Positive maps and trace polynomials from the symmetric group

Felix Huber, Jagiellonian University, Kraków

What is this talk about?

"Some multilinear identities and inequalities for matrices"

Inequalities
For all $A, B \geq 0$,

$$
\operatorname{tr}(A) \operatorname{tr}(B)-\operatorname{tr}(A B)-\operatorname{tr}(A) B-\operatorname{tr}(B) A+A B+B A \geq 0
$$

What is this talk about?

"Some multilinear identities and inequalities for matrices"

Inequalities
For all $A, B \geq 0$,

$$
\operatorname{tr}(A) \operatorname{tr}(B)-\operatorname{tr}(A B)-\operatorname{tr}(A) B-\operatorname{tr}(B) A+A B+B A \geq 0
$$

Tensor polynomial identities
For all $x_{1}, x_{2}, x_{3}, x_{4} \in M_{2}$,

$$
\sum_{\sigma \in S_{4}} \epsilon_{\sigma} x_{\sigma(1)} x_{\sigma(2)} \otimes x_{\sigma(3)} x_{\sigma(4)}=0
$$

Tools

$$
\operatorname{tr}(A B)=A
$$

Tool 1: "permutation to multiplication"

Let (12) be the operator that exchanges two tensor factors.

$$
(12)|v\rangle \otimes|w\rangle=|w\rangle \otimes|v\rangle \quad \forall|v\rangle,|w\rangle \in \mathbb{C}^{d}
$$

Tool 1: "permutation to multiplication"

Let (12) be the operator that exchanges two tensor factors.

$$
(12)|v\rangle \otimes|w\rangle=|w\rangle \otimes|v\rangle \quad \forall|v\rangle,|w\rangle \in \mathbb{C}^{d}
$$

Fact
For all matrices A and B of the same size,

$$
\begin{aligned}
\operatorname{tr}[(12) A \otimes B] & =\operatorname{tr}(A B) \\
\operatorname{tr}_{1}[(12) A \otimes B] & =A B
\end{aligned}
$$

Tool 1: "permutation to multiplication"

Let (12) be the operator that exchanges two tensor factors.

$$
(12)|v\rangle \otimes|w\rangle=|w\rangle \otimes|v\rangle \quad \forall|v\rangle,|w\rangle \in \mathbb{C}^{d}
$$

Fact
For all matrices A and B of the same size,

$$
\begin{aligned}
\operatorname{tr}[(12) A \otimes B] & =\operatorname{tr}(A B) \\
\operatorname{tr}_{1}[(12) A \otimes B] & =A B
\end{aligned}
$$

Recall: partial trace

$$
\operatorname{tr}_{j}: e_{1} \otimes \ldots \otimes e_{j} \otimes \ldots \otimes e_{n} \mapsto \operatorname{tr}\left(e_{j}\right) e_{1} \otimes \ldots \otimes e_{j-1} \otimes e_{j+1} \otimes \ldots \otimes e_{n}
$$

alternatively, unique linear operator s.t.

$$
\langle A,(\mathbb{1} \otimes B)\rangle=\left\langle\operatorname{tr}_{1}(A), B\right\rangle \quad \forall A \in M_{m n}, B \in M_{n}
$$

Tool 1: "permutation to multiplication" (II)

Let a permutation π exchange k tensor factors.

$$
\pi\left|v_{1}\right\rangle \otimes\left|v_{2}\right\rangle \otimes \ldots \otimes\left|v_{k}\right\rangle=\left|v_{\pi^{-1}(1)}\right\rangle \otimes\left|v_{\pi^{-1}(2)}\right\rangle \otimes \ldots \otimes\left|v_{\pi^{-1}(k)}\right\rangle
$$

E.g. the permutation $\pi=(143)(2)$ acts on $\left(\mathbb{C}^{d}\right)^{\otimes 4}$ as

$$
\pi\left|v_{1}\right\rangle \otimes\left|v_{2}\right\rangle \otimes\left|v_{3}\right\rangle \otimes\left|v_{4}\right\rangle=\left|v_{3}\right\rangle \otimes\left|v_{2}\right\rangle \otimes\left|v_{4}\right\rangle \otimes\left|v_{1}\right\rangle
$$

Tool 1: "permutation to multiplication" (II)

Let a permutation π exchange k tensor factors.

$$
\pi\left|v_{1}\right\rangle \otimes\left|v_{2}\right\rangle \otimes \ldots \otimes\left|v_{k}\right\rangle=\left|v_{\pi^{-1}(1)}\right\rangle \otimes\left|v_{\pi^{-1}(2)}\right\rangle \otimes \ldots \otimes\left|v_{\pi^{-1}(k)}\right\rangle
$$

E.g. the permutation $\pi=(143)(2)$ acts on $\left(\mathbb{C}^{d}\right)^{\otimes 4}$ as

$$
\pi\left|v_{1}\right\rangle \otimes\left|v_{2}\right\rangle \otimes\left|v_{3}\right\rangle \otimes\left|v_{4}\right\rangle=\left|v_{3}\right\rangle \otimes\left|v_{2}\right\rangle \otimes\left|v_{4}\right\rangle \otimes\left|v_{1}\right\rangle .
$$

Translate permutation into matrix multiplication.

Permutation to multiplication

For all square matrices X_{1}, \ldots, X_{k} of the same size,

$$
\operatorname{tr}_{1 \ldots k \backslash k}\left[(k \ldots 1) X_{1} \otimes X_{2} \otimes \ldots \otimes X_{k}\right]=X_{1} X_{2} \cdots X_{k}
$$

Tool 2: "positive maps"

Let $\mathcal{P} \in M_{m n}$ with $\mathcal{P} \geq 0$. Then

$$
\operatorname{tr}_{1}[\mathcal{P}(X \otimes \mathbb{1})] \geq 0 \quad \text { for all } \quad X \geq 0
$$

Choi-Jamiołkowski isomorphism

Tool 2: "positive maps"

Let $\mathcal{P} \in M_{m n}$ with $\mathcal{P} \geq 0$. Then

$$
\operatorname{tr}_{1}[\mathcal{P}(X \otimes \mathbb{1})] \geq 0 \quad \text { for all } \quad X \geq 0
$$

Choi-Jamiołkowski isomorphism

Proof: use "self-duality of the positive cone":

$$
A \geq 0 \Longleftrightarrow \operatorname{tr}[A B] \geq 0 \quad \text { for all } \quad B \geq 0
$$

Let's check. For all $B \geq 0$

$$
\operatorname{tr}\left\{\operatorname{tr}_{1}\left[\mathcal{P}\left(X \otimes \mathbb{1}_{n}\right)\right] B\right\}=\operatorname{tr}[\mathcal{P}(X \otimes B)] \geq 0
$$

(again we used the coordinate-free definition of the partial trace, $\operatorname{tr}\left[\operatorname{tr}_{1}(A) B\right]=\operatorname{tr}[A(\mathbb{1} \otimes B)]$ for all $\left.A \in M_{m n}, B \in M_{n}.\right)$

Tool 2: "positive maps" (II)

Multilinear positive maps

For all $\mathcal{P} \geq 0$ and $X_{1}, \ldots, X_{k} \geq 0$ of the same size,

$$
\operatorname{tr}_{1 \ldots k \backslash k}\left[\mathcal{P}\left(X_{1} \otimes \ldots \otimes X_{k-1} \otimes \mathbb{1}\right)\right] \geq 0
$$

Tool 2: "positive maps" (II)

Multilinear positive maps

For all $\mathcal{P} \geq 0$ and $X_{1}, \ldots, X_{k} \geq 0$ of the same size,

$$
\operatorname{tr}_{1 \ldots k \backslash k}\left[\mathcal{P}\left(X_{1} \otimes \ldots \otimes X_{k-1} \otimes \mathbb{1}\right)\right] \geq 0
$$

- proof as before, use coordinate-free definition of the partial trace.
- multilinear map from

$$
M_{m} \times \cdots \times M_{m} \rightarrow M_{n}
$$

Put things together

Choose $\mathcal{P} \geq 0$ with $\mathcal{P}=\sum_{\pi \in S_{k}} a_{\pi} \pi \in \mathbb{C} S_{k}$. Then

$$
\operatorname{tr}_{1 \ldots k \backslash k}\left[\mathcal{P}\left(X_{1} \otimes \ldots \otimes X_{k-1} \otimes \mathbb{1}\right)\right] \geq 0
$$

... is a positive trace polynomial on the positive cone.

Put things together

Choose $\mathcal{P} \geq 0$ with $\mathcal{P}=\sum_{\pi \in S_{k}} a_{\pi} \pi \in \mathbb{C} S_{k}$. Then

$$
\operatorname{tr}_{1 \ldots k \backslash k}\left[\mathcal{P}\left(X_{1} \otimes \ldots \otimes X_{k-1} \otimes \mathbb{1}\right)\right] \geq 0
$$

... is a positive trace polynomial on the positive cone.

Example

Take

$$
\mathcal{P}_{a}=(e)-(12)-(23)-(13)+(123)+(132) \geq 0
$$

Then for all $X, Y \geq 0$

$$
\operatorname{tr}(X) \operatorname{tr}(Y)-\operatorname{tr}(X Y)-\operatorname{tr}(X) Y-\operatorname{tr}(Y) X+Y X+X Y \geq 0
$$

Positive trace polynomials

Which trace polynomials are positive on the positive cone?

(...trace-polynomial: polynomial like expression containing matrix monomials and their traces, e.g. $X Y Z+\operatorname{tr}(Y) X Z-2 \operatorname{tr}(X Z) \operatorname{tr}(Y) \mathbb{1})$.

quantum entanglement

Entangled and separable states

A $\varrho \in M_{n}$ with $\varrho \geq 0$ and $\operatorname{tr}(\varrho)=1$ is termed a quantum state. Multipartite quantum systems are described by elements in $M_{n} \otimes \ldots \otimes M_{n}$.

Entangled and separable states

A $\varrho \in M_{n}$ with $\varrho \geq 0$ and $\operatorname{tr}(\varrho)=1$ is termed a quantum state. Multipartite quantum systems are described by elements in $M_{n} \otimes \ldots \otimes M_{n}$.
Fact
There are quantum states that cannot be written as

$$
\sum_{i} p_{i} \varrho_{i}^{(1)} \otimes \ldots \otimes \varrho_{i}^{(k)} \quad \text { ("separable state") }
$$

where $\varrho_{i}^{(j)}$ quantum states and $p i \geq 0, \sum_{i} p_{i}=1$ probabilities.
Such states are called entangled.
"entangled states are non-classically correlated quantum states"

Entangled and separable states

A $\varrho \in M_{n}$ with $\varrho \geq 0$ and $\operatorname{tr}(\varrho)=1$ is termed a quantum state. Multipartite quantum systems are described by elements in
$M_{n} \otimes \ldots \otimes M_{n}$.
Fact
There are quantum states that cannot be written as

$$
\sum_{i} p_{i} \varrho_{i}^{(1)} \otimes \ldots \otimes \varrho_{i}^{(k)} \quad \text { ("separable state") }
$$

where $\varrho_{i}^{(j)}$ quantum states and $p i \geq 0, \sum_{i} p_{i}=1$ probabilities.
Such states are called entangled.
"entangled states are non-classically correlated quantum states"

In other words, if M_{n}^{+}the cone of positive semidefinite matrices. Then

$$
\operatorname{conv}\left(\bigotimes^{k} M_{n}^{+}\right) \subsetneq\left(\bigotimes_{\bigotimes}^{k} M_{n}\right)^{+}
$$

Entanglement witnesses

An entanglement witness $\mathcal{W} \nsupseteq 0$ is a matrix, for which

$$
\begin{aligned}
\operatorname{tr}[\mathcal{W} \varrho] \geq 0 & \text { for all separable } \varrho \\
\operatorname{tr}[\mathcal{W} \varphi]<0 & \text { for at least one entangled } \varphi
\end{aligned}
$$

Witness is optimal, if $\min _{\rho \text { separable }} \operatorname{tr}[\mathcal{W} \varrho]=0$

Entanglement witnesses

An entanglement witness $\mathcal{W} \nsupseteq 0$ is a matrix, for which

$$
\begin{aligned}
\operatorname{tr}[\mathcal{W} \varrho] \geq 0 & \text { for all separable } \varrho \\
\operatorname{tr}[\mathcal{W} \varphi]<0 & \text { for at least one entangled } \varphi
\end{aligned}
$$

Witness is optimal, if $\min _{\rho \text { separable }} \operatorname{tr}[\mathcal{W} \varrho]=0$

Consider witnesses of the form $\mathcal{W} \in \mathbb{C} S_{k}$. "Werner state witness"

Positive trace polynomials \equiv Werner state witnesses

Characterization of positive trace polynomials (FH 2021)

Every tight multilinear trace polynomial inequality for the positive cone is in one-to-one correspondence with an optimal Werner state witness through

$$
\operatorname{tr}_{1 \ldots k \backslash k}\left[\mathcal{W}\left(X_{1} \otimes \ldots \otimes X_{k-1} \otimes \mathbb{1}\right)\right]
$$

Positive trace polynomials \equiv Werner state witnesses

Characterization of positive trace polynomials (FH 2021)

Every tight multilinear trace polynomial inequality for the positive cone is in one-to-one correspondence with an optimal Werner state witness through

$$
\operatorname{tr}_{1 \ldots k \backslash k}\left[\mathcal{W}\left(X_{1} \otimes \ldots \otimes X_{k-1} \otimes \mathbb{1}\right)\right]
$$

Example
Take $\mathcal{P}_{a}=\frac{1}{6}[(e)-(12)-(13)-(23)+(123)+(132)]$.

$$
\max _{\varrho \in \operatorname{SEP}} \operatorname{tr}\left(\mathcal{P}_{a} \varrho\right) \leq 1 / 6
$$

Eggeling and Werner, Phys. Rev. A 63, 042111 (2001)
$\mathcal{W}=\frac{1}{6} \mathbb{1}-\mathcal{P}_{\mathrm{a}} \nsupseteq 0$ gives
$\operatorname{tr}(X Y)+\operatorname{tr}(X) Y+\operatorname{tr}(Y) X-X Y-Y X \geq 0 \quad$ whenever $\quad X, Y \geq 0$

Tensor polynomial identities

- Recall: the Amitsur-Levitzky Theorem states that on M_{2},

$$
\sum_{\sigma \in S_{4}} \epsilon_{\sigma} X_{\sigma(1)} X_{\sigma(2)} X_{\sigma(3)} X_{\sigma(4)}=0
$$

is a polynomial identity of minimal degree.

Tensor polynomial identities

- Recall: the Amitsur-Levitzky Theorem states that on M_{2},

$$
\sum_{\sigma \in S_{4}} \epsilon_{\sigma} X_{\sigma(1)} X_{\sigma(2)} X_{\sigma(3)} X_{\sigma(4)}=0
$$

is a polynomial identity of minimal degree.

- New: tensor polynomial identity for M_{2}

$$
\sum_{\sigma \in S_{4}} \epsilon_{\sigma} X_{\sigma(1)} X_{\sigma(2)} \otimes X_{\sigma(3)} X_{\sigma(4)}=0
$$

Tensor polynomial identities II

Characterization of tensor polynomial identities (FH 2021)

"All multilinear tensor polynomial identities are consequences of the Cayley-Hamilton theorem."

Tensor polynomial identities II

Characterization of tensor polynomial identities (FH 2021)

"All multilinear tensor polynomial identities are consequences of the Cayley-Hamilton theorem."
.... more precisely: the expression

$$
\operatorname{tr}_{1 \ldots k}\left(\alpha X_{1} \otimes \ldots \otimes X_{k} \otimes \mathbb{1}^{\otimes m}\right)
$$

is a multilinear trace polynomial identity on M_{n} if and only if $\alpha \in \mathbb{C} S_{k+m}$ belongs to the ideal that corresponds to partitions $\lambda \vdash(k+m)$ with more than n parts, whose permutations contain exactly m cycles, each of which move exactly one of the last m positions.

As in $\operatorname{tr}_{1234}\left[(215)(436) X_{1} \otimes X_{2} \otimes X_{3} \otimes X_{4} \otimes \mathbb{1} \otimes \mathbb{1}\right]=X_{1} X_{2} \otimes X_{3} X_{4}$

Further work

- Every immanant inequality can be lifted to a trace polynomial inequality for the positive cone.

FH and Hans Massen, Matrix forms of immanant inequalities, arXiv:2103.04317

- Complete characterization of all multilinear alternating tensor polynomials in n^{2} variables in terms of Young diagrams.

FH and Claudio Procesi, Tensor polynomial identities, arXiv:2011.04362, accepted at Israel J. Math.

Summary

- Tools: map permutations to matrix products \& positive maps.
- Entanglement witnesses characterize all trace polynomials that are positive on the positive cone.
- All tensor polynomial identities are consequences of the Cayley-Hamilton theorem.

FH, Positive maps and trace polynomials from the symmetric group,

$$
\text { J. Math. Phys. 62, } 022203 \text { (2021); arXiv:2002.12887. }
$$

> ...thank you for your attention!

