A proof of a conjecture of Elbert and Laforgia on the zeros of cylinder functions

B

Gergő Nemes

Alfréd Rényi Institute of Mathematics
Budapest, Hungary
23 June 2021

Cylinder functions

We define for $z \in \mathbb{C} \backslash(-\infty, 0], v \in \mathbb{C}$, and $0 \leq \alpha<1$, the cylinder function $\mathscr{C}_{v}(z)$ of order v by

$$
\mathscr{C}_{v}(z) \stackrel{\text { def }}{=} J_{v}(z) \cos (\pi \alpha)+Y_{v}(z) \sin (\pi \alpha)
$$

Cylinder functions

We define for $z \in \mathbb{C} \backslash(-\infty, 0], v \in \mathbb{C}$, and $0 \leq \alpha<1$, the cylinder function $\mathscr{C}_{v}(z)$ of order v by

$$
\mathscr{C}_{v}(z) \stackrel{\text { def }}{=} J_{v}(z) \cos (\pi \alpha)+Y_{v}(z) \sin (\pi \alpha)
$$

Here, $J_{v}(z)$ and $Y_{v}(z)$ denote the Bessel functions of the first and second kind, respectively. These functions are defined by

$$
J_{v}(z) \stackrel{\text { def }}{=}\left(\frac{1}{2} z\right)^{v} \sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{1}{2} z\right)^{2 n}}{\Gamma(v+n+1) n!}
$$

and

$$
Y_{v}(z) \stackrel{\text { def }}{=} \frac{J_{v}(z) \cos (\pi v)-J_{-v}(z)}{\sin (\pi v)}
$$

for $z \in \mathbb{C} \backslash(-\infty, 0]$ and $v \in \mathbb{C}$. When v is an integer, the limiting value has to be taken in the definition of $Y_{v}(z)$.

Large zeros of cylinder functions

Assume that v is real and $-\frac{1}{2}<v<\frac{1}{2}$. It is known that the cylinder function $\mathscr{C}_{v}(z)$ has an infinite number of positive zeros, which we denote by $j_{v, \kappa}$ with $\kappa=k+\alpha>\frac{1}{2}(|v|-v), k \in \mathbb{N}$.

Large zeros of cylinder functions

Assume that v is real and $-\frac{1}{2}<v<\frac{1}{2}$. It is known that the cylinder function $\mathscr{C}_{v}(z)$ has an infinite number of positive zeros, which we denote by $j_{v, \kappa}$ with $\kappa=k+\alpha>\frac{1}{2}(|v|-v), k \in \mathbb{N}$.
JAMES MCMAHON ${ }^{1}$ showed in 1894 that, as $k \rightarrow+\infty$, the sequence $j_{v, \kappa}$ has an asymptotic expansion

$$
\begin{aligned}
j_{v, \kappa} & \sim \beta_{v, \kappa}+\sum_{n=1}^{\infty} \frac{c_{n}(v)}{\beta_{v, \kappa}^{2 n-1}} \\
& =\beta_{v, \kappa}-\frac{4 v^{2}-1}{8 \beta_{v, \kappa}}-\frac{\left(4 v^{2}-1\right)\left(28 v^{2}-31\right)}{384 \beta_{v, \kappa}^{3}}+\cdots
\end{aligned}
$$

where

$$
\beta_{v, \kappa} \stackrel{\text { def }}{=}\left(\kappa+\frac{1}{2} v-\frac{1}{4}\right) \pi,
$$

and the coefficients $c_{n}(v)$ are polynomials in v^{2} of degree n.
${ }^{1}$ J. McMahon, On the roots of the Bessel and certain related functions, Annals Math. 9 (1894-1895), no. 1/6, pp. 23-30.

A conjecture of Á. Elbert and A. Laforgia ${ }^{2}$

James McMahon

Árpád Elbert

Andrea Laforgia

Conjecture (Árpád Elbert and Andrea Laforgia, 2001)
For $-\frac{1}{2}<v<\frac{1}{2}$, an even (odd) number of terms of MCMAHON's expansion always gives upper (lower) bounds for $j_{\nu, k}$.

The assumption $\beta_{V, k}>0$ is needed for the statement to be true
${ }^{2}$ Á. Elbert, A. Laforgia, A conjecture on the zeros of Bessel functions, J. Comput. Appl. Math. 133 (2001), no. 1-2, p. 683.

A conjecture of Á. Elbert and A. Laforgia ${ }^{2}$

James McMahon

Árpád Elbert

Andrea Laforgia

Conjecture (Árpád Elbert and Andrea Laforgia, 2001)
For $-\frac{1}{2}<v<\frac{1}{2}$, an even (odd) number of terms of MCMAHON's expansion always gives upper (lower) bounds for $j_{\nu, \kappa}$.

The assumption $\beta_{v, \kappa}>0$ is needed for the statement to be true.

[^0]
Known special cases

In the special case $\alpha=0$, i.e., $\kappa=k=1,2, \ldots$, KLAUS-JÜRGEN FÖrster and Knut Petras ${ }^{3}$ proved in 1993 that

$$
\begin{gathered}
\beta_{v, k}<j_{v, k} \\
j_{v, k}<\beta_{v, k}-\frac{4 v^{2}-1}{8 \beta_{v, k}} \\
\beta_{v, k}-\frac{4 v^{2}-1}{8 \beta_{v, k}}-\frac{\left(4 v^{2}-1\right)\left(28 v^{2}-31\right)}{384 \beta_{v, k}^{3}}<j_{v, k}
\end{gathered}
$$

for any $-\frac{1}{2}<v<\frac{1}{2}$. Their derivation is lengthy and complicated (but elementary).
${ }^{3}$ K.-J. Förster, K. Petras, Inequalities for the zeros of ultraspherical polynomials and Bessel functions, Z. angew. Math. Mech. 73 (1993), no. 9, pp. 232-236.

Main steps of the proof of the conjecture

- For $-\frac{1}{2}<v<\frac{1}{2}$ and $w>0$, we re-express the cylinder function in the form

$$
\mathscr{C}_{v}(z)=\sqrt{J_{v}^{2}(z)+Y_{v}^{2}(z)} \cos \left(\Theta_{v}(z)-\left(\alpha+\frac{1}{2} v+\frac{1}{4}\right)\right)
$$

where the phase function $\Theta_{v}(z)$ is normalised so that $\Theta_{v}\left(j_{v, k}\right)=$ $\beta_{v, \kappa}$. Then this function is continued analytically to the right halfplane $\mathfrak{R e z}>0$.

Main steps of the proof of the conjecture

- For $-\frac{1}{2}<v<\frac{1}{2}$ and $w>0$, we re-express the cylinder function in the form

$$
\mathscr{C}_{v}(z)=\sqrt{J_{v}^{2}(z)+Y_{v}^{2}(z)} \cos \left(\Theta_{v}(z)-\left(\alpha+\frac{1}{2} v+\frac{1}{4}\right)\right)
$$

where the phase function $\Theta_{v}(z)$ is normalised so that $\Theta_{v}\left(j_{v, \kappa}\right)=$ $\beta_{v, \kappa}$. Then this function is continued analytically to the right halfplane $\mathfrak{R e z}>0$.

- We construct a function $X_{v}(w)$ that is analytic in a domain containing the half-plane $\mathfrak{R e w} \geq 0$ and satisfies $X_{v}\left(\beta_{v, \kappa}\right)=j_{v, \kappa}$ for $\beta_{v, \kappa}>0$.

Main steps of the proof of the conjecture

- For $-\frac{1}{2}<v<\frac{1}{2}$ and $w>0$, we re-express the cylinder function in the form

$$
\mathscr{C}_{v}(z)=\sqrt{J_{v}^{2}(z)+Y_{v}^{2}(z)} \cos \left(\Theta_{v}(z)-\left(\alpha+\frac{1}{2} v+\frac{1}{4}\right)\right)
$$

where the phase function $\Theta_{v}(z)$ is normalised so that $\Theta_{v}\left(j_{v, k}\right)=$ $\beta_{v, \kappa}$. Then this function is continued analytically to the right halfplane $\mathfrak{R e z}>0$.

- We construct a function $X_{v}(w)$ that is analytic in a domain containing the half-plane $\mathfrak{R e w} \geq 0$ and satisfies $X_{v}\left(\beta_{v, \kappa}\right)=j_{v, \kappa}$ for $\beta_{v, \kappa}>0$.
- Employing a CAUCHY-HEINE trick, we derive an explicit formula for the remainder of MCMAHON's expansion (the asymptotic expansion of $\left.X_{v}(w)\right)$.

Main steps of the proof of the conjecture

- For $-\frac{1}{2}<v<\frac{1}{2}$ and $w>0$, we re-express the cylinder function in the form

$$
\mathscr{C}_{v}(z)=\sqrt{J_{v}^{2}(z)+Y_{v}^{2}(z)} \cos \left(\Theta_{v}(z)-\left(\alpha+\frac{1}{2} v+\frac{1}{4}\right)\right)
$$

where the phase function $\Theta_{v}(z)$ is normalised so that $\Theta_{v}\left(j_{v, \kappa}\right)=$ $\beta_{v, k}$. Then this function is continued analytically to the right halfplane $\mathfrak{R e z}>0$.

- We construct a function $X_{v}(w)$ that is analytic in a domain containing the half-plane $\mathfrak{R e w} \geq 0$ and satisfies $X_{v}\left(\beta_{v, \kappa}\right)=j_{v, \kappa}$ for $\beta_{v, \kappa}>0$.
- Employing a CAUCHY-HEINE trick, we derive an explicit formula for the remainder of MCMAHON's expansion (the asymptotic expansion of $\left.X_{v}(w)\right)$.
- Appealing to certain properties of $X_{v}(w)$ finishes the proof.

A function that returns the zeros ${ }^{4}$

Theorem (G. N., 2020)

There exists a function $X_{\nu}(w)$, with order $-\frac{1}{2}<v<\frac{1}{2}$ and argument w, which is analytic in a domain containing the closed half-plane $\mathfrak{R e w} \geq 0$ and has the following properties.
(i) For $\beta_{v, \kappa}>0, X_{\nu}\left(\beta_{v, \kappa}\right)=j_{\nu, \kappa}$.
(ii) For any $s>0, \mathfrak{R e}_{\nu}($ is $)>0$.
(iii) $X_{\nu}(w)=w+\mathcal{O}\left(w^{-1}\right)$ as $w \rightarrow \infty$ in $\mathfrak{R c} w \geq 0$.
(iv) $\mathfrak{R e} X_{v}($ is $)=o\left(s^{-r}\right)$ as $s \rightarrow+\infty$, with any fixed $r>0$.

[^1]
Contour of integration

The contour Γ used to prove the explicit remainder term.

Truncated expansion with explicit remainder

Let Γ be a D-shaped contour depicted in the previous slide.

Truncated expansion with explicit remainder

Let Γ be a D-shaped contour depicted in the previous slide. By the Cauchy integral formula

$$
X_{v}(w)-w=\frac{1}{2 \pi \mathrm{i}} \oint_{\Gamma} \frac{X_{v}(t)-t}{t-w} \mathrm{~d} t-\underbrace{\frac{1}{2 \pi \mathrm{i}} \oint_{\Gamma} \frac{X_{\nu}(t)-t}{t+w} \mathrm{~d} t}_{0}
$$

for any $w>0$ inside Γ.

Truncated expansion with explicit remainder

Let Γ be a D-shaped contour depicted in the previous slide. By the Cauchy integral formula

$$
X_{v}(w)-w=\frac{1}{2 \pi \mathrm{i}} \oint_{\Gamma} \frac{X_{v}(t)-t}{t-w} \mathrm{~d} t-\underbrace{\frac{1}{2 \pi \mathrm{i}} \oint_{\Gamma} \frac{X_{v}(t)-t}{t+w} \mathrm{~d} t}_{0}
$$

for any $w>0$ inside Γ. By blowing up the contour, we obtain

$$
\begin{aligned}
X_{v}(w)-w= & \frac{1}{2 \pi \mathrm{i}} \int_{+\mathrm{i} \infty}^{0} \frac{X_{v}(t)-t}{t-w} \mathrm{~d} t+\frac{1}{2 \pi \mathrm{i}} \int_{0}^{-\mathrm{i} \infty} \frac{X_{v}(t)-t}{t-w} \mathrm{~d} t \\
& -\frac{1}{2 \pi \mathrm{i}} \int_{+\mathrm{i} \infty}^{0} \frac{X_{v}(t)-t}{t+w} \mathrm{~d} t-\frac{1}{2 \pi \mathrm{i}} \int_{0}^{-\mathrm{i} \infty} \frac{X_{v}(t)-t}{t+w} \mathrm{~d} t \\
= & \frac{1}{w} \frac{2}{\pi} \int_{0}^{+\infty} \frac{\mathfrak{R e} X_{v}(\mathrm{is})}{1+(s / w)^{2}} \mathrm{~d} s
\end{aligned}
$$

for any $w>0$, where use has been made of the fact that

$$
X_{v}(\mathrm{is})+X_{v}(-\mathrm{is})=2 \mathfrak{R e} X_{v}(\mathrm{is})
$$

Truncated expansion with explicit remainder

We know that

$$
\mathfrak{R e} X_{v}(\mathrm{is})=o\left(s^{-r}\right)
$$

for any $r>0$ as $s \rightarrow+\infty$.

Truncated expansion with explicit remainder

We know that

$$
\mathfrak{R e} X_{v}(\mathrm{is})=o\left(s^{-r}\right)
$$

for any $r>0$ as $s \rightarrow+\infty$. Therefore, for any positive integer $N, w>0$ and $s>0$, we can use the expansion

$$
\frac{1}{1+(s / w)^{2}}=\sum_{n=1}^{N-1} \frac{1}{w^{2 n-2}}(-1)^{n-1} s^{2 n-2}+\frac{1}{w^{2 N-2}}(-1)^{N-1} \frac{s^{2 N-2}}{1+(s / w)^{2}}
$$

to deduce

Truncated expansion with explicit remainder

We know that

$$
\mathfrak{R e} X_{v}(\mathrm{is})=o\left(s^{-r}\right)
$$

for any $r>0$ as $s \rightarrow+\infty$. Therefore, for any positive integer $N, w>0$ and $s>0$, we can use the expansion

$$
\frac{1}{1+(s / w)^{2}}=\sum_{n=1}^{N-1} \frac{1}{w^{2 n-2}}(-1)^{n-1} s^{2 n-2}+\frac{1}{w^{2 N-2}}(-1)^{N-1} \frac{s^{2 N-2}}{1+(s / w)^{2}}
$$

to deduce

$$
X_{v}(w)=w+\sum_{n=1}^{N-1} \frac{c_{n}(v)}{w^{2 n-1}}+\frac{1}{w^{2 N-1}}(-1)^{N-1} \frac{2}{\pi} \int_{0}^{+\infty} \frac{s^{2 N-2} \mathfrak{R e} X_{v}(\mathrm{i} s)}{1+(s / w)^{2}} \mathrm{~d} s
$$

where

$$
c_{n}(v)=(-1)^{n-1} \frac{2}{\pi} \int_{0}^{+\infty} s^{2 n-2} \mathfrak{R e} X_{v}(\text { is }) \mathrm{d} s .
$$

Truncated expansion with explicit remainder

We know that

$$
\mathfrak{R e} X_{v}(\mathrm{is})=o\left(s^{-r}\right)
$$

for any $r>0$ as $s \rightarrow+\infty$. Therefore, for any positive integer $N, w>0$ and $s>0$, we can use the expansion

$$
\frac{1}{1+(s / w)^{2}}=\sum_{n=1}^{N-1} \frac{1}{w^{2 n-2}}(-1)^{n-1} s^{2 n-2}+\frac{1}{w^{2 N-2}}(-1)^{N-1} \frac{s^{2 N-2}}{1+(s / w)^{2}}
$$

to deduce

$$
X_{v}(w)=w+\sum_{n=1}^{N-1} \frac{c_{n}(v)}{w^{2 n-1}}+\frac{1}{w^{2 N-1}}(-1)^{N-1} \frac{2}{\pi} \int_{0}^{+\infty} \frac{s^{2 N-2} \mathfrak{\Re e} X_{v}(\mathrm{i} s)}{1+(s / w)^{2}} \mathrm{~d} s
$$

where

$$
c_{n}(v)=(-1)^{n-1} \frac{2}{\pi} \int_{0}^{+\infty} s^{2 n-2} \mathfrak{R e} X_{v}(\text { is }) \mathrm{d} s
$$

The identification of the coefficients follows from the uniqueness theorem on asymptotic expansions.

Estimating the remainder term

We know that $\mathfrak{R e} X_{v}($ is $)>0$ whenever s is positive.

Estimating the remainder term

We know that $\mathfrak{R e} X_{v}($ is $)>0$ whenever s is positive. In particular, $(-1)^{n-1} c_{n}(v)>0$.

Estimating the remainder term

We know that $\mathfrak{R e} X_{v}($ is $)>0$ whenever s is positive. In particular, $(-1)^{n-1} c_{n}(v)>0$. Also, since

$$
0<\frac{1}{1+(s / w)^{2}}<1
$$

for any $w>0$ and $s>0$, by the first mean value theorem for improper integrals, there is a $0<\delta_{v, w, N}<1$ such that

$$
\begin{aligned}
& \frac{1}{w^{2 N-1}}(-1)^{N-1} \frac{2}{\pi} \int_{0}^{+\infty} \frac{s^{2 N-2} \mathfrak{R e} X_{v}(\text { is })}{1+(s / w)^{2}} \mathrm{~d} s \\
& =\delta_{w, v, N} \frac{1}{w^{2 N-1}}(-1)^{N-1} \frac{2}{\pi} \int_{0}^{+\infty} s^{2 N-2} \mathfrak{\Re e} X_{v}(\text { is }) \mathrm{d} s=\delta_{v, w, N} \frac{c_{N}(v)}{w^{2 N-1}}
\end{aligned}
$$

The final result

Theorem (G. N., 2020)

For any $-\frac{1}{2}<v<\frac{1}{2}, w>0$, and any positive integer N, the function $X_{v}(w)$ admits the expansion

$$
X_{\nu}(w)=w+\sum_{n=1}^{N-1} \frac{c_{n}(v)}{w^{2 n-1}}+\delta_{\nu, w, N} \frac{c_{N}(v)}{w^{2 N-1}},
$$

where $0<\delta_{v, w, N}<1$ is a suitable number depending on v, w and N. Thus, the remainder term does not exceed the first neglected term in absolute value and has the same sign. The coefficients $c_{n}(v)$ are polynomials in v^{2} of degree n and satisfy $(-1)^{n-1} c_{n}(v)>0$.

The final result

Theorem (G. N., 2020)

For any $-\frac{1}{2}<v<\frac{1}{2}, w>0$, and any positive integer N, the function $X_{\nu}(w)$ admits the expansion

$$
X_{\nu}(w)=w+\sum_{n=1}^{N-1} \frac{c_{n}(v)}{w^{2 n-1}}+\delta_{\nu, w, N} \frac{c_{N}(v)}{w^{2 N-1}},
$$

where $0<\delta_{v, w, N}<1$ is a suitable number depending on v, w and N. Thus, the remainder term does not exceed the first neglected term in absolute value and has the same sign. The coefficients $c_{n}(v)$ are polynomials in v^{2} of degree n and satisfy $(-1)^{n-1} c_{n}(v)>0$.

Corollary (G. N., 2020)

The conjecture of ÁrpÁd Elbert and Andrea Laforgia is true provided $\beta_{v, \kappa}>0$.

Thank you for your attention!

[^0]: ${ }^{2}$ Á. Elbert, A. Laforgia, A conjecture on the zeros of Bessel functions, J. Comput. Appl. Math. 133 (2001), no. 1-2, p. 683.

[^1]: ${ }^{4} \mathrm{G}$. Nemes, Proofs of two conjectures on the real zeros of the cylinder and Airy functions, SIAM J. Math. Anal., accepted

