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Gergő Nemes

Alfréd Rényi Institute of Mathematics
Budapest, Hungary

23 June 2021



Cylinder functions

We define for z ∈ C \ (−∞, 0], ν ∈ C, and 0 ≤ α < 1, the cylinder
function Cν(z) of order ν by

Cν(z)
def
= Jν(z) cos(πα) + Yν(z) sin(πα).

Here, Jν(z) and Yν(z) denote the Bessel functions of the first and
second kind, respectively. These functions are defined by

Jν(z)
def
=
( 1

2 z
)ν

∞

∑
n=0

(−1)n
( 1

2 z
)2n

Γ(ν + n + 1)n!

and

Yν(z)
def
=

Jν(z) cos(πν)− J−ν(z)
sin(πν)

,

for z ∈ C \ (−∞, 0] and ν ∈ C. When ν is an integer, the limiting
value has to be taken in the definition of Yν(z).
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Large zeros of cylinder functions
Assume that ν is real and− 1

2 < ν < 1
2 . It is known that the cylinder

function Cν(z) has an infinite number of positive zeros, which we
denote by jν,κ with κ = k + α > 1

2 (|ν| − ν), k ∈ N.
JAMES MCMAHON1 showed in 1894 that, as k→ +∞, the sequence
jν,κ has an asymptotic expansion

jν,κ ∼ βν,κ +
∞

∑
n=1

cn(ν)

β2n−1
ν,κ

= βν,κ −
4ν2 − 1

8βν,κ
− (4ν2 − 1)(28ν2 − 31)

384β3
ν,κ

+ · · ·

where
βν,κ

def
=
(
κ + 1

2 ν− 1
4

)
π,

and the coefficients cn(ν) are polynomials in ν2 of degree n.
1J. McMahon, On the roots of the Bessel and certain related functions, Annals

Math. 9 (1894–1895), no. 1/6, pp. 23–30.
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A conjecture of Á. Elbert and A. Laforgia2

James McMahon Árpád Elbert Andrea Laforgia

Conjecture (ÁRPÁD ELBERT and ANDREA LAFORGIA, 2001)

For − 1
2 < ν < 1

2 , an even (odd) number of terms of MCMAHON’s
expansion always gives upper (lower) bounds for jν,κ.

The assumption βν,κ > 0 is needed for the statement to be true.

2Á. Elbert, A. Laforgia, A conjecture on the zeros of Bessel functions, J. Comput.
Appl. Math. 133 (2001), no. 1–2, p. 683.
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Known special cases

In the special case α = 0, i.e., κ = k = 1, 2, . . ., KLAUS-JÜRGEN

FÖRSTER and KNUT PETRAS3 proved in 1993 that

βν,k < jν,k,

jν,k < βν,k −
4ν2 − 1

8βν,k
,

βν,k −
4ν2 − 1

8βν,k
− (4ν2 − 1)(28ν2 − 31)

384β3
ν,k

< jν,k,

for any − 1
2 < ν < 1

2 . Their derivation is lengthy and complicated
(but elementary).

3K.-J. Förster, K. Petras, Inequalities for the zeros of ultraspherical polynomials
and Bessel functions, Z. angew. Math. Mech. 73 (1993), no. 9, pp. 232–236.
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Main steps of the proof of the conjecture

For − 1
2 < ν < 1

2 and w > 0, we re-express the cylinder function in
the form

Cν(z) =
√

J2
ν(z) + Y2

ν (z) cos
(
Θν(z)−

(
α + 1

2 ν + 1
4

))
,

where the phase function Θν(z) is normalised so that Θν(jν,κ) =
βν,κ. Then this function is continued analytically to the right half-
plane Rez > 0.

We construct a function Xν(w) that is analytic in a domain
containing the half-plane Rew ≥ 0 and satisfies Xν(βν,κ) = jν,κ
for βν,κ > 0.

Employing a CAUCHY–HEINE trick, we derive an explicit
formula for the remainder of MCMAHON’s expansion (the
asymptotic expansion of Xν(w)).

Appealing to certain properties of Xν(w) finishes the proof.
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A function that returns the zeros4

Theorem (G. N., 2020)

There exists a function Xν(w), with order − 1
2 < ν < 1

2 and
argument w, which is analytic in a domain containing the closed
half-plane Rew ≥ 0 and has the following properties.

(i) For βν,κ > 0, Xν(βν,κ) = jν,κ.

(ii) For any s > 0, ReXν(is) > 0.

(iii) Xν(w) = w+O(w−1) as w→ ∞ in Rew ≥ 0.

(iv) ReXν(is) = o(s−r) as s→ +∞, with any fixed r > 0.

4G. Nemes, Proofs of two conjectures on the real zeros of the cylinder and Airy
functions, SIAM J. Math. Anal., accepted
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Contour of integration

Γ

Gν

The contour Γ used to prove the explicit remainder term.
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Truncated expansion with explicit remainder
Let Γ be a D-shaped contour depicted in the previous slide. By the
Cauchy integral formula

Xν(w)− w =
1

2πi

∮
Γ

Xν(t)− t
t− w

dt− 1
2πi

∮
Γ

Xν(t)− t
t + w

dt︸ ︷︷ ︸
0

for any w > 0 inside Γ. By blowing up the contour, we obtain

Xν(w)− w =
1

2πi

∫ 0

+i∞

Xν(t)− t
t− w

dt +
1

2πi

∫ −i∞

0

Xν(t)− t
t− w

dt

− 1
2πi

∫ 0

+i∞

Xν(t)− t
t + w

dt− 1
2πi

∫ −i∞

0

Xν(t)− t
t + w

dt

=
1
w

2
π

∫ +∞

0

ReXν(is)
1 + (s/w)2 ds

for any w > 0, where use has been made of the fact that
Xν(is) + Xν(−is) = 2ReXν(is).
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Truncated expansion with explicit remainder
We know that

ReXν(is) = o(s−r)

for any r > 0 as s → +∞. Therefore, for any positive integer N, w > 0
and s > 0, we can use the expansion

1
1 + (s/w)2 =

N−1

∑
n=1

1
w2n−2 (−1)n−1s2n−2 +

1
w2N−2 (−1)N−1 s2N−2

1 + (s/w)2 ,

to deduce

Xν(w) = w +
N−1

∑
n=1

cn(ν)

w2n−1 +
1

w2N−1 (−1)N−1 2
π

∫ +∞

0

s2N−2ReXν(is)
1 + (s/w)2 ds

where

cn(ν) = (−1)n−1 2
π

∫ +∞

0
s2n−2ReXν(is)ds.

The identification of the coefficients follows from the uniqueness theorem
on asymptotic expansions.
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Estimating the remainder term

We know that ReXν(is) > 0 whenever s is positive. In particular,
(−1)n−1cn(ν) > 0. Also, since

0 <
1

1 + (s/w)2 < 1

for any w > 0 and s > 0, by the first mean value theorem for
improper integrals, there is a 0 < δν,w,N < 1 such that

1
w2N−1 (−1)N−1 2

π

∫ +∞

0

s2N−2ReXν(is)
1 + (s/w)2 ds

= δw,ν,N
1

w2N−1 (−1)N−1 2
π

∫ +∞

0
s2N−2ReXν(is)ds = δν,w,N

cN(ν)

w2N−1 .
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The final result

Theorem (G. N., 2020)

For any − 1
2 < ν < 1

2 , w > 0, and any positive integer N, the
function Xν(w) admits the expansion

Xν(w) = w +
N−1

∑
n=1

cn(ν)

w2n−1 + δν,w,N
cN(ν)

w2N−1 ,

where 0 < δν,w,N < 1 is a suitable number depending on ν, w and
N. Thus, the remainder term does not exceed the first neglected
term in absolute value and has the same sign. The coefficients cn(ν)
are polynomials in ν2 of degree n and satisfy (−1)n−1cn(ν) > 0.

Corollary (G. N., 2020)

The conjecture of ÁRPÁD ELBERT and ANDREA LAFORGIA is true
provided βν,κ > 0.
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Thank you for your attention!
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