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Difference Equa'l'ions functional equations for the unknown v : N — R
f(kaukauk—l—la s 7uk—|—n) — 07 keN

A : forward difference operator, Aug = ugp11 — ug

F(k,uk,Auk, ce ,A”uk) =0

& Appear naturally in mathematical models describing real life situations

(probability theory, queuing problems, statistical problems, stochastic time series, combinatorial
analysis, number theory, geometry, electrical networks, quanta in radiation, genetics in biology,
economics, psychology, sociology, etc)

& discrete analogs of differential equation

advent of computers: differential equations are solved by using their approximate difference
equation formulations.
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The Boundary Value Problem

\advanced argument
A(a,nq)(Axn)) -+ bnq)(xn+@/)(0, p>1,

limz, =0, lim xg] = —00

where ®(u) = |u|*sgnu, a > 0, a, b positive sequences, 2l = a, ®(Azx,) = quasi-difference of z

The above equation appears in the discretization process for searching radial solutions of
certain nonlinear elliptic equations with weighted ¢ — laplacian
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p = 1: half-linear difference equation

[ Aan®(Ayy)) + bn(D(yn@’fUﬁ/\(
comes from the

discretization process

I discretization

(a(®)@(y' (1)) + b(t)(y(t)) = 0

I Radial sol.s

div (A(]$|)|Vu|p_2Vu) + B(|z|)|ulP~*|u| = 0

u sol. radially symmetric <= y(t) = u(|z|) sol of (A" )y [P~ 2y") +t" 1 B(t)|y[P~2y =0

a=p—1
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Assumptions

A(an®(Azy,)) + b, ®(2p4p) =0, p>1,
limz, =0, lim CE%] = —00

> in contrast to the half-linear case, nonoscillatory solutions may coexist with oscillatory
(Sturm theory does not hold)

> every eventually positive sol. is eventually monotone. Eventually decreasing sol.s satisfy one of
the following

hm T, =0, hm :g[ l= —d,, 0<d, < Subdominant sol. no a-priori bounds
and their asymptotics

—}[ limz, =0, lima;,) = —oo Intermediate sol. J can be

represented by a large
variety of functions.

limz, = ¢, lim :4}1 = —00 Dominant sol.
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p = 1: half-linear difference equation [ Aan®(Ayn)) + bn®(Yns1) = 0 ] (HL)

l

Problem completely solved

Let
S o (5) < Zb .
=1
where ®* is the inverse of the map ®, that is ®* (u) = |u|*/“sgn u.

If (HL) is nonoscillatory, then it has intermediate solutions if and only

e £ ) Erlit )~

k=n-+1

an—l—l
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Main Result

Comparison
Result

Is it possible to use the characterization of intermediate sol.s for (HL) to
obtain existence results for equation with advanced argument?

A(anq)(A:Un)) + b, ®(zp4p) =0, p>1 (HLA)

l

Let 3072, ®* (£ ) < 00, S32, b; = 00, and

lim sup b,, < o0.
mn

Then (HLA) has intermediate solutions IFF

A(aner—l(I)(Ayn)) + bn®(Yn+1) =0

has intermediate solutions.

8ECM
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Main Result

Comparison
Result

Is it possible to

use the knowledge of cassification of solution for (HL) to

obtain existence results for equation with advanced argument?

Af

an®(Axy,)) + by ®(2pyp) =0, p>1  (HLA)

Let ZZ .

l

CID*( Z) < 00, Yooy b; =00, and

limsup b,, < oo.

n

Then (HLA) has intermediate solutions IFF

A(an—l—p—lq)(Ayn)) + bnq)(yn-l-l) =1

is nonoscillatory and

Zb<1>(

> o ()2 (e ) ==

k=n+1

8ECM
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Fixed point approach - Topological setting

Np,={ieN:i>meN}, N, ,={ieN,:i<n, m<n}

v’ X={u:N,, >R}

Frechét space

with the topology of pointwise convergence on N,,

v/ Q C X is bounded iff it consists of sequences which are equibounded on Ny, for any n > m.

@) U U, e XUy, <up < Ugr,Vk > m, Yu € Q

v Discrete Arzela-Ascoli theorem —>

v/ O c X bounded — AQ bounded

any bounded set in X is relatively compact

AQ = {Au, u € Q}

8ECM
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A Fixed point result
D.M.M. Phil. Trans. R. Soc. A379 (2021)

ﬁ)nsider the BVP \

{A(anq’(AiBn)) =g(n,z), n€Np (1)
x €S,

where g : N,,, x X — R is a continuous map, and S is a subset of X.

Let G : N,,, xX? — R be a continuous map such that G(k,u,u) = g(k, u)
for all (k,u) € N,,, x X. If there exist a nonempty, closed, convex set
) C X, and a bounded, closed subset S C SN2 such that the problem

2
x € Sco, ()

ws a unique solution for any ¢ € (2 fixed, then (1) has at least a solutiorj
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{A(anCD(Axn)) =G(n,x,q), neN,
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v Discrete counterpart of Theorem 1.3 in M.Cecchi, M.Furi, M.Marini, Nonlinear Anal. 9 (1985)
v/ No explicit form of the fixed point operator is needed
v Gives a sufficient condition for the Schauder-Tychoff fixed point theorem to be applicable
v/  Continuity and compactness are consequences of good a-priori bounds
Let T : Q — S¢ be the solution operator for (2)
Sc bounded = T'(2) rel. compact
Sc closed = T' continuous in {2
v/ Akey point is the choice of the map G
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v/ Akey point is the choice of the map G

i) Glngz) = g(n,q), [) G(n,q,x>=%@<xnm}

leads to a BVP associated to a second order half-linear
difference equation

\\

The theory of half-linear equations can be used to solve
a large variety of BVP. See for instance M. Marini, M.M,
P.Rehdk, Adv. Difference Equ. (2006)
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v/ Akey point is the choice of the map G

(i) Gngo) =gtna)] i) Glng.o) = S0 a@ni)

GG does not depend on x — afline equation. Particularly
useful to solve BVPs associated to difference equations with
deviating arguments

Can lead to a BVP associated to a second order difference
equation without deviating argument

mmm) Choice for this problem
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Let .0, ®* (i) < 00, Y oy b; =00, and limsup,, b, < .

a;

Then (HLA) has intermediate solutions IFF (HLp) has intermediate solutions.

(HLA) A(an®(Azy,)) + b, ®(2nip) =0 (HLp) A(antp—1P(Ayn)) + bn®(yn+1) =0

Idea of the proof. (HLA) = (HLp)

{A(an+p_1<l)(Ayn)) + b0, P(Ynt1) = 0, I {A(an+p_1(l>(Azn)) + 0, P(uni1) =0, n>ng

limy, Gpyqp—1P(Ayy) = —o0, lim, y, =0, Apgtp—1P(Azp,) = :137[@1(]), lim,, z,, = 0,

no suff. large: 0 < z,, <1, Ax, <0forn >ng>1
x intermediate sol. of (HLA)
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Q={ueX Mz,ip 1 <up<Zpyp 1} nonempty, closed, convex (and bounded)

M<1,<I>(M)<L|+‘ |’ L> P2 b > ng

[1]

¥ aux. problem has a unique solution z = T'(u) C S = {’U € X Gngtp—1P(Avy,) = zn;y, lim, v, = 0}

X 7@

So = S5NQ= {fu € X anysp—1P(Avy,) = xn] Mz,ip—1 < vy < xn+p_1} bounded and closed

aux. problem has a unique solution in S¢ === (HLp) has a solution y s.t. limy, =0

xgip_l < yL,l] < CI)(M)x,[,}_]Fp_l ) |im,, y[ l= — oo

8ECM
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An Example

has intermediate solutions [F'F
A(n*te®(Azy,)) +7@(Tnip) =0, n>p>2 |\ ot
<o (it

14+«

by means of a change of variable, transform (HLp) into the generalized discrete Euler equation

Comments and Open Problems I

@~ the case p < 0 requires a different approach

& condition lim sup,, b, < oo is not necessary for existence of intermediate sol.s

mmmm)  does the comparison Thm hold removing this assumption?
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