Fractional Integrals with Measure in Grand Lebesgue and Morrey spaces

ALEXANDER MESKHI

Kutaisi International University TSU A. Razmadze Mathematical Institute, Georgia

8ECM, Harmonic Analysis and PDEs, Portorož, Slovenia, June 23

ALEXANDER MESKHI (1) Fractional Integrals with Measure in Grand L&ECM, Harmonic Analysis and PDEs, Portore

Theorem (HLS). Let $0 < \alpha < n$, $1 . Suppose that <math>\frac{1}{p} - \frac{1}{p^*} = \frac{\alpha}{n}$. Then there is a positive constant *C* such that $\|K_{\alpha}f\|_{L^{p^*}(\mathbb{D}^n)} < C\|f\|_{L^p(\mathbb{R}^n)}, f \in L^p(\mathbb{R}^n),$

$$\|\Lambda_{\alpha}I\|_{L^{p^{*}}(\mathbb{R}^{n})} \geq C\|I\|_{L^{p}(\mathbb{R}^{n})}, \quad I \in L^{*}$$

where

$$\mathcal{K}_{\alpha}f(x) = \int\limits_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-lpha}} dy.$$

Let (X, d, μ) be a space of non-homogeneous type, i.e., (X, d, μ) be a topological space endowed with a locally finite complete measure μ and quasi-metric $d : X \times X \mapsto \mathbb{R}_+$ satisfying the following conditions: *i*) d(x, y) = 0 if and only if x = y; *ii*) d(x, y) = d(y, x) for all $x, y \in X$; *iii*) there exist a constant $\kappa \ge 1$ such that for all $x, y, z \in X$,

$$d(x,y) \leq \kappa [d(x,z) + d(z,y)];$$

(*iv*) for every neighbourhood N of a point $x \in X$ there exists r > 0 such that the ball $B(x, r) = \{y \in X : d(x, y) < r\}$ is contained in N. It is also assumed that all balls B(x, r) in X are measurable, and that $\mu\{x\} = 0$ for all $x \in X$. Let

$$(I_{\gamma}f)(x) = \int\limits_X rac{f(y)}{d(x,y)^{1-\gamma}} d\mu(y), \;\; 0 < \gamma < 1, \;\; x \in X,$$

be fractional integral with a measure μ .

Taking, for example, new quasi-metric $d_1(x, y) = d(x, y)^{1/n}$, n > 0, then we can rewrite $I_{\gamma}f$ as follows;

$$(T_{\alpha}f)(x) = \int_{X} \frac{f(y)}{d_1(x,y)^{n-\alpha}} d\mu(y), \quad 0 < \alpha < n, \quad x \in X,$$

where $\alpha = \gamma n$. Thus we have fractional integral operator defined on (X, d_1, μ) .

Let (X, d, μ) be a non-homogeneous space. Let $1 and let <math>0 < \gamma < 1$. To give a complete characterization of a measure μ such that the inequality

$$\|I_{\gamma}f\|_{L^{q}(X,\mu)} \leq C\|f\|_{L^{p}(X,\mu)}, \ f \in L^{p}(X,\mu),$$

holds.

Potentials with measure. HLS- type inequality

The following theorem was proved in 2001 in [V. Kokilashvili and A.M. 2001] (For Euclidean spaces see V.Kokilashvili: 1992).

Theorem A. Let $1 and let <math>0 < \gamma < 1$. Then the inequality

$$\|I_{\gamma}f\|_{L^{q}(X,\mu)} \leq C\|f\|_{L^{p}(X,\mu)}, \ f \in L^{p}(X,\mu),$$

holds if and only if there exists a positive constant c such that for all $x \in X$ and $r \in (0, diam(X))$,

$$\mu B(x,r) \le cr^{\beta}, \tag{0.1}$$

where β is defined as follows:

$$\beta := \frac{pq(1-\gamma)}{pq+p-q}.$$
 (0.2)

ALEXANDER MESKHI (1) Fractional Integrals with Measure in Grand L&ECM, Harmonic Analysis and PDEs, Portoro

Multilinear characterization: V. Kokilashvili, M. Mastylo and A. M., *JGA*, 2020.

Compactness characterization: V. Kokilashvili, M. Mastylo and A. M., *FCAA*, 2019.

As a Corollary we heve HLS type inequality (see also J. Garcia-Cuerva and A. E. Gatto, 2003):

Corollary A. Let $1 , where <math>0 < \gamma < 1$. We set $p^* := \frac{p}{1 - \gamma p}$. Then the Hardy–Littlewood–Sobolev type inequality

$$\|I_{\gamma}f\|_{L^{p^{*}}(X,\mu)} \leq C\|f\|_{L^{p}(X,\mu)}, \ f \in L^{p}(X,\mu),$$

holds if and only if there exists a positive constant c such that for all $x \in X$ and $r \in (0, diam(X))$,

$$\mu B(x,r) \le cr. \tag{0.3}$$

In 1992 T. Iwaniec and C. Sbordone, in their studies related with the integrability properties of the Jacobian in a bounded open set Ω of \mathbb{R}^n , introduced a new type of function spaces $L^{p}(\Omega)$, called *grand Lebesgue spaces*. A generalized version of these spaces denoted by $L^{p),\theta}(\Omega)$ appeared in L. Greco, T. Iwaniec and C. Sbordone in 1997.

Harmonic analysis related to these spaces and their associate spaces (called *small Lebesgue spaces*), was intensively studied during last years by many authors due to various applications.

Let θ be a positive number and let $\mu(X) < \infty$. Denote by $L^{p),\theta}(X,\mu)$ the grand Lebesgue space defined by the norm

$$\|f\|_{L^{p),\theta}(X,\mu)} = \sup_{0<\eta\leq p-1}\eta^{rac{ heta}{p-\eta}}\|f\|_{L^{p-\eta}(X,\mu)},$$

where $L^r(X, \mu)$, $1 \le r < \infty$, is the classical Lebesgue space with respect to a measure μ , and defined by the norm:

$$||f||_{L^{r}(X,\mu)} = \left(\int_{X} |f(x)|^{r} d\mu(x)\right)^{1/r}.$$

ALEXANDER MESKHI (1) Fractional Integrals with Measure in Grand Lte ECM, Harmonic Analysis and PDEs, Portoro

The grand Lebesgue space $L^{p),\theta}(\Omega)$ is non-reflexive, non-separable and, in general, is non-rearrangement invariant (see, e.g., A. Fiorenza, 2000). The following properties hold:

(a)
$$C_0^{\infty}(\Omega)$$
 is not dense in $L^{p),\theta}(\Omega)$;

(b)
$$L^{p}(\Omega) \hookrightarrow L^{p),\theta}(\Omega) \hookrightarrow L^{p-\varepsilon}(\Omega)$$

(c) for example, the function $x^{-1/p}$ belongs to $L^{p),1}((0,1)) \setminus L^{p}((0,1))$; (d) elements of the closure of $C_{0}^{\infty}(\Omega)$ in $L^{p),\theta}(\Omega)$ are characterized by the following property: $\lim_{\varepsilon \to 0} \varepsilon^{\frac{\theta}{p-\varepsilon}} ||f||_{L^{p-\varepsilon}(\Omega)} = 0.$

Potentials with measure in Grand Lebesgue spaces

Our main statement reads as follows:

Theorem

Let $\mu(X) < \infty$, $1 and Let <math>0 < \gamma < 1$. Suppose that $\theta > 0$. Then I_{γ} is bounded from $L^{p),\theta}(X,\mu)$ to $L^{q),\frac{q\theta}{p}}(X,\mu)$ if and only if there is a positive constant c such that

$$\mu B(x,r) \leq cr^{\beta},$$

holds for all $x \in X$ and $r \in (0, diam(X))$, where β is defined by (0.2), i.e.

$$eta := rac{pq(1-\gamma)}{pq+p-q}.$$

ALEXANDER MESKHI (1) Fractional Integrals with Measure in Grand L&ECM, Harmonic Analysis and PDEs, Portorc

Corollary

Let $\mu(X) < \infty$, $1 and let <math>0 < \gamma < \frac{1}{p}$. We set $p^* = \frac{p}{1 - \gamma p}$. Suppose that $\theta > 0$. Then there is a positive constant *C* such that for all $f \in L^{p),\theta}(X,\mu)$, the inequality

$$\|I_{\gamma}f\|_{L^{p^{*}),\frac{p^{*}\theta}{p}}(X,\mu)} \leq C\|f\|_{L^{p),\theta}(X,\mu)}$$

holds if and only if holds if there exists a positive constant c such that for all $x \in X$ and $r \in (0, diam(X))$,

$$\mu B(x,r) \le cr. \tag{0.4}$$

ALEXANDER MESKHI (1) Fractional Integrals with Measure in Grand Lte ECM, Harmonic Analysis and PDEs, Portoro

PropositionLet $1 and <math>0 < \gamma < 1$. Suppose that (X, d, μ) be a non-homogeneous space. Let there exist a positive constant b such that for all $x \in X$ and $r \in (0, \text{ diam } (X))$,

$$\mu(B(x,r)) \ge br^{\beta}, \qquad (0.5)$$

where β is defined by (0.2). Then the boundedness of I_{γ} from $L^{p),\theta_1}(X,\mu)$ to $L^{q),\theta_2}(X,\mu)$ implies that $\theta_2 \geq \frac{\theta_1 q}{p}$.

Let (X, d, μ) be a quasi-metric measure space and let $M^{p,r}_{\mu,\ell}(X)$ denote the Morrey space defined with respect to a measure μ which is the class at all measurable functions $f : X \longrightarrow \mathbb{R}$ for which the norm

$$\|f\|_{M^{p,r}_{\mu,\ell}(X)} := \sup_{\substack{a \in X \\ t > 0}} \frac{1}{t^{(1/p-1/r)\ell}} \|f\|_{L^p_{\mu}(B(a,t))}$$

$$:= \sup_{\substack{a \in X \\ t > 0}} \frac{1}{t^{(1/p - 1/r)\ell}} \left(\int_{B(a,t)} |f(y)|^p d\mu(y) \right)^{1/p}$$

is finite, where $1 , <math>\ell > 0$. If p = r, then $M_{\mu,\ell}^{p,p}(X)$ coincides with the Lebesgue space $L^p(X, \mu)$. If $\ell = 1$, then $M_{\mu,\ell}^{p,r}(X)$ is denoted by $M_{\mu}^{p,r}(X)$.

On the base of $M^{p,r}_{\mu,\ell}$ we introduce grand Morrey space denoted by $M^{p),r,\theta}_{\mu,\ell}(X)$ and defined by the norm

$$\|f\|_{M^{p),r,\theta}_{\mu,\ell}(X)} = \sup_{0 < \varepsilon < p-1} \varepsilon^{\theta} \|f\|_{M^{p-\varepsilon,r}_{\mu,\ell}(X)}$$

where $\theta > 0$.

Grand Morrey spaces

Grand Morrey spaces defined on finite measure with doubling condition were introduced by A.M. in 2009 (see H. Rafeiro, 2012 for further generalizations).

Let $1 < s < p \le r < \infty$ and let

$$\mu B(x,r) \leq cr^{\ell}.$$

Then the following embeddings hold:

$$L^r_\mu(X) \hookrightarrow M^{p,r}_{\mu,\ell}(X) \hookrightarrow M^{p),r, heta}_{\mu,\ell}(X) \hookrightarrow M^{s),r, heta}_{\mu,\ell}(X).$$

If $\mu(X) < \infty$, then

$$M^{p),r,\theta}_{\mu,\ell}(X) \hookrightarrow \mathcal{L}^{p),\theta}_{\mu}(X),$$

where $\mathcal{L}^{p),\theta}_{\mu}(X)$ is the grand Lebesgue space defined by the following norm:

$$\|f\|_{\mathcal{L}^{p),\theta}_{\mu}(X)} = \sup_{0 < \varepsilon < p-1} \varepsilon^{\theta} \|f\|_{L^{p-\varepsilon}(X,\mu)}.$$

Theorem

Let $1 and let <math>0 < \gamma < 1$. Suppose that the condition

 $\mu B(x,r) \leq cr^{\beta}$

is satisfied, where β is defined by (0.2). Suppose that $1 < r, s < \infty$ and let

$$\frac{1}{p} - \frac{1}{r} = \frac{1}{q} - \frac{1}{s}.$$
(0.6)

Then I_{γ} is bounded from $M^{p),r,\theta}_{\mu}(X)$ to $M^{q),s,\theta}_{\mu,\beta}(X)$.

ALEXANDER MESKHI (1) Fractional Integrals with Measure in Grand Lte ECM, Harmonic Analysis and PDEs, Portoro

The investigation was carried out jointly with V. Kokilashvili. The results are published in [KoMe, 2001].

The work was supported by the Shota Rustaveli National Foundation grant of Georgia (Project No. DI-18-118).

THANK YOU

ALEXANDER MESKHI (1) Fractional Integrals with Measure in Grand Le8ECM, Harmonic Analysis and PDEs, Portore

3

References

[Ad] Adams DR. A trace inequality for generalized potentials. *Studia Math.* 1973; 48:99–105.

[Ko] Kokilashvili V. Weighted estimates for classical integral operators. In: Proceedings of the International Spring School: Nonlinear Analysis,

Function Spaces and Applications IV, Roudnice nad Labem

Czechoslovakia. 1990: May 21-25. Leipzig: Teubner-Texte zur Mathematik, Teubner Verlag; 1990: 86–103.

[KoMe] V. Kokilashvili and A. Meskhi, Fractional integrals with measure in grand Lebesgue and Morrey spaces, *Int. Transf. Spec. Funct.* DOI:10.1080/10652469.2020.1833003.

[KoMe1] V. Kokilashvili and A. Meskhi, Fractional integrals on measure spaces, *Fract. Calc. Appl. Anal.* 2001; 4(1): 1-24.

[GaGa] J. Garcia-Cuerva and A. E. Gatto, Boundedness properties of fractional integral operators associated to non-doubling measures. *Studia Math.* 2004; 162: 245–261.

[KMM] V. Kokilashvili, M. Mastylo and A.Meskhi, On the Boundedness of Multilinear Fractional Integral Operators, *The Journal of Geometric* **and Solution**

[lwSb] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses. *Arch. Rational Mech. Anal.* 1992; 119: 129–143.

[GIS] L. Greco, T. Iwaniec and C. Sbordone, Inverting the *p*-harmonic operator. *Manuscripta Math.* 1997; 92: 249–258.

[Fi] C. Capone and A. Fiorenza, On small Lebesgue spaces. *J. Function Spaces and Applications.* 2005; 3: 73–89.

[FF] G. Di Fratta and A. Fiorenza, A direct approach to the duality of grand and small Lebesgue spaces. *Nonlinear Analysis: Theory, Methods and Applications.* 2009; 70(7): 2582–2592.

[Fi] A. Fiorenza, Duality and reflexivity in grand Lebesgue spaces. *Collect. Math.* 2000; 51(2): 131–148.

[FGJ] A. Fiorenza, B. Gupta and P. Jain, The maximal theorem in weighted grand Lebesgue spaces. *Studia Math.* 2008; 188(2) (2008), 123–133.

[FiKa] A. Fiorenza A and G. E. Karadzhov, Grand and small Lebesgue spaces and their analogs. *Journal for Analysis and its Applications.* 2004: 23(4): 657–681.

[FiRa] A. Fiorenza and J. M. Rakotoson, Petits espaces de Lebesgue et leurs applications. *C.R.A.S. t.* 2001; 333 1–4.

[KMRS] V. Kokilashvili V, A. Meskhi and S. Samko, H. Rafeiro, Integral operators in non-standard function spaces. Vol. II. Variable exponent Hölder, Morrey-Campanato and Grand spaces. Birkhäuser; 2016. [KMM] V. Kokilashvili, M. Mastylo amd A. Meskhi, Compactness criteria for fractional integral operators, *Fract. Calc. Appl. Anal.* 2019; 22(5):

1259–1283.

[Me] A. Meskhi, Criteria for the boundedness of potential operators in grand Lebesgue spaces, *Proc. A. Razmadze Math. Inst.* 2015; 169: 119–132.

[CFG] C. Capone, M. R. Formica and G. Giova, Grand Lebesgue spaces with respect to measurable functions. *Nonlinear Anal.* 2013; 85: 125–131. [JSS] P. Jain, M. Singh and A. P. Singh, Integral operators on fully measurable weighted grand Lebesgue spaces. *Indagationes Mathematicae*. 2017; 28(2): 516–526.

[KoMe2] V. Kokilashvili and A. Meskhi, Trace inequalities for integral operators with fractional order in grand Lebesgue spaces. *Studia Math.* 2012; 210: 159–176.

[Me2] A. Meskhi, Maximal functions, potentials and singular integrals in grand Morrey spaces. *Complex Variables and Elliptic Equations*. 2011; 56(10-11): 1003–1019.

[R] H. Rafeiro, A note on boundedness of operators in Grand Grand Morrey spaces. In: A. Almeida, L. Castro, F-O Speck (editors). Advances in harmonic analysis and operator theory, the Stefan Samko anniversary volume. *Basel: Birkhäuser:* 2013: 349–356.

・ロト ・ 同ト ・ ヨト ・ ヨト

[KMR] V. Kokilashvili, A. Meskhi and M. A. Ragusa, Weighted extrapolation in grand Morrey spaces and applications to partial differential equations. *Rendiconti Lincei Matematica e Applicazioni Rend. Lincei Mat. Appl.* 2019; 30: 67–92.

[FMO] T. Futamura, Y. Mizuta and T. Ohno, Sobolev's theorem for Riesz potentials of functions in grand Morrey spaces of variable exponent. Banach and function spaces IV. (ISBFS 2012): 353–365. Yokohama: Yokohama Publ; 2014.

[MO] Y. Mizuta and T. Ohno, Trudinger's exponential inequality for Riesz potentials of functions in generalized grand Morrey spaces. *J. Math. Anal. Appl.* 2014; 420: 268–274.