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Motivations and outline of my talk

• G2 and Spin(7) are currently most exciting

objects in GDbDF and M-F theory.

• There are many deep results and sophisticated

techniques in complex geometry and CR-geometry.

• It is natural to continue Gray’s path on

searching complex and CR- structures associated

to G2 and Spin(7)-manifolds.



1. VCPs and G2-and Spin(7)-structures.

2. Parallel VCPs and formally Kähler structures

on higher dimensional loop spaces.

3. Parallel VCPs, formally integrable structure

and Frörlicher-Nijenhuis bracket.

4. Calibrated submanifolds, complex submanifolds

and parallel VCPs.

5. CR-twistor spaces over manifolds with

G2- and Spin(7)-structure.



1. VCPs, G2-and Spin(7)-structure

χ ∈ Ωr(M,TM) on (M, g) is a VCP iff

〈χ(v1, · · · , vr), vi〉 = 0 for 1 ≤ i ≤ r,

〈χ(v1, · · · , vr), χ(v1, · · · , vr)〉 = ‖v1 ∧ · · · ∧ vr‖2

For a VCP χ ∈ Ωr(M,TM) we associate the

VCP-form ϕχ ∈ Ωr+1(M) as follows

ϕχ(v1, · · · , vr+1) = 〈χ(v1, · · · , vr), vr+1〉g.



• χ on (Mn, g) is defined uniquely by ϕχ.

• StabGL(R7)(ϕ3
χ) = G2 ⊂ SO(7).

• StabGL(R8)(ϕ4
χ) = Spin(7) ⊂ SO(8).

• G2/Spin(7)-structures ←→ { g · ϕχ}.

• VCPs in dimension 3,7, 8 can be expressed
in terms of normed algebra operations.

• A (n−1)-fold VCP on a Riemannian manifold
(Mn, g) is defined uniquely by the conformal
class of g.



2. Parallel VCPs and formally Kähler

structure on higher dimensional loop spaces

(2) Brylinski (1993): The space Li,f(M3) of

unparameterized freely immersed loops on a

(M3, g) has a formally Kähler structure.

(3) LeBrun (1993): The space B+
e (S,M) of

unparameterized embedded oriented submanifolds

diffeomorphic to S ⊂ (M, g) has formally Kähler

structure, if codimS = 2 and M is oriented.



(4) Lee-Leung (2007): The space B+
e (S,M)

has an almost Kähler structure, if (M, g) has

a closed r-fold VCP and dimS = r − 1.

(5) Verbitsky (2010): The space Le(S1,M7)

has a formally Kähler structure, if (M7, g) is

a torsion-free G2-manifold.

(6) Fiorenza-L. (2019): The space B+
i,f(S,M)

of unparameterized freely immersed submanifolds

diffeomorphic to S in (M, g) has a formally

Kähler structure, if (M, g) has a parallel r-

fold VCP and dimS = r − 1.



• Brylinski proof uses a trick. Lempert (1993)

proved that the ACS J on Li,f(M3) is weakly

integrable by using LeBrun’s CR twistor space

over a 3-manifold M3. Using Rossi’s CR-

twistor space over B+
e (S,M), when codimS =

2, LeBrun proved the formal integrability of

the ACS J. Verbitsky constructed a CR-

twistor space for the proof of the formal

integrability of J on B+
i,f(S1,M7). Fiorenza-

L. proved the formal integrability of J on

B+
i,f(S,M) by showing that ∇LCJ = 0.



3. Parallel VCPs, formally integrable structures

and Frörlicher-Nijenhuis bracket

• ∇LCJ = 0 ⇐⇒ NJ = 0.

• Kotaro-L.-Schwachhöfer (2018) A natural

generalization of that equivalence for parallel

VCP is to use Frölicher-Nijnehuis bracket on

the graded Lie algebra (Ω∗(M,TM), [, ]FN).



For K = αk ⊗X ∈ Ω∗(M,TM) we let

ıαk⊗Xα
l := αk ∧ (ıXα

l) ∈ Ωk+l−1(M),

and extend it R-linearly on Ω∗(M,TM).

L : Ω∗(M,TM)→ Der(Ω∗(M)), K 7→ LK,

LK := L(K) := [ıK, d] ∈ Der(Ω∗(M)).

• L is injective and induces the Lie bracket

on Ω∗(M,TM).



• For (M, g) we define the contraction

ΛkV ∗ −→ Λk−1V ∗ ⊗ V , ϕ 7→ ϕ̂ := (ıeiϕ)⊗(ei)#,

Theorem (LKS, 2018) 1. Let ϕ be a parallel

differential form of even degree on (M, g).

Then [ϕ̂, ϕ̂]FN = 0.

2. Let ϕ be a differential 4-form with Stab(ϕ) ⊂
G2 on a manifold M7(resp. Stab(ϕ) ⊂ Spin(7)

on a manifold M8). Then [ϕ̂, ϕ̂]FN = 0 iff ϕ

is parallel.



• The identity [ϕ̂, ϕ̂]FN = 0 led us to study

almost formality of G2 and Spin(7)-manifolds,

which I shall not discuss here. Instead I

shall explain the origin of this identity coming

from our study of deformation of assositive

submanifolds in G2-manifolds and more general,

deformation of calibrated submanifolds.



4. Calibrated and complex submanifolds

Definition (Fiorenza-L-Schwachhöfer-Vitagliano,

arXiv:1804.05732) Let M be a smooth manifold

and Ψ ∈ Ωl(M,TM). A submanifold Lr ⊂M ,

where r ≥ l, will be called a Ψ-submanifold,

if Ψ|L ∈ Ωl(Lr, TLr).

• Any almost complex submanifold in an almost

complex manifold is a Ψ-submanifold.

• Any ϕ-calibrated submanifold is ϕ̂-submanifold.



• The Lie bracket [, ] on g is an element in

Λ2(g∗) ⊗ g. Hence any Lie group is a Ψ-

submanifold.

Theorem(FLSV2018) Let Ψ ∈ Ω∗(M,TM)

be an odd degree element which is square-

zero, i.e., such that [Ψ,Ψ]FN = 0, and let

L be a Ψ-submanifold. Then the cochain

complex Ω∗(L,NL)[−1] carries a canonical

Z2-graded L∞-algebra structure. If deg Ψ =

1 then this Z2-graded L∞-algebra is also a

Z-graded L∞-algebra.



Theorem (FLSV2018) Let ϕ ∈ Ωl(M) be a

parallel calibration on a real analytic Riemannian

manifold (M, g). If L is ϕ-calibrated submanifold,

then there is a canonical Z2-graded strongly

homotopy Lie algebra that governs formal

and smooth deformations of L in the class

of ϕ-calibrated submanifolds.

•McLean (1998) considered only deformations

of special Lagrangian, associative, coassociative

and Cayley submanifolds.



• Further works on deformations of calibrated

submanifolds are devoted to the smoothness

and the Zariski tangent space to the moduli

space of closed calibrated submanifolds that

are special Lagrangian, associative, coasso-

ciative and Cayley in (tamed) almost/nearly

Calabi-Yau, G2 and Spin(7)- manifolds

• The classical deformation theory of complex

submanifolds can be formulated in a similar

way.



5. CR-twistor spaces over manifolds with

G2- and Spin(7)-structure.

• (M, g) - oriented Riemannian manifold.

• We identify Gr+(r,M) with decomposable

unit r-vectors in ΛrTM .

Tw(ΛrTM) = ΛrTπ(w)M ⊕ T
hor
w (ΛrTM)

where

Thorw (ΛrTM) = Tπ(w)M



Then we have

TvGr
+(r,M) = TvGr

+(r, Tπ(v)M)⊕Thorw (Gr+(r,M)).

where

Thorv (Gr+(r,M)) = Thorv (ΛrTM) = Tπ(v)M.

Let B ⊂ TGr+(r,M) - a distribution

B(v) := {ξ ∈ Thorv Gr+(r,M)| dπ(ξ) ∈ E⊥v ⊂ Tπ(v)M}.

• χ ∈ Ωr+1(M,TM) - a VCP on (M, g).



For v ∈ Gr+(r,M), w ∈ B(v) we let

JB(w) := v × w ∈ B(v).

• (Gr+(r,M), B, JB) is a CR-twistor space

over (M, g, χ).

• An (almost) CR-structure on a manifold N

is a pair (B, JB) consisting of a distribution

B ⊆ TN and of an almost complex structure

JB on B. An almost CR-structure (B, JB) is

said to be integrable if [B1,0, B1,0] ⊆ B1,0. If

(B, JB) is integrable, then (N,B, JB) is called

a CR-manifold.



• (Gr+(r − 1,M), B, Jg,χ) is called the CR-

twistor space over (M, g, χ).

• (B, J) defines an integrable CR-structure iff

the following two conditions hold two conditon

1. [JX, JY ]− [X,Y ] ∈ Γ(B) ∀X,Y ∈ Γ(B);

2. NJ(X,Y ) = 0 ∀X,Y ∈ Γ(B) ⇐⇒

[JX, JY ]−[X,Y ]−J([X, JY ]+[JX, Y ]) = 0.



• LeBrun (1984) and Rossi (1985): the CR-
twistor space over (Mn, g) with (n− 1)-VCP
is CR-manifold.

• Lempert, LeBrun (1993): the CR-integrability
implies the (weak) formal integrability of J
on the loop space over (Mn, g) with (n− 2)-
fold VCP, (if (M, g) is analytic).

• Verbitsky (2011): the CR-twistor space
over a Riemannian manifold (M7, ϕ) is integrable
iff ∇ϕ = 0. (This is used by Verbitsky later
for his proof of the formal integrability of J
on loop space over G2-manifolds.)



Theorem (Fiorenza-L., 2021) (1) The 1st

integrability for the CR-twistor space over G2

and Spin(7)-manifolds (M, g) holds, iff (M, g)

is of constant curvature.

(2) The CR-twistor space over S7 = Spin(7)/G2

endowed with an Spin(7)-invariant associative

3-form is a CR-manifold.



Thank you for your attention!


