfrak{mp} such that $\mathfrak{d}||\mathfrak{mp}$, we define the \mathfrak{d} -twisted trace map as

$$Tr_{\mathfrak{m}}^{\mathfrak{mp}(\mathfrak{d})} \coloneqq Tr_{\mathfrak{m}}^{\mathfrak{mp}} \circ \mathbf{W}_{\mathfrak{d}}^{\mathfrak{mp}} \colon S_{k,m}(\Gamma_{0}(\mathfrak{mp})) \to S_{k,m}(\Gamma_{0}(\mathfrak{m}))$$
$$f \mapsto \sum_{\gamma \in R_{\mathfrak{m}}^{\mathfrak{mp}}} (f|_{k,m} W_{\mathfrak{d}}^{\mathfrak{mp}})|_{k,m} \gamma.$$

Proposition (V. - 2021)

With notations as above, we have:

$$\mathbf{W}_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}} \circ \boldsymbol{T}\boldsymbol{r}_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}(\mathfrak{d})} = \begin{cases} \delta^{2m-k}\boldsymbol{T}\boldsymbol{r}_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}(\frac{\mathfrak{m}}{\mathfrak{d}})} & \text{if } \mathfrak{p} + \mathfrak{d} \\ \\ (\frac{\delta}{P})^{2m-k}\boldsymbol{T}\boldsymbol{r}_{\mathfrak{m}}^{\mathfrak{m}\mathfrak{p}(\frac{\mathfrak{m}\mathfrak{p}^{2}}{\mathfrak{d}})} & \text{if } \mathfrak{p} | \mathfrak{d} \end{cases}$$

The above proposition implies

$$Ker(Tr_{\mathfrak{m}}^{\mathfrak{mp}(\mathfrak{mp})}) = Ker(Tr_{\mathfrak{m}}^{\mathfrak{mp}(\mathfrak{p})})$$

Maria Valentino (8ECM)

The space of p-newforms of level \mathfrak{mp} , denoted by $S_{k,m}^{\mathfrak{p}-new}(\Gamma_0(\mathfrak{mp}))$, is given by $Ker(\mathbf{Tr}_{\mathfrak{m}}^{\mathfrak{mp}}) \cap Ker(\mathbf{Tr}_{\mathfrak{m}}^{\mathfrak{mp}(\mathfrak{p})})$.

The space of \mathfrak{p} -newforms of level \mathfrak{mp} , denoted by $S_{k,m}^{\mathfrak{p}-new}(\Gamma_0(\mathfrak{mp}))$, is given by $Ker(\mathbf{Tr}_{\mathfrak{m}}^{\mathfrak{mp}}) \cap Ker(\mathbf{Tr}_{\mathfrak{m}}^{\mathfrak{mp}(\mathfrak{p})})$.

Theorem (V. - 2021)

The map $\mathcal{D} \coloneqq Id - P^{k-2m} (\boldsymbol{Tr}_{\mathfrak{m}}^{\mathfrak{mp}(\mathfrak{p})})^2$ is bijective on $S_{k,m}(\Gamma_0(\mathfrak{mp}))$ if and only if we have the direct sum decomposition $S_{k,m}(\Gamma_0(\mathfrak{mp})) = S_{k,m}^{\mathfrak{p}-new}(\Gamma_0(\mathfrak{mp})) \oplus S_{k,m}^{\mathfrak{p}-old}(\Gamma_0(\mathfrak{mp})).$

The space of \mathfrak{p} -newforms of level \mathfrak{mp} , denoted by $S_{k,m}^{\mathfrak{p}-new}(\Gamma_0(\mathfrak{mp}))$, is given by $Ker(\mathbf{Tr}_{\mathfrak{m}}^{\mathfrak{mp}}) \cap Ker(\mathbf{Tr}_{\mathfrak{m}}^{\mathfrak{mp}(\mathfrak{p})})$.

Theorem (V. - 2021)

The map $\mathcal{D} \coloneqq Id - P^{k-2m} (\boldsymbol{Tr}_{\mathfrak{m}}^{\mathfrak{mp}(\mathfrak{p})})^2$ is bijective on $S_{k,m}(\Gamma_0(\mathfrak{mp}))$ if and only if we have the direct sum decomposition $S_{k,m}(\Gamma_0(\mathfrak{mp})) = S_{k,m}^{\mathfrak{p}-new}(\Gamma_0(\mathfrak{mp})) \oplus S_{k,m}^{\mathfrak{p}-old}(\Gamma_0(\mathfrak{mp})).$

Action on cusps

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

The space of \mathfrak{p} -newforms of level \mathfrak{mp} , denoted by $S_{k,m}^{\mathfrak{p}-new}(\Gamma_0(\mathfrak{mp}))$, is given by $Ker(\mathbf{Tr}_{\mathfrak{m}}^{\mathfrak{mp}}) \cap Ker(\mathbf{Tr}_{\mathfrak{m}}^{\mathfrak{mp}(\mathfrak{p})})$.

Theorem (V. - 2021)

The map $\mathcal{D} \coloneqq Id - P^{k-2m} (\boldsymbol{Tr}_{\mathfrak{m}}^{\mathfrak{mp}(\mathfrak{p})})^2$ is bijective on $S_{k,m}(\Gamma_0(\mathfrak{mp}))$ if and only if we have the direct sum decomposition $S_{k,m}(\Gamma_0(\mathfrak{mp})) = S_{k,m}^{\mathfrak{p}-new}(\Gamma_0(\mathfrak{mp})) \oplus S_{k,m}^{\mathfrak{p}-old}(\Gamma_0(\mathfrak{mp})).$

Action on cusps

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

The space of \mathfrak{p} -newforms of level \mathfrak{mp} , denoted by $S_{k,m}^{\mathfrak{p}-new}(\Gamma_0(\mathfrak{mp}))$, is given by $Ker(\mathbf{Tr}_{\mathfrak{m}}^{\mathfrak{mp}}) \cap Ker(\mathbf{Tr}_{\mathfrak{m}}^{\mathfrak{mp}(\mathfrak{p})})$.

Theorem (V. - 2021)

The map $\mathcal{D} \coloneqq Id - P^{k-2m} (\boldsymbol{Tr}_{\mathfrak{m}}^{\mathfrak{mp}(\mathfrak{p})})^2$ is bijective on $S_{k,m}(\Gamma_0(\mathfrak{mp}))$ if and only if we have the direct sum decomposition $S_{k,m}(\Gamma_0(\mathfrak{mp})) = S_{k,m}^{\mathfrak{p}-new}(\Gamma_0(\mathfrak{mp})) \oplus S_{k,m}^{\mathfrak{p}-old}(\Gamma_0(\mathfrak{mp})).$

Action on cusps

・ロト・日本・日本・日本・日本・日本・日本

The space of \mathfrak{p} -newforms of level \mathfrak{mp} , denoted by $S_{k,m}^{\mathfrak{p}-new}(\Gamma_0(\mathfrak{mp}))$, is given by $Ker(\mathbf{Tr}_{\mathfrak{m}}^{\mathfrak{mp}}) \cap Ker(\mathbf{Tr}_{\mathfrak{m}}^{\mathfrak{mp}(\mathfrak{p})})$.

Theorem (V. - 2021)

The map $\mathcal{D} \coloneqq Id - P^{k-2m} (\boldsymbol{Tr}_{\mathfrak{m}}^{\mathfrak{mp}(\mathfrak{p})})^2$ is bijective on $S_{k,m}(\Gamma_0(\mathfrak{mp}))$ if and only if we have the direct sum decomposition $S_{k,m}(\Gamma_0(\mathfrak{mp})) = S_{k,m}^{\mathfrak{p}-new}(\Gamma_0(\mathfrak{mp})) \oplus S_{k,m}^{\mathfrak{p}-old}(\Gamma_0(\mathfrak{mp})).$

Action on cusps

・ロト・日本・日本・日本・日本・日本・日本

The space of \mathfrak{p} -newforms of level \mathfrak{mp} , denoted by $S_{k,m}^{\mathfrak{p}-new}(\Gamma_0(\mathfrak{mp}))$, is given by $Ker(\mathbf{Tr}_{\mathfrak{m}}^{\mathfrak{mp}}) \cap Ker(\mathbf{Tr}_{\mathfrak{m}}^{\mathfrak{mp}(\mathfrak{p})}).$

Theorem (V. - 2021)

The map $\mathcal{D} \coloneqq Id - P^{k-2m} (\boldsymbol{Tr}_{\mathfrak{m}}^{\mathfrak{mp}(\mathfrak{p})})^2$ is bijective on $S_{k,m}(\Gamma_0(\mathfrak{mp}))$ if and only if we have the direct sum decomposition $S_{k,m}(\Gamma_0(\mathfrak{mp})) = S_{k,m}^{\mathfrak{p}-new}(\Gamma_0(\mathfrak{mp})) \oplus S_{k,m}^{\mathfrak{p}-old}(\Gamma_0(\mathfrak{mp})).$

Action on cusps

Proposition (V. - 2020)

The involution $\mathbf{W}_{\mathfrak{p}}^{\mathfrak{m}\mathfrak{p}}$ and the operator $\mathbf{U}_{\mathfrak{p}}$ commute on the space of \mathfrak{p} -newforms of level $\mathfrak{m}\mathfrak{p}$.

Let $f \in S_{k,m}(\Gamma_0(\mathfrak{p}))$ be a \mathfrak{p} -newform of level \mathfrak{p} . Then, $\mathbf{D}_1(f), \mathbf{D}_{\mathfrak{m}}(f) \in S_{k,m}(\Gamma_0(\mathfrak{mp}))$ are \mathfrak{p} -newforms of level \mathfrak{mp} .

Let $f \in S_{k,m}(\Gamma_0(\mathfrak{p}))$ be a \mathfrak{p} -newform of level \mathfrak{p} . Then, $\mathbf{D}_1(f), \mathbf{D}_{\mathfrak{m}}(f) \in S_{k,m}(\Gamma_0(\mathfrak{mp}))$ are \mathfrak{p} -newforms of level \mathfrak{mp} .

Proposition (V. 2021)

Let $f \in M_{k,m}(\Gamma_0(\mathfrak{m}\mathfrak{p}))$ with rational *u*-series coefficients, where $(\mathfrak{m}, \mathfrak{p}) = (1)$ and \mathfrak{p} is prime. Then, f is a \mathfrak{p} -adic Drinfeld modular form for $\Gamma_0(\mathfrak{m})$.

メロト メロト メヨト メヨ

Let $f \in S_{k,m}(\Gamma_0(\mathfrak{p}))$ be a \mathfrak{p} -newform of level \mathfrak{p} . Then, $\mathbf{D}_1(f), \mathbf{D}_{\mathfrak{m}}(f) \in S_{k,m}(\Gamma_0(\mathfrak{mp}))$ are \mathfrak{p} -newforms of level \mathfrak{mp} .

Proposition (V. 2021)

Let $f \in M_{k,m}(\Gamma_0(\mathfrak{m}\mathfrak{p}))$ with rational *u*-series coefficients, where $(\mathfrak{m},\mathfrak{p}) = (1)$ and \mathfrak{p} is prime. Then, f is a \mathfrak{p} -adic Drinfeld modular form for $\Gamma_0(\mathfrak{m})$.

•
$$f = \sum_{i \ge 0} a_i u(z)^i$$
, $a_i \in A$
• $v_{\mathfrak{p}}(f) = \inf_i v_{\mathfrak{p}}(a_i)$.

イロト イヨト イヨト イ

Let $f \in S_{k,m}(\Gamma_0(\mathfrak{p}))$ be a \mathfrak{p} -newform of level \mathfrak{p} . Then, $\mathbf{D}_1(f), \mathbf{D}_{\mathfrak{m}}(f) \in S_{k,m}(\Gamma_0(\mathfrak{mp}))$ are \mathfrak{p} -newforms of level \mathfrak{mp} .

Proposition (V. 2021)

Let $f \in M_{k,m}(\Gamma_0(\mathfrak{m}\mathfrak{p}))$ with rational *u*-series coefficients, where $(\mathfrak{m}, \mathfrak{p}) = (1)$ and \mathfrak{p} is prime. Then, f is a \mathfrak{p} -adic Drinfeld modular form for $\Gamma_0(\mathfrak{m})$.

•
$$f = \sum_{i \ge 0} a_i u(z)^i, a_i \in A.$$

•
$$v_{\mathfrak{p}}(f) = \inf_{i} v_{\mathfrak{p}}(a_i).$$

• We say that f is a p-adic Drinfeld modular form for $\Gamma_0(\mathfrak{m})$ if it exists a sequence $\{f_i\}$ of Drinfeld modular forms for $\Gamma_0(\mathfrak{m})$ verifying $v_{\mathfrak{p}}(f_i - f) \to \infty$ as $i \to \infty$.

イロト イヨト イヨト イ

References

- 1. A.O. L. ATKIN, J. LEHNER Hecke operators on $\Gamma_0(m)$, Math. Ann. 185, (1970) 134–160.
- A. BANDINI, M. VALENTINO Drinfeld cusp forms: oldforms and newforms, to appear in J. Number Theory, https://doi.org/10.1016/j.jnt.2020.03.011.
- 3. M. VALENTINO Atkin-Lehner theory for Drinfeld modular forms and applications, to appear in Ramanujan J., DOI Number 10.1007/s11139-021-00465-0

Thanks for your attention!

・ロト ・日下・ ・ ヨト・