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Fourier series

f : R→ R a 2π-periodic function. The Fourier series of f :

f(x) ∼ a0
2

+

∞∑
k=1

(ak cos kx+ bk sin kx),

ak = 1
π

∫ 2π

0
f(t) cos kt dt, bk = 1

π

∫ 2π

0
f(t) sin kt dt, k = (0), 1, 2, . . . .

Partial sums of Fourier seires:

Snf(x) =
a0
2

+
n∑
k=1

(ak cos kx+ bk sin kx) =
1

π

∫ π

−π
Dn(x− t)f(t)dt,

where

Dn(x) =
1

2
+

n∑
k=1

cos kx =
sin
(
n+ 1

2

)
x

2 sin
(
1
2x
) , x ∈ R,

is the Dirichlet kernel.
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Set-valued functions

K(Rd) is the collection of compact non-empty subsets of Rd.

Set-valued functions (SVFs, multifunctions) are functions
F : [a, b]→ K(Rd).

Applications in dynamical systems, control theory, game theory,
di�erential inclusions, mathematical economics, optimization,
geometric modeling.
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Hausdor� metric

A metric on Rd: ρ(u, v) = |u− v|, where | · | is a norm on Rd. (Note that
all norms on Rd are equivalent.)

The Hausdor� metric on K(Rd): for A,B ∈ K(Rd)

haus(A,B) = max

{
max
a∈A

dist(a,B),max
b∈B

dist(b, A)

}
,

where dist(a,B) = min {ρ(a, b) : b ∈ B}.

A B

a

dist(a,B)

bdist(b, A)
A B

haus(A,B)

K(Rd) is a complete metric space with respect to the Hausdor� metric.

This is how we measure the distance between F (x) and its approximant
at a point x ∈ [a, b].
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Approximation of set-valued functions

Approximation of functions F : [a, b]→ K(Rd) with convex compact
images: e.g.

→ R. A. Vitale (1979) � an adoptation of the Bernstein operator,

→ N. Dyn, E. Farkhi + students (since 80s) � di�erent approaches,

→ M. Mure�san (2010) � a survey,

→ V. F. Babenko, V. V. Babenko, M.V. Polishchuk (2016) � some
trigonometric approximations.

Usual problem: convexi�cation � the limit of the approximants is a SVF
with convex images even if the original function was not.

A pioneering work on approximation of SVFs with general, not necessarily
convex images:

→ Z. Artstein (1989) � piecewise linear approximation of
F : [a, b]→ K(Rd) based on metric pairs.
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Metric pairs

The set of projections of a ∈ Rd on a set B ∈ K(Rd) is

ΠB(a) = {b ∈ B : |a− b| = dist(a,B)}.

The set of metric pairs of two sets A,B ∈ K(Rd) is

Π(A,B) = {(a, b) ∈ A×B : a ∈ ΠA(b) or b ∈ ΠB(a)}.

A B

a

dist(a,B)

bdist(b, A)
A B

haus(A,B)

Using the metric pairs, we can rewrite

haus(A,B) = max{|a− b| : (a, b) ∈ Π(A,B)}.

The idea of Artstein was to create a linear interpolant by connecting
metric pairs by pieces of linear functions.
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Linear combinations

The standard tool: The Minkowski linear combination of sets
A1, . . . , An ∈ K(Rd), n ≥ 1, is

n∑
i=1

λiAi =

{
n∑
i=1

λiai : ai ∈ Ai

}
.

Convexi�cation!
Example: The average of n copies of the set A = {0, 1} is
n∑
i=1

1

n
Ai =

{
0,

1

n
,

2

n
, . . . , 1

}
.

A1 A2 A3 A4 A5
∑5
i=1

1
5Ai
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Linear combinations

A new tool [Dyn, Farkhi, Mokhov, 2018]:

A metric chain of A1, . . . , An is an n-tuple (a1, . . . , an) such that
(ai, ai+1) ∈ Π(Ai, Ai+1), i = 1, . . . , n− 1.

A1 A2 A3 A4

We denote the collection of all
metric chains of A1, . . . , An by
CH(A1, . . . , An).

The metric linear combination of the sets A1, . . . , An ∈ K(Rd), n ≥ 2, is

n⊕
i=1

λiAi =

{
n∑
i=1

λiai : (a1, . . . , an) ∈ CH(A1, . . . , An)

}
.

A1 A2 A3 A4 A5
⊕5

i=1
1
5Ai
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Aumann integral
For a set-valued function F : [a, b]→ K(Rd), a single-valued function
s : [a, b]→ Rd such that s(x) ∈ F (x) for all x ∈ [a, b] is called a
selection of F .

The standard tool: the Aumann integral of a set-valued function F is the
set ∫ b

a

F (x)dx =

{∫ b

a

s(x)dx : s is any integrable selection of F

}
.

Convexi�cation! It is well-known that the Aumann integral is convex and
compact, even if the values of F are not convex.

Example: F (x) = {0, 1}, x ∈ [0, 1]. Then
∫ 1

0
F (x)dx = [0, 1].

x0 1α

s ∫ 1

0
s(x)dx = α, α ∈ [0, 1]

Such methods are useless for work with SFVs with general, not
necessarily convex images.
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Metric selections

A new tool [Dyn, Farkhi, Mokhov, 2018]:

Given a SVF F : [a, b]→ K(Rd), a partition
χ = {a = x0 < x1 < · · · < xn = b}, and a corresponding metric chain
φ = (y0, . . . , yn) ∈ CH (F (x0), . . . , F (xn)), the chain function based on
χ and φ is

cχ,φ(x) =

{
yi, x ∈ [xi, xi+1), i = 0, . . . , n− 1,
yn, x = xn.

A selection s is called a metric selection, if it is the pointwise limit
function of a sequence {cχk,φk

}k∈N of chain functions of F ,
with limk→∞ |χk| = 0.

We denote the set of all metric selections of F by S(F ).

A metric selection s is constant in
any open interval where the graph of
s stays in the interior of Graph(F ).
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Metric integral

[Dyn, Farkhi, Mokhov, 2018]: For a SVF F : [a, b]→ K(Rd), and for a
partition χ = {x0, . . . , xn}, the metric Riemann sum of F is de�ned by

(M)SχF =

n−1⊕
i=0

(xi+1 − xi)F (xi).

The metric integral of F is de�ned as the Kuratowski upper limit of
metric Riemann sums corresponding to partitions with norms tending to
zero. We denote this integral by

(M)

∫ b

a

F (x)dx.

By its de�nition, the set (M)
∫ b
a
F (x)dx is non-empty if F has a bounded

range.
Let F [a, b] be the class of SVFs of bounded variation with closed graphs.
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Metric integral

Result. [Dyn, Farkhi, Mokhov, 2018] Let F ∈ F [a, b]. Then

(M)

∫ b

a

F (x)dx =

{∫ b

a

s(x)dx : s ∈ S(F)

}
.

Example: F (x) = {0, 1}, x ∈ [0, 1]. Then (M)
∫ 1

0
F (x)dx = {0, 1}.

x0 1

There are only two metric selections.

In [B., Dyn, Farkhi, Mokhov, 2021] we extended the notion of the metric
integral to the weighted metric integral of the form

(Mk)

∫ b

a

k(x)F (x)dx,

where F : [a, b]→ K(Rd) is a SVF and k : [a, b]→ R is a weight
function.
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Metric Fourier series of SVFs
Denote ∂n,x(t) = Dn(x− t).

De�nition. [B., Dyn, Farkhi, Mokhov, 2021]) Let F : [−π, π]→ K(Rd).
The metric Fourier series of F is the sequence of the set-valued functions
{SnF}n∈N, where SnF is a SVF de�ned by

SnF (x) =
1

π
(M∂n,x )

∫ π

−π
∂n,x(t)F (t)dt, x ∈ [−π, π], n ∈ N,

whenever the integrals above exist.

For F ∈ F [−π, π] it holds

SnF (x) =

{
1

π

∫ π

−π
Dn(x− t)s(t)dt : s ∈ S(F )

}
, x ∈ [−π, π].

We do not expect metric selections s to be periodic. In fact, even if the
set-valued function F itself is periodic, it can have metric selections that
are not periodic:



Metric Fourier series of SVFs
Denote ∂n,x(t) = Dn(x− t).

De�nition. [B., Dyn, Farkhi, Mokhov, 2021]) Let F : [−π, π]→ K(Rd).
The metric Fourier series of F is the sequence of the set-valued functions
{SnF}n∈N, where SnF is a SVF de�ned by

SnF (x) =
1

π
(M∂n,x )

∫ π

−π
∂n,x(t)F (t)dt, x ∈ [−π, π], n ∈ N,

whenever the integrals above exist.

For F ∈ F [−π, π] it holds

SnF (x) =

{
1

π

∫ π

−π
Dn(x− t)s(t)dt : s ∈ S(F )

}
, x ∈ [−π, π].

We do not expect metric selections s to be periodic. In fact, even if the
set-valued function F itself is periodic, it can have metric selections that
are not periodic:



Metric Fourier series of SVFs
Denote ∂n,x(t) = Dn(x− t).

De�nition. [B., Dyn, Farkhi, Mokhov, 2021]) Let F : [−π, π]→ K(Rd).
The metric Fourier series of F is the sequence of the set-valued functions
{SnF}n∈N, where SnF is a SVF de�ned by

SnF (x) =
1

π
(M∂n,x )

∫ π

−π
∂n,x(t)F (t)dt, x ∈ [−π, π], n ∈ N,

whenever the integrals above exist.

For F ∈ F [−π, π] it holds

SnF (x) =

{
1

π

∫ π

−π
Dn(x− t)s(t)dt : s ∈ S(F )

}
, x ∈ [−π, π].

We do not expect metric selections s to be periodic. In fact, even if the
set-valued function F itself is periodic, it can have metric selections that
are not periodic:



Metric Fourier series of SVFs

We are only aware of few works on trigonometric approximation of SVFs,
and there seemed to exist no concept of Fourier series for SVFs earlier.

The main results are statements about the convergence of the metric
Fourier series in the style of the Dirichlet-Jordan Theorem.

Theorem 1. [B., Dyn, Farkhi, Mokhov, 2021] Let F : [−π, π]→ K(Rd)
be of bounded variation with closed graph. Let F be continuous at
x ∈ (−π, π). Then

lim
n→∞

haus (SnF (x), F (x)) = 0.

If F is continuous in a closed interval I ⊂ (−π, π), then the convergence
is uniform in I.

Theorem 2. [B., Dyn, Farkhi, Mokhov, 2021] Let F : [−π, π]→ K(Rd)
be of bounded variation with closed graph and x ∈ (−π, π). Then

lim
n→∞

haus (SnF (x), AF (x)) = 0,

where AF (x) =
{

1
2 (s(x+ 0) + s(x− 0)) : s ∈ S(F )

}
.
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Thank you for your attention!


