Metric Fourier Approximation of Set-Valued Functions of Bounded Variation

Elena E. Berdysheva
Justus Liebig University Giessen, Germany

Joint work with Nira Dyn, Elza Farkhi, Alona Mokhov
(Tel Aviv University, Israel)

JUSTUS-LIEBIG-
\square UNIVERSITAT
GIESSEN
ECM, June 22, 2021

Fourier series

$f: \mathbb{R} \rightarrow \mathbb{R}$ a 2π-periodic function. The Fourier series of f :

$$
\begin{gathered}
f(x) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right), \\
a_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \cos k t d t, \quad b_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \sin k t d t, k=(0), 1,2, \ldots
\end{gathered}
$$

Fourier series

$f: \mathbb{R} \rightarrow \mathbb{R}$ a 2π-periodic function. The Fourier series of f :

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

$a_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \cos k t d t, \quad b_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \sin k t d t, k=(0), 1,2, \ldots$.
Partial sums of Fourier seires:

$$
\mathscr{S}_{n} f(x)=\frac{a_{0}}{2}+\sum_{k=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right)=\frac{1}{\pi} \int_{-\pi}^{\pi} D_{n}(x-t) f(t) d t
$$

where

$$
D_{n}(x)=\frac{1}{2}+\sum_{k=1}^{n} \cos k x=\frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin \left(\frac{1}{2} x\right)}, \quad x \in \mathbb{R}
$$

is the Dirichlet kernel.

Set-valued functions

$\mathrm{K}\left(\mathbb{R}^{d}\right)$ is the collection of compact non-empty subsets of \mathbb{R}^{d}.
Set-valued functions (SVFs, multifunctions) are functions $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$.

Set-valued functions

$K\left(\mathbb{R}^{d}\right)$ is the collection of compact non-empty subsets of \mathbb{R}^{d}.
Set-valued functions (SVFs, multifunctions) are functions $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$.

Applications in dynamical systems, control theory, game theory, differential inclusions, mathematical economics, optimization, geometric modeling.

Set-valued functions

$\mathrm{K}\left(\mathbb{R}^{d}\right)$ is the collection of compact non-empty subsets of \mathbb{R}^{d}.
Set-valued functions (SVFs, multifunctions) are functions $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$.

Applications in dynamical systems, control theory, game theory, differential inclusions, mathematical economics, optimization, geometric modeling.

Hausdorff metric

A metric on $\mathbb{R}^{d}: \rho(u, v)=|u-v|$, where $|\cdot|$ is a norm on \mathbb{R}^{d}. (Note that all norms on \mathbb{R}^{d} are equivalent.)

Hausdorff metric

A metric on $\mathbb{R}^{d}: \rho(u, v)=|u-v|$, where $|\cdot|$ is a norm on \mathbb{R}^{d}. (Note that all norms on \mathbb{R}^{d} are equivalent.)
The Hausdorff metric on $\mathrm{K}\left(\mathbb{R}^{d}\right)$: for $A, B \in \mathrm{~K}\left(\mathbb{R}^{d}\right)$

$$
\operatorname{haus}(A, B)=\max \left\{\max _{a \in A} \operatorname{dist}(a, B), \max _{b \in B} \operatorname{dist}(b, A)\right\}
$$

where $\operatorname{dist}(a, B)=\min \{\rho(a, b): b \in B\}$.

Hausdorff metric

A metric on $\mathbb{R}^{d}: \rho(u, v)=|u-v|$, where $|\cdot|$ is a norm on \mathbb{R}^{d}. (Note that all norms on \mathbb{R}^{d} are equivalent.)

The Hausdorff metric on $\mathrm{K}\left(\mathbb{R}^{d}\right)$: for $A, B \in \mathrm{~K}\left(\mathbb{R}^{d}\right)$

$$
\operatorname{haus}(A, B)=\max \left\{\max _{a \in A} \operatorname{dist}(a, B), \max _{b \in B} \operatorname{dist}(b, A)\right\}
$$

where $\operatorname{dist}(a, B)=\min \{\rho(a, b): b \in B\}$.

Hausdorff metric

A metric on $\mathbb{R}^{d}: \rho(u, v)=|u-v|$, where $|\cdot|$ is a norm on \mathbb{R}^{d}. (Note that all norms on \mathbb{R}^{d} are equivalent.)

The Hausdorff metric on $\mathrm{K}\left(\mathbb{R}^{d}\right)$: for $A, B \in \mathrm{~K}\left(\mathbb{R}^{d}\right)$

$$
\operatorname{haus}(A, B)=\max \left\{\max _{a \in A} \operatorname{dist}(a, B), \max _{b \in B} \operatorname{dist}(b, A)\right\}
$$

where $\operatorname{dist}(a, B)=\min \{\rho(a, b): b \in B\}$.

$\mathrm{K}\left(\mathbb{R}^{d}\right)$ is a complete metric space with respect to the Hausdorff metric.
This is how we measure the distance between $F(x)$ and its approximant at a point $x \in[a, b]$.

Approximation of set-valued functions

Approximation of functions $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$ with convex compact images: e.g.
\rightarrow R. A. Vitale (1979) - an adoptation of the Bernstein operator,
\rightarrow N. Dyn, E. Farkhi + students (since 80s) - different approaches,
\rightarrow M. Mureșan (2010) - a survey,
\rightarrow V. F. Babenko, V. V. Babenko, M.V. Polishchuk (2016) - some trigonometric approximations.

Approximation of set-valued functions

Approximation of functions $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$ with convex compact images: e.g.
\rightarrow R. A. Vitale (1979) - an adoptation of the Bernstein operator,
\rightarrow N. Dyn, E. Farkhi + students (since 80s) - different approaches,
\rightarrow M. Mureșan (2010) - a survey,
\rightarrow V. F. Babenko, V. V. Babenko, M.V. Polishchuk (2016) - some trigonometric approximations.

Usual problem: convexification - the limit of the approximants is a SVF with convex images even if the original function was not.

Approximation of set-valued functions

Approximation of functions $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$ with convex compact images: e.g.
\rightarrow R. A. Vitale (1979) - an adoptation of the Bernstein operator,
\rightarrow N. Dyn, E. Farkhi + students (since 80s) - different approaches,
\rightarrow M. Mureșan (2010) - a survey,
\rightarrow V. F. Babenko, V. V. Babenko, M.V. Polishchuk (2016) - some trigonometric approximations.

Usual problem: convexification - the limit of the approximants is a SVF with convex images even if the original function was not.
A pioneering work on approximation of SVFs with general, not necessarily convex images:
\rightarrow Z. Artstein (1989) - piecewise linear approximation of $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$ based on metric pairs.

Metric pairs

The set of projections of $a \in \mathbb{R}^{d}$ on a set $B \in \mathrm{~K}\left(\mathbb{R}^{d}\right)$ is

$$
\Pi_{B}(a)=\{b \in B:|a-b|=\operatorname{dist}(a, B)\} .
$$

The set of metric pairs of two sets $A, B \in \mathrm{~K}\left(\mathbb{R}^{d}\right)$ is

$$
\Pi(A, B)=\left\{(a, b) \in A \times B: a \in \Pi_{A}(b) \text { or } b \in \Pi_{B}(a)\right\} .
$$

Metric pairs

The set of projections of $a \in \mathbb{R}^{d}$ on a set $B \in \mathrm{~K}\left(\mathbb{R}^{d}\right)$ is

$$
\Pi_{B}(a)=\{b \in B:|a-b|=\operatorname{dist}(a, B)\} .
$$

The set of metric pairs of two sets $A, B \in \mathrm{~K}\left(\mathbb{R}^{d}\right)$ is

$$
\Pi(A, B)=\left\{(a, b) \in A \times B: a \in \Pi_{A}(b) \text { or } b \in \Pi_{B}(a)\right\} .
$$

Using the metric pairs, we can rewrite

$$
\operatorname{haus}(A, B)=\max \{|a-b|:(a, b) \in \Pi(A, B)\} .
$$

Metric pairs

The set of projections of $a \in \mathbb{R}^{d}$ on a set $B \in \mathrm{~K}\left(\mathbb{R}^{d}\right)$ is

$$
\Pi_{B}(a)=\{b \in B:|a-b|=\operatorname{dist}(a, B)\} .
$$

The set of metric pairs of two sets $A, B \in \mathrm{~K}\left(\mathbb{R}^{d}\right)$ is

$$
\Pi(A, B)=\left\{(a, b) \in A \times B: a \in \Pi_{A}(b) \text { or } b \in \Pi_{B}(a)\right\} .
$$

Using the metric pairs, we can rewrite

$$
\operatorname{haus}(A, B)=\max \{|a-b|:(a, b) \in \Pi(A, B)\}
$$

The idea of Artstein was to create a linear interpolant by connecting metric pairs by pieces of linear functions.

Linear combinations

The standard tool: The Minkowski linear combination of sets $A_{1}, \ldots, A_{n} \in \mathrm{~K}\left(\mathbb{R}^{d}\right), n \geq 1$, is

$$
\sum_{i=1}^{n} \lambda_{i} A_{i}=\left\{\sum_{i=1}^{n} \lambda_{i} a_{i}: a_{i} \in A_{i}\right\} .
$$

Linear combinations

The standard tool: The Minkowski linear combination of sets $A_{1}, \ldots, A_{n} \in \mathrm{~K}\left(\mathbb{R}^{d}\right), n \geq 1$, is

$$
\sum_{i=1}^{n} \lambda_{i} A_{i}=\left\{\sum_{i=1}^{n} \lambda_{i} a_{i}: a_{i} \in A_{i}\right\} .
$$

Convexification!

Linear combinations

The standard tool: The Minkowski linear combination of sets $A_{1}, \ldots, A_{n} \in \mathrm{~K}\left(\mathbb{R}^{d}\right), n \geq 1$, is

$$
\sum_{i=1}^{n} \lambda_{i} A_{i}=\left\{\sum_{i=1}^{n} \lambda_{i} a_{i}: a_{i} \in A_{i}\right\} .
$$

Convexification!
Example: The average of n copies of the set $A=\{0,1\}$ is
$\sum_{i=1}^{n} \frac{1}{n} A_{i}=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, 1\right\}$.

Linear combinations

The standard tool: The Minkowski linear combination of sets $A_{1}, \ldots, A_{n} \in \mathrm{~K}\left(\mathbb{R}^{d}\right), n \geq 1$, is

$$
\sum_{i=1}^{n} \lambda_{i} A_{i}=\left\{\sum_{i=1}^{n} \lambda_{i} a_{i}: a_{i} \in A_{i}\right\} .
$$

Convexification!
Example: The average of n copies of the set $A=\{0,1\}$ is
$\sum_{i=1}^{n} \frac{1}{n} A_{i}=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, 1\right\}$.

Linear combinations

A new tool [Dyn, Farkhi, Mokhov, 2018]:
A metric chain of A_{1}, \ldots, A_{n} is an n-tuple $\left(a_{1}, \ldots, a_{n}\right)$ such that $\left(a_{i}, a_{i+1}\right) \in \Pi\left(A_{i}, A_{i+1}\right), i=1, \ldots, n-1$.

Linear combinations

A new tool [Dyn, Farkhi, Mokhov, 2018]:
A metric chain of A_{1}, \ldots, A_{n} is an n-tuple $\left(a_{1}, \ldots, a_{n}\right)$ such that $\left(a_{i}, a_{i+1}\right) \in \Pi\left(A_{i}, A_{i+1}\right), i=1, \ldots, n-1$.

We denote the collection of all metric chains of A_{1}, \ldots, A_{n} by $\mathrm{CH}\left(A_{1}, \ldots, A_{n}\right)$.

Linear combinations

A new tool [Dyn, Farkhi, Mokhov, 2018]:
A metric chain of A_{1}, \ldots, A_{n} is an n-tuple $\left(a_{1}, \ldots, a_{n}\right)$ such that $\left(a_{i}, a_{i+1}\right) \in \Pi\left(A_{i}, A_{i+1}\right), i=1, \ldots, n-1$.

We denote the collection of all metric chains of A_{1}, \ldots, A_{n} by $\mathrm{CH}\left(A_{1}, \ldots, A_{n}\right)$.

The metric linear combination of the sets $A_{1}, \ldots, A_{n} \in \mathrm{~K}\left(\mathbb{R}^{d}\right), n \geq 2$, is

$$
\bigoplus_{i=1}^{n} \lambda_{i} A_{i}=\left\{\sum_{i=1}^{n} \lambda_{i} a_{i}:\left(a_{1}, \ldots, a_{n}\right) \in \mathrm{CH}\left(A_{1}, \ldots, A_{n}\right)\right\} .
$$

Linear combinations

A new tool [Dyn, Farkhi, Mokhov, 2018]:
A metric chain of A_{1}, \ldots, A_{n} is an n-tuple $\left(a_{1}, \ldots, a_{n}\right)$ such that $\left(a_{i}, a_{i+1}\right) \in \Pi\left(A_{i}, A_{i+1}\right), i=1, \ldots, n-1$.

We denote the collection of all metric chains of A_{1}, \ldots, A_{n} by $\mathrm{CH}\left(A_{1}, \ldots, A_{n}\right)$.

The metric linear combination of the sets $A_{1}, \ldots, A_{n} \in \mathrm{~K}\left(\mathbb{R}^{d}\right), n \geq 2$, is

$$
\begin{gathered}
\bigoplus_{i=1}^{n} \lambda_{i} A_{i}=\left\{\sum_{i=1}^{n} \lambda_{i} a_{i}:\left(a_{1}, \ldots, a_{n}\right) \in \operatorname{CH}\left(A_{1}, \ldots, A_{n}\right)\right\} . \\
\bullet \cdot \bullet \cdot \bullet
\end{gathered}
$$

Aumann integral

For a set-valued function $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$, a single-valued function $s:[a, b] \rightarrow \mathbb{R}^{d}$ such that $s(x) \in F(x)$ for all $x \in[a, b]$ is called a selection of F.

Aumann integral

For a set-valued function $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$, a single-valued function $s:[a, b] \rightarrow \mathbb{R}^{d}$ such that $s(x) \in F(x)$ for all $x \in[a, b]$ is called a selection of F.

The standard tool: the Aumann integral of a set-valued function F is the set

$$
\int_{a}^{b} F(x) d x=\left\{\int_{a}^{b} s(x) d x: s \text { is any integrable selection of } F\right\} .
$$

Aumann integral

For a set-valued function $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$, a single-valued function $s:[a, b] \rightarrow \mathbb{R}^{d}$ such that $s(x) \in F(x)$ for all $x \in[a, b]$ is called a selection of F.

The standard tool: the Aumann integral of a set-valued function F is the set

$$
\int_{a}^{b} F(x) d x=\left\{\int_{a}^{b} s(x) d x: s \text { is any integrable selection of } F\right\} .
$$

Convexification! It is well-known that the Aumann integral is convex and compact, even if the values of F are not convex.

Aumann integral

For a set-valued function $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$, a single-valued function $s:[a, b] \rightarrow \mathbb{R}^{d}$ such that $s(x) \in F(x)$ for all $x \in[a, b]$ is called a selection of F.

The standard tool: the Aumann integral of a set-valued function F is the set

$$
\int_{a}^{b} F(x) d x=\left\{\int_{a}^{b} s(x) d x: s \text { is any integrable selection of } F\right\} .
$$

Convexification! It is well-known that the Aumann integral is convex and compact, even if the values of F are not convex.
Example: $F(x)=\{0,1\}, x \in[0,1]$. Then $\int_{0}^{1} F(x) d x=[0,1]$.

Aumann integral

For a set-valued function $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$, a single-valued function $s:[a, b] \rightarrow \mathbb{R}^{d}$ such that $s(x) \in F(x)$ for all $x \in[a, b]$ is called a selection of F.

The standard tool: the Aumann integral of a set-valued function F is the set

$$
\int_{a}^{b} F(x) d x=\left\{\int_{a}^{b} s(x) d x: s \text { is any integrable selection of } F\right\} .
$$

Convexification! It is well-known that the Aumann integral is convex and compact, even if the values of F are not convex.
Example: $F(x)=\{0,1\}, x \in[0,1]$. Then $\int_{0}^{1} F(x) d x=[0,1]$.

Aumann integral

For a set-valued function $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$, a single-valued function $s:[a, b] \rightarrow \mathbb{R}^{d}$ such that $s(x) \in F(x)$ for all $x \in[a, b]$ is called a selection of F.
The standard tool: the Aumann integral of a set-valued function F is the set

$$
\int_{a}^{b} F(x) d x=\left\{\int_{a}^{b} s(x) d x: s \text { is any integrable selection of } F\right\} .
$$

Convexification! It is well-known that the Aumann integral is convex and compact, even if the values of F are not convex.
Example: $F(x)=\{0,1\}, x \in[0,1]$. Then $\int_{0}^{1} F(x) d x=[0,1]$.

Aumann integral

For a set-valued function $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$, a single-valued function $s:[a, b] \rightarrow \mathbb{R}^{d}$ such that $s(x) \in F(x)$ for all $x \in[a, b]$ is called a selection of F.
The standard tool: the Aumann integral of a set-valued function F is the set

$$
\int_{a}^{b} F(x) d x=\left\{\int_{a}^{b} s(x) d x: s \text { is any integrable selection of } F\right\} .
$$

Convexification! It is well-known that the Aumann integral is convex and compact, even if the values of F are not convex.
Example: $F(x)=\{0,1\}, x \in[0,1]$. Then $\int_{0}^{1} F(x) d x=[0,1]$.

$$
\int_{0}^{1} s(x) d x=\alpha, \alpha \in[0,1]
$$

Aumann integral

For a set-valued function $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$, a single-valued function $s:[a, b] \rightarrow \mathbb{R}^{d}$ such that $s(x) \in F(x)$ for all $x \in[a, b]$ is called a selection of F.
The standard tool: the Aumann integral of a set-valued function F is the set

$$
\int_{a}^{b} F(x) d x=\left\{\int_{a}^{b} s(x) d x: s \text { is any integrable selection of } F\right\} .
$$

Convexification! It is well-known that the Aumann integral is convex and compact, even if the values of F are not convex.
Example: $F(x)=\{0,1\}, x \in[0,1]$. Then $\int_{0}^{1} F(x) d x=[0,1]$.

$$
\int_{0}^{1} s(x) d x=\alpha, \alpha \in[0,1]
$$

Such methods are useless for work with SFVs with general, not necessarily convex images.

Metric selections

A new tool [Dyn, Farkhi, Mokhov, 2018]:
Given a SVF $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$, a partition
$\chi=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$, and a corresponding metric chain $\phi=\left(y_{0}, \ldots, y_{n}\right) \in \mathrm{CH}\left(F\left(x_{0}\right), \ldots, F\left(x_{n}\right)\right)$, the chain function based on χ and ϕ is

$$
c_{\chi, \phi}(x)= \begin{cases}y_{i}, & x \in\left[x_{i}, x_{i+1}\right), \quad i=0, \ldots, n-1, \\ y_{n}, & x=x_{n} .\end{cases}
$$

Metric selections

A new tool [Dyn, Farkhi, Mokhov, 2018]:
Given a SVF $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$, a partition
$\chi=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$, and a corresponding metric chain $\phi=\left(y_{0}, \ldots, y_{n}\right) \in \mathrm{CH}\left(F\left(x_{0}\right), \ldots, F\left(x_{n}\right)\right)$, the chain function based on χ and ϕ is

$$
c_{\chi, \phi}(x)= \begin{cases}y_{i}, & x \in\left[x_{i}, x_{i+1}\right), \quad i=0, \ldots, n-1, \\ y_{n}, & x=x_{n}\end{cases}
$$

A selection s is called a metric selection, if it is the pointwise limit function of a sequence $\left\{c_{\chi_{k}, \phi_{k}}\right\}_{k \in \mathbb{N}}$ of chain functions of F, with $\lim _{k \rightarrow \infty}\left|\chi_{k}\right|=0$.
We denote the set of all metric selections of F by $\mathcal{S}(F)$.

Metric selections

A new tool [Dyn, Farkhi, Mokhov, 2018]:
Given a SVF $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$, a partition
$\chi=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$, and a corresponding metric chain $\phi=\left(y_{0}, \ldots, y_{n}\right) \in \mathrm{CH}\left(F\left(x_{0}\right), \ldots, F\left(x_{n}\right)\right)$, the chain function based on χ and ϕ is

$$
c_{\chi, \phi}(x)= \begin{cases}y_{i}, & x \in\left[x_{i}, x_{i+1}\right), \quad i=0, \ldots, n-1, \\ y_{n}, & x=x_{n} .\end{cases}
$$

A selection s is called a metric selection, if it is the pointwise limit function of a sequence $\left\{c_{\chi_{k}, \phi_{k}}\right\}_{k \in \mathbb{N}}$ of chain functions of F, with $\lim _{k \rightarrow \infty}\left|\chi_{k}\right|=0$.
We denote the set of all metric selections of F by $\mathcal{S}(F)$.

Metric selections

A new tool [Dyn, Farkhi, Mokhov, 2018]:
Given a SVF $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$, a partition
$\chi=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$, and a corresponding metric chain $\phi=\left(y_{0}, \ldots, y_{n}\right) \in \mathrm{CH}\left(F\left(x_{0}\right), \ldots, F\left(x_{n}\right)\right)$, the chain function based on χ and ϕ is

$$
c_{\chi, \phi}(x)= \begin{cases}y_{i}, & x \in\left[x_{i}, x_{i+1}\right), \quad i=0, \ldots, n-1 \\ y_{n}, & x=x_{n}\end{cases}
$$

A selection s is called a metric selection, if it is the pointwise limit function of a sequence $\left\{c_{\chi_{k}, \phi_{k}}\right\}_{k \in \mathbb{N}}$ of chain functions of F, with $\lim _{k \rightarrow \infty}\left|\chi_{k}\right|=0$.
We denote the set of all metric selections of F by $\mathcal{S}(F)$.

A metric selection s is constant in any open interval where the graph of s stays in the interior of $\operatorname{Graph}(F)$.

Metric integral

[Dyn, Farkhi, Mokhov, 2018]: For a SVF $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$, and for a partition $\chi=\left\{x_{0}, \ldots, x_{n}\right\}$, the metric Riemann sum of F is defined by

$$
(\mathcal{M}) S_{\chi} F=\bigoplus_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right) F\left(x_{i}\right)
$$

The metric integral of F is defined as the Kuratowski upper limit of metric Riemann sums corresponding to partitions with norms tending to zero. We denote this integral by

$$
(\mathcal{M}) \int_{a}^{b} F(x) d x
$$

Metric integral

[Dyn, Farkhi, Mokhov, 2018]: For a SVF $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$, and for a partition $\chi=\left\{x_{0}, \ldots, x_{n}\right\}$, the metric Riemann sum of F is defined by

$$
(\mathcal{M}) S_{\chi} F=\bigoplus_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right) F\left(x_{i}\right)
$$

The metric integral of F is defined as the Kuratowski upper limit of metric Riemann sums corresponding to partitions with norms tending to zero. We denote this integral by

$$
(\mathcal{M}) \int_{a}^{b} F(x) d x
$$

By its definition, the set $(\mathcal{M}) \int_{a}^{b} F(x) d x$ is non-empty if F has a bounded range.

Metric integral

[Dyn, Farkhi, Mokhov, 2018]: For a SVF $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$, and for a partition $\chi=\left\{x_{0}, \ldots, x_{n}\right\}$, the metric Riemann sum of F is defined by

$$
(\mathcal{M}) S_{\chi} F=\bigoplus_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right) F\left(x_{i}\right)
$$

The metric integral of F is defined as the Kuratowski upper limit of metric Riemann sums corresponding to partitions with norms tending to zero. We denote this integral by

$$
(\mathcal{M}) \int_{a}^{b} F(x) d x
$$

By its definition, the set $(\mathcal{M}) \int_{a}^{b} F(x) d x$ is non-empty if F has a bounded range.
Let $\mathcal{F}[a, b]$ be the class of SVFs of bounded variation with closed graphs.

Metric integral

Result. [Dyn, Farkhi, Mokhov, 2018] Let $F \in \mathcal{F}[a, b]$. Then

$$
(\mathcal{M}) \int_{a}^{b} F(x) d x=\left\{\int_{a}^{b} s(x) d x: s \in \mathcal{S}(\mathcal{F})\right\} .
$$

Metric integral

Result. [Dyn, Farkhi, Mokhov, 2018] Let $F \in \mathcal{F}[a, b]$. Then

$$
(\mathcal{M}) \int_{a}^{b} F(x) d x=\left\{\int_{a}^{b} s(x) d x: s \in \mathcal{S}(\mathcal{F})\right\} .
$$

Example: $F(x)=\{0,1\}, x \in[0,1]$. Then $(\mathcal{M}) \int_{0}^{1} F(x) d x=\{0,1\}$.

Metric integral

Result. [Dyn, Farkhi, Mokhov, 2018] Let $F \in \mathcal{F}[a, b]$. Then

$$
(\mathcal{M}) \int_{a}^{b} F(x) d x=\left\{\int_{a}^{b} s(x) d x: s \in \mathcal{S}(\mathcal{F})\right\}
$$

Example: $F(x)=\{0,1\}, x \in[0,1]$. Then $(\mathcal{M}) \int_{0}^{1} F(x) d x=\{0,1\}$.

There are only two metric selections.

Metric integral

Result. [Dyn, Farkhi, Mokhov, 2018] Let $F \in \mathcal{F}[a, b]$. Then

$$
(\mathcal{M}) \int_{a}^{b} F(x) d x=\left\{\int_{a}^{b} s(x) d x: s \in \mathcal{S}(\mathcal{F})\right\}
$$

Example: $F(x)=\{0,1\}, x \in[0,1]$. Then $(\mathcal{M}) \int_{0}^{1} F(x) d x=\{0,1\}$.

There are only two metric selections.

In [B., Dyn, Farkhi, Mokhov, 2021] we extended the notion of the metric integral to the weighted metric integral of the form

$$
\left(\mathcal{M}_{k}\right) \int_{a}^{b} k(x) F(x) d x
$$

where $F:[a, b] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$ is a SVF and $k:[a, b] \rightarrow \mathbb{R}$ is a weight function.

Metric Fourier series of SVFs

Denote $\partial_{n, x}(t)=D_{n}(x-t)$.
Definition. [B., Dyn, Farkhi, Mokhov, 2021]) Let $F:[-\pi, \pi] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$. The metric Fourier series of F is the sequence of the set-valued functions $\left\{\mathscr{S}_{n} F\right\}_{n \in \mathbb{N}}$, where $\mathscr{S}_{n} F$ is a SVF defined by

$$
\mathscr{S}_{n} F(x)=\frac{1}{\pi}\left(\mathcal{M}_{\partial_{n, x}}\right) \int_{-\pi}^{\pi} \partial_{n, x}(t) F(t) d t, \quad x \in[-\pi, \pi], \quad n \in \mathbb{N}
$$

whenever the integrals above exist.

Metric Fourier series of SVFs

Denote $\partial_{n, x}(t)=D_{n}(x-t)$.
Definition. [B., Dyn, Farkhi, Mokhov, 2021]) Let $F:[-\pi, \pi] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$. The metric Fourier series of F is the sequence of the set-valued functions $\left\{\mathscr{S}_{n} F\right\}_{n \in \mathbb{N}}$, where $\mathscr{S}_{n} F$ is a SVF defined by

$$
\mathscr{S}_{n} F(x)=\frac{1}{\pi}\left(\mathcal{M}_{\partial_{n, x}}\right) \int_{-\pi}^{\pi} \partial_{n, x}(t) F(t) d t, \quad x \in[-\pi, \pi], \quad n \in \mathbb{N}
$$

whenever the integrals above exist.
For $F \in \mathcal{F}[-\pi, \pi]$ it holds

$$
\mathscr{S}_{n} F(x)=\left\{\frac{1}{\pi} \int_{-\pi}^{\pi} D_{n}(x-t) s(t) d t: s \in \mathcal{S}(F)\right\}, \quad x \in[-\pi, \pi]
$$

Metric Fourier series of SVFs

Denote $\partial_{n, x}(t)=D_{n}(x-t)$.
Definition. [B., Dyn, Farkhi, Mokhov, 2021]) Let $F:[-\pi, \pi] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$. The metric Fourier series of F is the sequence of the set-valued functions $\left\{\mathscr{S}_{n} F\right\}_{n \in \mathbb{N}}$, where $\mathscr{S}_{n} F$ is a SVF defined by

$$
\mathscr{S}_{n} F(x)=\frac{1}{\pi}\left(\mathcal{M}_{\partial_{n, x}}\right) \int_{-\pi}^{\pi} \partial_{n, x}(t) F(t) d t, \quad x \in[-\pi, \pi], \quad n \in \mathbb{N}
$$

whenever the integrals above exist.
For $F \in \mathcal{F}[-\pi, \pi]$ it holds

$$
\mathscr{S}_{n} F(x)=\left\{\frac{1}{\pi} \int_{-\pi}^{\pi} D_{n}(x-t) s(t) d t: s \in \mathcal{S}(F)\right\}, \quad x \in[-\pi, \pi]
$$

We do not expect metric selections s to be periodic. In fact, even if the set-valued function F itself is periodic, it can have metric selections that are not periodic:

Metric Fourier series of SVFs

We are only aware of few works on trigonometric approximation of SVFs, and there seemed to exist no concept of Fourier series for SVFs earlier.

Metric Fourier series of SVFs

We are only aware of few works on trigonometric approximation of SVFs, and there seemed to exist no concept of Fourier series for SVFs earlier.
The main results are statements about the convergence of the metric Fourier series in the style of the Dirichlet-Jordan Theorem.

Metric Fourier series of SVFs

We are only aware of few works on trigonometric approximation of SVFs, and there seemed to exist no concept of Fourier series for SVFs earlier.
The main results are statements about the convergence of the metric Fourier series in the style of the Dirichlet-Jordan Theorem.
Theorem 1. [B., Dyn, Farkhi, Mokhov, 2021] Let $F:[-\pi, \pi] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$ be of bounded variation with closed graph. Let F be continuous at $x \in(-\pi, \pi)$. Then

$$
\lim _{n \rightarrow \infty} \operatorname{haus}\left(\mathscr{S}_{n} F(x), F(x)\right)=0
$$

If F is continuous in a closed interval $I \subset(-\pi, \pi)$, then the convergence is uniform in I.

Metric Fourier series of SVFs

We are only aware of few works on trigonometric approximation of SVFs, and there seemed to exist no concept of Fourier series for SVFs earlier.
The main results are statements about the convergence of the metric Fourier series in the style of the Dirichlet-Jordan Theorem.
Theorem 1. [B., Dyn, Farkhi, Mokhov, 2021] Let $F:[-\pi, \pi] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$ be of bounded variation with closed graph. Let F be continuous at $x \in(-\pi, \pi)$. Then

$$
\lim _{n \rightarrow \infty} \operatorname{haus}\left(\mathscr{S}_{n} F(x), F(x)\right)=0
$$

If F is continuous in a closed interval $I \subset(-\pi, \pi)$, then the convergence is uniform in I.

Theorem 2. [B., Dyn, Farkhi, Mokhov, 2021] Let $F:[-\pi, \pi] \rightarrow \mathrm{K}\left(\mathbb{R}^{d}\right)$ be of bounded variation with closed graph and $x \in(-\pi, \pi)$. Then

$$
\lim _{n \rightarrow \infty} \operatorname{haus}\left(\mathscr{S}_{n} F(x), A_{F}(x)\right)=0,
$$

where $A_{F}(x)=\left\{\frac{1}{2}(s(x+0)+s(x-0)): s \in \mathcal{S}(F)\right\}$.

Thank you for your attention!

