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What is this talk about?

“Some multilinear identities and inequalities for
matrices”

Inequalities
For all A,B ≥ 0,

tr(A) tr(B)− tr(AB)− tr(A)B − tr(B)A + AB + BA ≥ 0

Tensor polynomial identities
For all x1, x2, x3, x4 ∈ M2,∑

σ∈S4

εσxσ(1)xσ(2)⊗ xσ(3)xσ(4) = 0
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Tools

A Btr(AB) =



Tool 1: “permutation to multiplication”

Let (12) be the operator that exchanges two tensor factors.

(12) |v〉 ⊗ |w〉 = |w〉 ⊗ |v〉 ∀ |v〉 , |w〉 ∈ Cd

Fact
For all matrices A and B of the same size,

tr[(12)A⊗ B] = tr(AB)

tr1[(12)A⊗ B] = AB

Recall: partial trace

trj : e1⊗ . . .⊗ej⊗ . . .⊗en 7→ tr(ej) e1⊗ . . .⊗ej−1⊗ej+1⊗ . . .⊗en

alternatively, unique linear operator s.t.

〈A, (1⊗B)〉 = 〈tr1(A),B〉 ∀A ∈ Mmn,B ∈ Mn
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Tool 1: “permutation to multiplication” (II)

Let a permutation π exchange k tensor factors.

π |v1〉 ⊗ |v2〉 ⊗ . . .⊗ |vk〉 = |vπ−1(1)〉 ⊗ |vπ−1(2)〉 ⊗ . . .⊗ |vπ−1(k)〉

E.g. the permutation π = (143)(2) acts on (Cd )⊗4 as

π |v1〉 ⊗ |v2〉 ⊗ |v3〉 ⊗ |v4〉 = |v3〉 ⊗ |v2〉 ⊗ |v4〉 ⊗ |v1〉 .

Translate permutation into matrix multiplication.

Permutation to multiplication

For all square matrices X1, . . . ,Xk of the same size,

tr1...k\k
[
(k . . . 1)X1 ⊗ X2 ⊗ . . .⊗ Xk

]
= X1X2 · · ·Xk .
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Tool 2: “positive maps”

Let P ∈ Mmn with P ≥ 0. Then

tr1[P(X ⊗ 1)] ≥ 0 for all X ≥ 0

Choi-Jamio lkowski isomorphism

Proof: use “self-duality of the positive cone”:

A ≥ 0 ⇐⇒ tr[AB] ≥ 0 for all B ≥ 0

Let’s check. For all B ≥ 0

tr{tr1[P(X ⊗ 1n)]B} = tr[P(X ⊗ B)] ≥ 0

(again we used the coordinate-free definition of the partial trace,

tr[tr1(A)B] = tr[A(1⊗B)] for all A ∈ Mmn,B ∈ Mn.)
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Tool 2: “positive maps” (II)

Multilinear positive maps

For all P ≥ 0 and X1, . . . ,Xk ≥ 0 of the same size,

tr1...k\k [P(X1 ⊗ . . .⊗ Xk−1 ⊗ 1)] ≥ 0

P

X1

X2

Xr

...

I proof as before, use
coordinate-free definition of
the partial trace.

I multilinear map from
Mm × · · · ×Mm → Mn
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Put things together

Choose P ≥ 0 with P =
∑

π∈Sk aππ ∈ CSk . Then

tr1...k\k [P(X1 ⊗ . . .⊗ Xk−1 ⊗ 1)] ≥ 0

. . . is a positive trace polynomial on the positive cone.

Example
Take Pa = (e)− (12)− (23)− (13) + (123) + (132) ≥ 0

Then for all X ,Y ≥ 0

tr(X ) tr(Y )− tr(XY )− tr(X )Y − tr(Y )X + YX + XY ≥ 0 .



Put things together

Choose P ≥ 0 with P =
∑

π∈Sk aππ ∈ CSk . Then

tr1...k\k [P(X1 ⊗ . . .⊗ Xk−1 ⊗ 1)] ≥ 0

. . . is a positive trace polynomial on the positive cone.

Example
Take Pa = (e)− (12)− (23)− (13) + (123) + (132) ≥ 0

Then for all X ,Y ≥ 0

tr(X ) tr(Y )− tr(XY )− tr(X )Y − tr(Y )X + YX + XY ≥ 0 .



Positive trace polynomials

Which trace polynomials are positive on the positive cone?

∅

this work

Polynomials

SOS

trace polynomials that are
positive on the positive cone

Multilinear

(. . . trace-polynomial: polynomial like expression containing matrix

monomials and their traces, e.g. XYZ + tr(Y )XZ − 2 tr(XZ ) tr(Y )1).
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separable states
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Entangled and separable states

A % ∈ Mn with % ≥ 0 and tr(%) = 1 is termed a quantum state.
Multipartite quantum systems are described by elements in
Mn ⊗ . . .⊗Mn.

Fact
There are quantum states that cannot be written as∑

i

pi%
(1)
i ⊗ . . .⊗ %

(k)
i (“separable state”)

where %
(j)
i quantum states and pi ≥ 0,

∑
i pi = 1 probabilities.

Such states are called entangled.

“entangled states are non-classically correlated quantum states”

In other words, if M+
n the cone of positive semidefinite matrices.

Then

conv
( k⊗

M+
n

)
(
( k⊗

Mn

)+
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Entanglement witnesses

An entanglement witness W 6≥ 0 is a matrix, for which

tr[W%] ≥ 0 for all separable %

tr[Wϕ] < 0 for at least one entangled ϕ

Witness is optimal, if minρ separable tr[W%] = 0

state space

W

SEP

ENT

separable states

PSD

entanglement witnesses

Consider witnesses of the form W ∈ CSk . “Werner state witness”
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Positive trace polynomials ≡ Werner state witnesses

Characterization of positive trace polynomials (FH 2021)

Every tight multilinear trace polynomial inequality for the
positive cone is in one-to-one correspondence with an optimal
Werner state witness through

tr1...k\k [W(X1 ⊗ . . .⊗ Xk−1 ⊗ 1)]

Example
Take Pa = 1

6 [(e)− (12)− (13)− (23) + (123) + (132)].

max
%∈SEP

tr(Pa%) ≤ 1/6

Eggeling and Werner, Phys. Rev. A 63, 042111 (2001)

W = 1
6 1−Pa � 0 gives

tr(XY ) + tr(X )Y + tr(Y )X − XY − YX ≥ 0 whenever X ,Y ≥ 0
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Tensor polynomial identities

I Recall: the Amitsur-Levitzky Theorem states that on M2,∑
σ∈S4

εσXσ(1)Xσ(2)Xσ(3)Xσ(4) = 0

is a polynomial identity of minimal degree.

I New: tensor polynomial identity for M2∑
σ∈S4

εσXσ(1)Xσ(2)⊗Xσ(3)Xσ(4) = 0
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Tensor polynomial identities II

Characterization of tensor polynomial identities (FH 2021)

“All multilinear tensor polynomial identities are consequences
of the Cayley-Hamilton theorem.”

. . . more precisely: the expression

tr1...k(αX1 ⊗ . . .⊗ Xk ⊗ 1⊗m)

is a multilinear trace polynomial identity on Mn if and only if α ∈ CSk+m

belongs to the ideal that corresponds to partitions λ ` (k + m) with more

than n parts, whose permutations contain exactly m cycles, each of which

move exactly one of the last m positions.

As in tr1234
[
(215)(436)X1 ⊗ X2 ⊗ X3 ⊗ X4 ⊗ 1⊗1

]
= X1X2 ⊗ X3X4
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Further work

I Every immanant inequality can be lifted to a trace polynomial
inequality for the positive cone.

FH and Hans Massen, Matrix forms of immanant inequalities, arXiv:2103.04317

I Complete characterization of all multilinear alternating tensor
polynomials in n2 variables in terms of Young diagrams.

FH and Claudio Procesi, Tensor polynomial identities, arXiv:2011.04362, accepted at
Israel J. Math.



Summary

I Tools: map permutations to matrix products & positive maps.

I Entanglement witnesses characterize all trace polynomials that
are positive on the positive cone.

I All tensor polynomial identities are consequences of the
Cayley-Hamilton theorem.

FH, Positive maps and trace polynomials from the symmetric group,

J. Math. Phys. 62, 022203 (2021); arXiv:2002.12887.

. . . thank you for
your attention!
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