

8th European Congress of Mathematics, Portorož, 23.06.2021

Positive maps and trace polynomials from the symmetric group

Felix Huber, Jagiellonian University, Kraków

What is this talk about?

"Some multilinear identities and inequalities for matrices"

Inequalities For all $A, B \ge 0$,

 $\operatorname{tr}(A)\operatorname{tr}(B) - \operatorname{tr}(AB) - \operatorname{tr}(A)B - \operatorname{tr}(B)A + AB + BA \ge 0$

What is this talk about?

"Some multilinear identities and inequalities for matrices"

Inequalities For all $A, B \ge 0$,

 $\operatorname{tr}(A)\operatorname{tr}(B) - \operatorname{tr}(AB) - \operatorname{tr}(A)B - \operatorname{tr}(B)A + AB + BA \ge 0$

Tensor polynomial identities

For all $x_1, x_2, x_3, x_4 \in M_2$,

$$\sum_{\sigma \in S_4} \epsilon_{\sigma} x_{\sigma(1)} x_{\sigma(2)} \otimes x_{\sigma(3)} x_{\sigma(4)} = 0$$

Tools

Tool 1: "permutation to multiplication"

Let (12) be the operator that exchanges two tensor factors.

$$(12) \ket{v} \otimes \ket{w} = \ket{w} \otimes \ket{v} \qquad \forall \ket{v}, \ket{w} \in \mathbb{C}^{d}$$

Tool 1: "permutation to multiplication"

Let (12) be the operator that exchanges two tensor factors.

$$(12) |v\rangle \otimes |w\rangle = |w\rangle \otimes |v\rangle \qquad \forall |v\rangle, |w\rangle \in \mathbb{C}^d$$

Fact

For all matrices A and B of the same size,

$$tr[(12)A \otimes B] = tr(AB)$$
$$tr_1[(12)A \otimes B] = AB$$

Tool 1: "permutation to multiplication"

Let (12) be the operator that exchanges two tensor factors.

$$(12) |v\rangle \otimes |w\rangle = |w\rangle \otimes |v\rangle \qquad \forall |v\rangle, |w\rangle \in \mathbb{C}^{d}$$

Fact

For all matrices A and B of the same size,

$$tr[(12)A \otimes B] = tr(AB)$$
$$tr_1[(12)A \otimes B] = AB$$

Recall: partial trace

 $\operatorname{tr}_j: e_1 \otimes \ldots \otimes e_j \otimes \ldots \otimes e_n \mapsto \operatorname{tr}(e_j) e_1 \otimes \ldots \otimes e_{j-1} \otimes e_{j+1} \otimes \ldots \otimes e_n$

alternatively, unique linear operator s.t.

 $\langle A, (\mathbb{1} \otimes B) \rangle = \langle \operatorname{tr}_1(A), B \rangle \quad \forall A \in M_{mn}, B \in M_n$

Tool 1: "permutation to multiplication" (II)

Let a permutation π exchange k tensor factors.

$$\pi \ket{v_1} \otimes \ket{v_2} \otimes \ldots \otimes \ket{v_k} = \ket{v_{\pi^{-1}(1)}} \otimes \ket{v_{\pi^{-1}(2)}} \otimes \ldots \otimes \ket{v_{\pi^{-1}(k)}}$$

E.g. the permutation $\pi = (143)(2)$ acts on $(\mathbb{C}^d)^{\otimes 4}$ as

 $\pi \left| \mathbf{v}_{1} \right\rangle \otimes \left| \mathbf{v}_{2} \right\rangle \otimes \left| \mathbf{v}_{3} \right\rangle \otimes \left| \mathbf{v}_{4} \right\rangle = \left| \mathbf{v}_{3} \right\rangle \otimes \left| \mathbf{v}_{2} \right\rangle \otimes \left| \mathbf{v}_{4} \right\rangle \otimes \left| \mathbf{v}_{1} \right\rangle \,.$

Tool 1: "permutation to multiplication" (II)

Let a permutation π exchange k tensor factors.

$$\pi \ket{v_1} \otimes \ket{v_2} \otimes \ldots \otimes \ket{v_k} = \ket{v_{\pi^{-1}(1)}} \otimes \ket{v_{\pi^{-1}(2)}} \otimes \ldots \otimes \ket{v_{\pi^{-1}(k)}}$$

E.g. the permutation $\pi = (143)(2)$ acts on $(\mathbb{C}^d)^{\otimes 4}$ as

$$\pi |v_1\rangle \otimes |v_2\rangle \otimes |v_3\rangle \otimes |v_4\rangle = |v_3\rangle \otimes |v_2\rangle \otimes |v_4\rangle \otimes |v_1\rangle \;.$$

Translate permutation into matrix multiplication.

Permutation to multiplication

For all square matrices X_1, \ldots, X_k of the same size,

$$\operatorname{tr}_{1\ldots k\setminus k}\left[(k\ldots 1)X_1\otimes X_2\otimes\ldots\otimes X_k\right]=X_1X_2\cdots X_k.$$

Tool 2: "positive maps"

Let $\mathcal{P} \in M_{mn}$ with $\mathcal{P} \geq 0$. Then

${\rm tr}_1[{\mathcal P}(X\otimes {\mathbb 1})]\geq 0 \quad {\rm for \ all} \quad X\geq 0$

Choi-Jamiołkowski isomorphism

Tool 2: "positive maps"

Let $\mathcal{P} \in M_{mn}$ with $\mathcal{P} \geq 0$. Then

 ${\rm tr}_1[{\mathcal P}(X\otimes \mathbb{1})]\geq 0 \quad \text{for all} \quad X\geq 0$

Choi-Jamiołkowski isomorphism

Proof: use "self-duality of the positive cone":

 $A \ge 0 \iff \operatorname{tr}[AB] \ge 0 \text{ for all } B \ge 0$

Let's check. For all $B \ge 0$

 $\mathrm{tr}\{\mathrm{tr}_1[\mathcal{P}(X\otimes\mathbb{1}_n)]B\}=\mathrm{tr}[\mathcal{P}(X\otimes B)]\geq 0$

(again we used the coordinate-free definition of the partial trace, tr[tr₁(A)B] = tr[$A(\mathbb{1} \otimes B)$] for all $A \in M_{mn}, B \in M_n$.)

Tool 2: "positive maps" (II)

Multilinear positive maps

For all $\mathcal{P} \geq 0$ and $X_1, \ldots, X_k \geq 0$ of the same size,

$$\operatorname{tr}_{1...k\setminus k}[\mathcal{P}(X_1\otimes\ldots\otimes X_{k-1}\otimes \mathbb{1})]\geq 0$$

Tool 2: "positive maps" (II)

Multilinear positive maps

For all $\mathcal{P} \geq 0$ and $X_1, \ldots, X_k \geq 0$ of the same size,

$$\operatorname{tr}_{1...k\setminus k}[\mathcal{P}(X_1\otimes\ldots\otimes X_{k-1}\otimes \mathbb{1})]\geq 0$$

- proof as before, use coordinate-free definition of the partial trace.
- multilinear map from $M_m \times \cdots \times M_m \to M_n$

Choose
$$\mathcal{P} \geq \mathsf{0}$$
 with $\mathcal{P} = \sum_{\pi \in \mathcal{S}_k} \mathsf{a}_\pi \pi \in \mathbb{C}\mathcal{S}_k.$ Then

$$\operatorname{tr}_{1...k\setminus k}[\mathcal{P}(X_1\otimes\ldots\otimes X_{k-1}\otimes \mathbb{1})]\geq 0$$

... is a positive trace polynomial on the positive cone.

Choose
$$\mathcal{P} \ge 0$$
 with $\mathcal{P} = \sum_{\pi \in S_k} a_{\pi} \pi \in \mathbb{C}S_k$. Then
 $\operatorname{tr}_{1...k \setminus k} [\mathcal{P}(X_1 \otimes \ldots \otimes X_{k-1} \otimes \mathbb{1})] \ge 0$

... is a positive trace polynomial on the positive cone.

Example

Take
$$\mathcal{P}_a = (e) - (12) - (23) - (13) + (123) + (132) \ge 0$$

Then for all $X, Y \ge 0$

$$\operatorname{tr}(X)\operatorname{tr}(Y) - \operatorname{tr}(XY) - \operatorname{tr}(X)Y - \operatorname{tr}(Y)X + YX + XY \ge 0$$
.

Positive trace polynomials

Which trace polynomials are positive on the positive cone?

(... trace-polynomial: polynomial like expression containing matrix monomials and their traces, e.g. XYZ + tr(Y)XZ - 2tr(XZ)tr(Y)1).

quantum entanglement

Entangled and separable states

A $\varrho \in M_n$ with $\varrho \ge 0$ and $tr(\varrho) = 1$ is termed a quantum state. Multipartite quantum systems are described by elements in $M_n \otimes \ldots \otimes M_n$.

Entangled and separable states

A $\varrho \in M_n$ with $\varrho \ge 0$ and $tr(\varrho) = 1$ is termed a quantum state. Multipartite quantum systems are described by elements in $M_n \otimes \ldots \otimes M_n$.

Fact

There are quantum states that cannot be written as

 $\sum_{i} p_{i} \varrho_{i}^{(1)} \otimes \ldots \otimes \varrho_{i}^{(k)} \quad (\text{"separable state"})$ where $\varrho_{i}^{(j)}$ quantum states and $pi \geq 0$, $\sum_{i} p_{i} = 1$ probabilities. Such states are called entangled.

"entangled states are non-classically correlated quantum states"

Entangled and separable states

A $\varrho \in M_n$ with $\varrho \ge 0$ and $tr(\varrho) = 1$ is termed a quantum state. Multipartite quantum systems are described by elements in $M_n \otimes \ldots \otimes M_n$.

Fact

There are quantum states that cannot be written as

 $\sum_{i} p_{i} \varrho_{i}^{(1)} \otimes \ldots \otimes \varrho_{i}^{(k)} \quad (\text{"separable state"})$ where $\varrho_{i}^{(j)}$ quantum states and $pi \geq 0$, $\sum_{i} p_{i} = 1$ probabilities. Such states are called entangled.

"entangled states are non-classically correlated quantum states"

In other words, if M_n^+ the cone of positive semidefinite matrices. Then

$$\operatorname{conv} \big(\bigotimes^k M_n^+\big) \subsetneq \big(\bigotimes^k M_n\big)^+$$

An entanglement witness $\mathcal{W} \not\geq 0$ is a matrix, for which

$$\begin{split} & \operatorname{tr}[\mathcal{W}\varrho] \geq 0 \quad \text{for all separable } \varrho \\ & \operatorname{tr}[\mathcal{W}\varphi] < 0 \quad \text{for at least one entangled } \varphi \end{split}$$

Witness is *optimal*, if $\min_{\rho \text{ separable}} tr[\mathcal{W}\varrho] = 0$

An entanglement witness $\mathcal{W} \not\geq 0$ is a matrix, for which

$$\begin{split} & \operatorname{tr}[\mathcal{W}\varrho] \geq 0 \quad \text{for all separable } \varrho \\ & \operatorname{tr}[\mathcal{W}\varphi] < 0 \quad \text{for at least one entangled } \varphi \end{split}$$

Witness is *optimal*, if $\min_{\rho \text{ separable}} tr[\mathcal{W}\varrho] = 0$

Consider witnesses of the form $\mathcal{W} \in \mathbb{C}S_k$. "Werner state witness"

Positive trace polynomials \equiv Werner state witnesses

Characterization of positive trace polynomials (FH 2021)

Every tight multilinear trace polynomial inequality for the positive cone is in one-to-one correspondence with an optimal Werner state witness through

 $\operatorname{tr}_{1...k\setminus k}[\mathcal{W}(X_1\otimes\ldots\otimes X_{k-1}\otimes \mathbb{1})]$

Positive trace polynomials \equiv Werner state witnesses

Characterization of positive trace polynomials (FH 2021)

Every tight multilinear trace polynomial inequality for the positive cone is in one-to-one correspondence with an optimal Werner state witness through

$$\operatorname{tr}_{1...k\setminus k}[\mathcal{W}(X_1\otimes\ldots\otimes X_{k-1}\otimes \mathbb{1})]$$

Example

Take
$$\mathcal{P}_a = \frac{1}{6}[(e) - (12) - (13) - (23) + (123) + (132)].$$

 $\max_{\varrho\in\mathsf{SEP}}\mathsf{tr}(\mathcal{P}_{{\pmb{a}}}\varrho)\leq 1/6$

Eggeling and Werner, Phys. Rev. A 63, 042111 (2001)

$$\begin{split} \mathcal{W} &= \frac{1}{6} \, \mathbb{1} - \mathcal{P}_{\mathsf{a}} \ngeq 0 \text{ gives} \\ & \operatorname{tr}(XY) + \operatorname{tr}(X)Y + \operatorname{tr}(Y)X - XY - YX \ge 0 \quad \text{whenever} \quad X, Y \ge 0 \end{split}$$

Tensor polynomial identities

▶ Recall: the Amitsur-Levitzky Theorem states that on M_2 ,

$$\sum_{\sigma \in S_4} \epsilon_{\sigma} X_{\sigma(1)} X_{\sigma(2)} X_{\sigma(3)} X_{\sigma(4)} = 0$$

is a polynomial identity of minimal degree.

Tensor polynomial identities

Recall: the Amitsur-Levitzky Theorem states that on M₂,

$$\sum_{\sigma \in S_4} \epsilon_{\sigma} X_{\sigma(1)} X_{\sigma(2)} X_{\sigma(3)} X_{\sigma(4)} = 0$$

is a polynomial identity of minimal degree.

▶ New: tensor polynomial identity for M_2

$$\sum_{\sigma \in S_4} \epsilon_{\sigma} X_{\sigma(1)} X_{\sigma(2)} \otimes X_{\sigma(3)} X_{\sigma(4)} = 0$$

Tensor polynomial identities II

Characterization of tensor polynomial identities (FH 2021)

"All multilinear tensor polynomial identities are consequences of the Cayley-Hamilton theorem."

Tensor polynomial identities II

Characterization of tensor polynomial identities (FH 2021)

"All multilinear tensor polynomial identities are consequences of the Cayley-Hamilton theorem."

... more precisely: the expression

$$\operatorname{tr}_{1\ldots k}(\alpha X_1\otimes\ldots\otimes X_k\otimes \mathbb{1}^{\otimes m})$$

is a multilinear trace polynomial identity on M_n if and only if $\alpha \in \mathbb{C}S_{k+m}$ belongs to the ideal that corresponds to partitions $\lambda \vdash (k+m)$ with more than n parts, whose permutations contain exactly m cycles, each of which move exactly one of the last m positions.

As in tr₁₂₃₄ [(215)(436) $X_1 \otimes X_2 \otimes X_3 \otimes X_4 \otimes \mathbb{1} \otimes \mathbb{1}$] = $X_1 X_2 \otimes X_3 X_4$

• Every immanant inequality can be lifted to a trace polynomial inequality for the positive cone.

FH and Hans Massen, Matrix forms of immanant inequalities, arXiv:2103.04317

• Complete characterization of all multilinear alternating tensor polynomials in n^2 variables in terms of Young diagrams.

FH and Claudio Procesi, *Tensor polynomial identities*, arXiv:2011.04362, accepted at Israel J. Math.

Summary

► Tools: map permutations to matrix products & positive maps.

- ► Entanglement witnesses characterize all trace polynomials that are positive on the positive cone.
- ► All tensor polynomial identities are consequences of the Cayley-Hamilton theorem.

FH, Positive maps and trace polynomials from the symmetric group, J. Math. Phys. 62, 022203 (2021); arXiv:2002.12887.

... thank you for your attention!

