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8th European Congress of Mathematics, Minisymposium
,,Topological Methods in Differential Equations”, 24th June 2021



Aims Evolutionary problem Index theory Tail estimates Nonresonant case Resonant case

Let us consider following autonomous wave equation:

utt + αut = ∆u− V (x)u+ f(t, x, u), t > 0, x ∈ RN , (1)

where α ≥ 0 is a damping coefficient and V is the so called Kato-Rellich
potential, i. e. V = V∞ − V0, V∞ ∈ L∞(RN ), V0 ∈ Lp(RN ), 2 < p <∞. In
general, the nonlinear forcing term f is continuous and locally Lipschitz
(currently we work yet by global Lipschitz condition) with respect to the third
variable and T -periodic in time, i.e. f(t+ T, x, u) = f(t, x, u). The two cases
must be considered separately: the resonant and non-resonant ones.
In the resonant case, that is when the kernel space of the linearization of the
−∆ + V (x) + f(t, x, ·) is nontrivial, i. e.

N := Ker (−∆ + V ) 6= {0}. (2)
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We introduce so-called Landesman-Lazer type conditions, which mean that∫ T

0

(∫
{φ>0}

f̌+(t, x)φ(x) dx+

∫
{φ<0}

f̂−(t, x)φ(x) dx

)
dt > 0, (3)

for any φ ∈ N \ {0}, where f̌+(t, x) := lim infs→+∞ f(t, x, s) and
f̂−(t, x) := lim sups→−∞ f(t, x, s) or∫ T

0

(∫
{φ>0}

f̂+(t, x)φ(x) dx+

∫
{φ<0}

f̌−(t, x)φ(x) dx

)
dt < 0, (4)

for any φ ∈ N \ {0}, where f̂+(t, x) := lim sups→+∞ f(t, x, s) and

f̌−(t, x) := lim infs→−∞ f(t, x, s).
It is noteworthy that the conditions of that type can be verified without the
explicit knowledge of N (see Remark 1.3 in [5]).
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We are now in point to state our first theorem

Theorem 1
Suppose that we have problem (1) with assumptions about V (x) and f(t, x, u)
as mentioned above and additionally we request that f is bounded by square
integrable function, i. e. there exists m ∈ L2(RN ) such that for all t ∈ [0,∞),
u ∈ R and almost every x ∈ RN

|f(t, x, u)| ≤ m(x).

Moreover, we require that resonance condition (2) holds as well as one
Landesman-Lazer conditions (3), (4). Next we assume that

a∞ := lim
R→+∞

essinf |x|≥R V∞(x)

is a positive number and 0 ∈ σp(−∆ + V (x)). Then there exists T -periodic
solution of (1).
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The second case concerning situation when there are no resonance, which
means that −∆ + V (x) + f(t, x, ·) at zero and infinity has trivial kernels. We
shall use the following linearizations of f

lim
u→0

f(t, x, u)

u
= α(t, x), lim

|u|→∞

f(t, x, u)

u
= ω(t, x), (5)

for all x ∈ RN and t ≥ 0, where α(t, .), ω(t, .) are Kato-Rellich potentials. We
work under the assumption that

Ker (−∆ + V − ω̂) = {0} and Ker (−∆ + V − α̂) = {0}, (6)

where

α̂(x) :=
1

T

∫ T

0

α(t, x) dt, ω̂(x) :=
1

T

∫ T

0

ω(t, x) dt.

Now we formulate theorem concerning nonresonance case.

Theorem 2
Suppose that we have problem (1) with assumptions about V (x) and f(t, x, u)
as mentioned above. Moreover, we require that nonresonance condition (6)
holds and linearizations of right-hand-side of (1) are topologically different, i.
e. numbers of the negative eigenvalues (counted with multiplicities) of
−∆ + V − α̂ and −∆ + V − ω̂ are different modulo 2. Then there exists
T -periodic solution of (1).
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The hyperbolic equation (1) can be rewritten as the system on space
X = H1(RN )× L2(RN ){

ut = v − δu
vt = −(−∆ + V (x))u− (α− δ)(v − δu) + f(t, x, u)

(7)

with δ ≥ 0 (see section 2.1 in [8]). We equip space X with usual scalar product
(. , .)X := (. , .)H1 + (. , .)L2 .
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Subsequently we transform formula above into first order differential equation

(ut, vt) = −(A0 + V)(u, v) + F(t, u, v), t > 0, (8)

where A0 : D(A0) ⊂ X→ X, is defined by D(A0) = H2(RN )×H1(RN ) and

A0(u, v) :=
(
δu− v,−∆u+ (α− δ)v + (δ2 − αδ)u

)
,

and V : X→ X by
V(u, v) = (0, V (x)u).

The mapping F : [0,+∞)×X→ X is given by

F(t, u, v) := (0, F (t, u))

with the Nemytskii operator F : [0,+∞)×H1(RN )→ L2(RN ) given by
[F (t, u)](x) := f(t, x, u(x)).
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It is may be shown, by use of the Lumer-Phillips theorem, that −(A0 + V) is
the generator of C0-semigroup of contractions

{
S−(A0+V)(t)

}
t≥0

, which

enables us to consider mild solutions of (8), i. e we say that function
(u(.), v(.)) : [0, τ ]→ X is a mild solution with initial condition (ū, v̄) if it
satisfies following integral formula

(u(t), v(t)) = S−(A0+V)(t)(ū, v̄)+

∫ t

0

S−(A0+V)(t−s)F(s, u(s), v(s)) ds, (9)

for any t ∈ [0, τ ]. Consequently, we say that u : [0, τ ]→ H1(RN ) is a mild
solution of (1) if there exists v : [0, τ ]→ L2(RN ) such that (u, v) is a mild
solution of (8). In particular, under reasonable assumptions on f , we have the
Poincaré operator of translation along trajectories ΦT : X→ X associated
with (8), defined by

ΦT (ū, v̄) := (u(T ), v(T )),

where (u, v) : [0, T ]→ X is the mild solution of (8) with the initial condition
(u(0), v(0)) = (ū, v̄) (the existence and uniqueness come from standard
C0-semigroup theory, see e.g. [11] or [3]).
Observe that if (ū, v̄) ∈ X is a fixed point of ΦT , i.e. ΦT (ū, v̄) = (ū, v̄), then
the mild solution of (8) is T -periodic. Therefore we search for fixed points of
ΦT .
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Let (E, ‖.‖) be a Banach space. We say that G : E → E is ultimately compact
if for any bounded D ⊂ E such that

D ⊂ conv(G(D)),

then D is relatively compact in E. Observe that any compact map is ultimately
compact. We recall that conv(D) means convex hull of set D and conv(D)
means convex closed hull of D (we consider closure in space E). There are
possible slightly general definitions, for instance see section 2 in [6]. We are in a
position to introduce index theory for ultimately compact sets due to Sadovskii
(see Section 3.5.6 in [1]). It is an improvement of index for so-called condensing
operators due to Nussbaum and Sadovskii (see Chapter 4 in [10]). One can
show that index for ultimately compact operator possesses standard preperties
(existence, additivity, homotopy invariance and normalization). Moreover, it is
also true, that if G is a compact map, then index for ultimately compact
operators coincides with Leray-Schauder index. Further we will denote index of
ultimate compact map G with respect to open set U ⊂ E by Induc(G,U).
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According to what was said before we need to prove that Poincaré operator of
translation along trajectories is ultimately compact. One of techniques is based
on the so-called tail estimates of solutions, for instance estimation of sequences∫

{|x|≥n}
|u(x, t)|2 dx,

where u : [0,∞)→ H1(RN ) is a solution of parabolic equation

ut = ∆u− V (x)u+ f(t, x, u), t > 0, x ∈ RN . (10)

The tail estimate method was originated for parabolic equations by Wang in
[13]. A tail estimates enabling applications of Conley index to parabolic
equation and the associated semiflow on H1(RN ) was shown in [12] and
adapted in [5]. We shall follow ideas from [6] and [7] for parabolic problems
(10) and from [8] for hyperbolic problems.
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Assume now that, for all t ≥ 0, x ∈ RN and u1, u2 ∈ R,

|f(t, x, u1)− f(t, x, u2)| ≤ l(x)|u1 − u2|

where l is a Rellich-Kato type function. Let u1, u2 be two solution of (8).
Then u := u1 − u2 and v := δu+ u̇ satisfy

u̇ = ∆u− ((α− δ)δ − V )u− (α− δ)u+ F (t, u1)− F (t, u2)

Furthermore, φ : [0,∞)→ R be smooth function such that φ([0,∞)) ⊂ [0, 1],
for any s ∈ [0, 1] φ(s) = 0 and for any s ∈ [2,∞) φ(s) = 1. Then for any
k ∈ N≥1 we put φk : RN → R, φk(x) := φ(|x|2/k2), where |.| stands for norm
in RN . By the regularity theory (see [2])

1

2

d

dt
(v, vφk)0 = (v̇, vφk)0 = (∆u, vφk)0 + (((α− δ)δ − V )u, vφk)0 +

−(α− δ)(v, vφk)0 + (F (t, u1)− F (t, u2), vφk)0

= I1 + I2 + I3

with

I1 = (∆u, vφk)0, I2 = (((α− δ)δ − V )u, vφk)0 ,

I3 = −(α− δ)(v, vφk)0 + (F (t, u1)− F (t, u2), vφk)0.
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Clearly

I1 ≤ −
1

2

d

dt
(∇u,∇uφk)0 − δ(∇u,∇uφk)0 + c

(1)
k

where c
(1)
k → 0+ as k → +∞.

Further we have

I2 = (((α− δ)δ − a∞)u, u̇φk + δuφk)0 + ((a∞ − V )u, vφk)0

= −1

2

d

dt
((a∞ − (α− δ)δ)u, uφk)0 − δ ((a∞ − (α− δ)δ)u, uφk)0 +

+ ((a∞ − V∞)u, vφk)0 + (V0u, vφk)0 ≤

≤ −1

2

d

dt
((a∞ − (α− δ)δ)u, uφk)0 − δ ((a∞ − (α− δ)δ)u, uφk)0 + c

(2)
k ,

where
c
(2)
k = (V0u, vφk)0.

Clearly, by standard tail estimate techniques

c
(2)
k → 0+ as k → +∞.
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Finally observe that, that for large k,

I3 = −(α− δ)(v, vφk)0 + (F (t, u1)− F (t, u2), vφk)0

≤ −(α− δ)(v, vφk)0 + essup|x|≥kl∞(x)(|u|, |v|φk)0 + (l0|u|, |v|φk)0

≤ −(α− δ)(v, vφk)0 +
(
l∞/2

)
ε(v, vφ0) +

(
εl∞/2

)
(u, uφk)0 + c

(3)
k

with
l∞ = lim

R→+∞
essup|x|≥kl∞(x)

c
(3)
k → 0+ as k → +∞. Hence if we put

D(t) := (∇u,∇uφk)0 + ((a∞ − (α− δ)δ)u, uφk)0 + (v, vφk)0

then, by the above esitmates we get

Ḋ(t) ≤ −2δD(t)− (α− 2δ)(v, vφk)0 + l∞/2ε(v, vφ0) +
(
εl∞/2

)
(u, uφk)0 + ck

with ck → 0+ as k → +∞. If we find ε > 0 and δ > 0 such that

− δ − (α− 2δ) +
L

2ε
< 0 and

εL

2(a∞ − (α− δ)δ) − δ < 0 (11)

with L = l∞, then we get ρ > 0 such that

Ḋ(t) ≤ −ρD(t) + ck,
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Observe that, for any δ ∈ (0, α),

(α− δ)δ ≤ (α/2)2

and that if we assume that
a∞ > (α/2)2

and find δ > 0 and ε > 0 such that

δ < α− L

2ε
and

εL

2(a∞ − (α/2)2)
< δ

then these numbers satisfy (11). It can be shown that such numbers exists if

L/2 < α2(a∞ − (α/2)2).

Theorem 3
If a∞, l∞ and α satisfy

l∞ < 2α2(a∞ − (α/2)2),

then the Poincaré operator ΦT : X→ X is ultimately compact.
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Once having the ultimate property, we shall be able to perform fixed point
index computations for ΦT using some geometric properties of the equation.
The resonant and non-resonant cases are considered separately. We shall follow
the ideas from [6] and [7].
In the non-resonant case we shall consider the following family of equations

(ut, vt) = −(A0 + V)(u, v) + F(t/ε, u, v), t > 0, (12)

where ε ∈ (0, 1]. First we shall show that the non-resonance conditions (6)
imply the existence of r > 0 and R > 2r such that, for all ε ∈ (0, 1], the
equation (12) has no nontrivial εT -periodic solution with

(u(0), v(0)) ∈ BX(0, 2r) ∪ (X \BX(0, R)) .

This will enable us to consider the translation along trajectories operator Φ
(ε)
T

for (12) and ask for the indices Induc(Φ
(ε)
T , BX(0, r)) and

Induc(Φ
(ε)
T , BX(0, R)) where Induc denotes fixed point index for ultimately

compact mappings. By the homotopy property (note that ΦT = Φ
(1)
T )

Induc(ΦT , BX(0, r)) = lim
ε→0+

Induc(Φ
(ε)
T , BX(0, r))

and
Induc(ΦT , BX(0, R)) = lim

ε→0+
Induc(Φ

(ε)
T , BX(0, R)).
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Then the averaging principle (see e.g. [9] or [4]) will be used to show that, for
U = BX(0, r) and U = BX(0, R), there exists ε0 > 0 such that, for all
ε ∈ (0, ε0], one has

Induc(Φ
(ε)
T , U) = Induc(Φ̂εT , U)

where Φ̂t, t > 0, are the Poincaré operators associated with

utt + αut = ∆u− V (x)u+ f̂(x, u), t > 0, x ∈ RN , (13)

that is with
(ut, vt) = −(A0 + V)(u, v) + F̂(u, v), t > 0, (14)

where f̂(x, u) := 1
T

∫ T
0
f(t, x, u) dt and [F̂(u, v)](x) := (0, f̂(x, u(x))). Hence,

to find the indices

Induc(ΦT , BX(0, r)) and Induc(ΦT , BX(0, R))

it sufficient to compute the fixed point index of Φ̂t for small t > 0.



Aims Evolutionary problem Index theory Tail estimates Nonresonant case Resonant case

To get the fixed point index of Φ̂t we shall use the linearization method and
the spectral properties of operators −∆ + V − α̂ and −∆ + V − ω̂. Namely, we
expect that there exists t0 > 0 such that, for all t ∈ (0, t0],

Induc(ΦT , BX(0, r)) = (−1)m(0) and Induc(ΦT , BX(0, R)) = (−1)m(∞)

where m(0) is the number of negative eigenvalues of −∆ + V − α̂ (counted
with their multiciplities) and m(∞) is the number of negative eigenvalues of
−∆ + V − ω̂. Here we use the Weyl spectral theorem to see that the essential
spectra of −∆ +W∞ and −∆ +W∞ +W0 coincide if W∞ +W0 is a
Kato-Rellich potential. Finally, by means of the additivity property of fixed
point index, we shall arrive at

Induc(ΦT , BX(0, R) \BX(0, r)) = (−1)m(∞) − (−1)m(0),

i.e. the formula showing the assertion, i.e. if m(0) 6≡ m(∞) mod 2, then
Induc(ΦT , BX(0, R) \BX(0, r)) 6= 0, which implies the existence of T -periodic
solution starting from BX(0, R) \BX(0, r).
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If equation (1) is at resonance, that is N = ker(−∆ + V ) 6= {0}, then we shall
consider the following parameterized equation

utt + αut = ∆u− V (x)u+ εf(t, x, u), t > 0, x ∈ RN (15)

and the associated first order problem

(ut, vt) = −(A0 + V)(u, v) + εF(t, (u, v)), t > 0

with associated operator of translation Φ
(ε)
T . Let P : L2(RN )→ N be the

orthogonal projection onto N . Observe that N ⊂ H1(RN ) and, in view of the
Riesz-Schauder theory, dimN <∞. Then L2(RN ) = N ⊕N⊥ and
consequently H1(RN ) = N ⊕

(
N⊥ ∩H1(RN )

)
. Subsequently we put

F̄ (u) = 1
T

∫ T
0
PF (t, u) dt. We expect that if U ⊂ N is an open bounded set

such that F̄ (ū) 6= 0 for any ū ∈ ∂U , then for any r,R > 0 exists ε0 ∈ (0, 1]
such that for all ε ∈ (0, ε0] we have

Induc (Φε
T , (U ⊕Br)×B(0, R)) = (−1)m(∞)+dimNDegB(F̄ , U),

where Br = {u ∈ N⊥ ∩H1(RN ) | ‖u‖H1 < r}, B(0, R) is an open ball in
L2(RN ) centered in 0 with radius R, m(∞) is a number of negative
eigenvalues (counted with multiplicities) of −∆ + V and DegB denotes
topological Brouwer degree.
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Next step of our reasoning should be proving resonance version of continuation
principle: if there exists R0 > 0 such that DegB(F̄ , BN (0, R0)) 6= 0
(BN (0, R0) = {u ∈ N | ‖u‖H1 < R0}) and for any ε ∈ (0, 1) there are not
T -periodic solutions with ‖z(0)‖X ≥ R0 of (15), then equation

zt = −(A0 + V)z + F(t, z), t > 0 (16)

has a T -periodic solution. Hence a crucial point is to show that Brouwer
degree associated with F̄ is nontrivial. We suppose that Landesman-Lazer
conditions allow us to provide such result, and, in consequence, an existence of
T -periodic solutions of equations in resonance.
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