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Bi-Cayley graph

Let H be a finite group.
Let R,L,LSCHbest. R=R',L=L"and1¢ RUL.
The graph BiCay(H, R, L, S) is defined to have

@ vertex set: the union Hy U H; of two copies of H, and

@ edges: of the form {hy, (xh)o}, {1, (yh)1} and {ho. (zh)1}
with x e R, y e Land z € S, and hy € Hy, hy € H;
representing a given h € H.
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What are bi-Cayley graphs?

Basic properties

If BiCay(H, R, L, S)is connected, then the following hold:

(a) His generatedby RULU S;

(b) S can be chosen to contain the identity of H (up to graph
isomorphism);

(c) BiCay(H, R, L, S) = BiCay(H, R*, L%, S*) for every
automorphism « of H; and

(d) BiCay(H, R, L, S) = BiCay(H,L,R,S™").
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Another example

Figure 2: Hoffman-Singleton graph
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Recognizing bi-Cayley graphs

A recognition problem

Hoffman-Singleton graph I': 50 vertices, valency 7,
Aut(l') = PXU(S,5), vertex-stabilizer S7

Found by Alan Hoffman and Robert Singleton (IBM J. Res.
Develop. 4 (1960) 497-504)

The highest order Moore graph (a graph of diameter d and
girth 2d + 1; such graphs have regular valency k, and if the
diameter is 2, then k € {2,3,7,57})

Not obvious:

I =BiCay(H, {ab, (ab)"},{(ab)?. (ab) 2}, {1,a ab. ab® b}},
where H = (a) x (b) = Zs x Zs.

Some construction may hide the fact that the graph is a
bi-Cayley graph.

How to decide if a given graph is a bi-Cayley graph?
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Recognizing bi-Cayley graphs

Automorphisms of graphs

Let I be a connected simple graph with vertex set V and edge
set E.

An automorphism (or symmetry) of I is a permutation on V
preserving the adjacency.

All automorphisms of I form a permutation group on V, called
the full automorphism group of I', denoted by Aut(I").
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Bi-regular representation

Let I =BiCay(H, R, L, S) be a bi-Cayley graph
@ vertex set: the union Hy U H; of two copies of H, and

@ edges: of the form {hy, (xh)o}, {h1,(¥h)1} and {ho, (zh)1}
with x e R, ye Land z € S, and hy € Hy, hy € H;
representing a given h € H.

Foreach g € H, let
R(9) : hi = (hg);,Vi € Zo,h,g € H.

Then

R(H)={R(9) | g € H}
is a group of automorphisms of BiCay(H, R, L, S) acting
semiregularly on its vertices with two orbits.
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Recognizing bi-Cayley graphs

If Gis a group acting on a set Q, then the stabilizerin G of a
point « € Q is the subgroup G, = {g € G| o9 = a} of G.

The group G is said to be semiregular on Q if G, = 1 for every
a € Q, and regqular on Q if G is transitive and semiregular on .

Bi-Cayley graph test

A graph I is a bi-Cayley graph over a group H if and only if
Aut(I") contains a semiregular subgroup isomorphic to H having
2 orbits on V/(T).
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Cayley graph

Given a finite group G and an inverse closed subset
S C G\ {1}, the Cayley graph Cay(G, S) is a graph:
@ vertex set: G;
@ edge set: {{g,sg} | g€ G,s € S}.

Cayley graph test

A graph T is a Cayley graph on a group G if and only if Aut(I)
has a subgroup isomorphic to G and acting regularly on the
vertices of I'.
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Godsil Theorem

Forany g € G, let R(g) : x — xg for x € G be a permutation of
G.

Set R(G) :={R(9) | g € G}. Itis well-known that R(G) is a
subgroup of Aut(Cay(G, S)).

Godsil Theorem (Godsil, Combinatorica, 1981)

The normalizer of R(G) in Aut(Cay(G, S)) is R(G) x Aut(G, S),
where Aut(G, S) is the group of automorphisms of G fixing the
set S set-wise.
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Tow topics regarding Cayley graphs

Godsil’s theorem has been successfully used in studying the
symmetry of Cayley graphs.

Important topics: GRR (Graphical Regular Representation),
Normal Cayley graphs ...

@ A Cayley graph I of a group G such that Aut(l') = R(G) is
called a GRR.

@ A Cayley graph I is said to be normal if R(G) < Aut(I").

A lot of people have been working on this area: L. Babai, S.F.
Du, X.G. Fang, Y.-Q. Feng, C.D. Godsi, L.A. Nowitz, M.E.
Watkins, C.H. Li, C.E. Praeger, M.Y. Xu, ...
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How can we do on bi-Cayley graph?

The bi-Cayley graphs are quite analogous to Cayley graphs.

Hopefully, we may develop some similar theory about the
symmetry of bi-Cayley graphs.

The first natural step is to determine the normalizer of the group
R(H) in Aut(), where I is a bi-Cayley graph of the group H.
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Normalizer of R(H)

A natural problem is: Determine the normalizer of R(H) in
Aut(IN).

In 2003, Lu dealt with the case when R = L = () in the following
paper:

Z.P. Lu, On the automorphism groups of bi-Cayley graphs,
Acta Scientiarum Naturalium, Universitatis Pekinesis 39
(2003) 1-5.

We will give a solution of this problem.
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Normalizer of R(H)

For o € Aut(H) and x, y, g € H, define two permutations of
V(') = Hy U H; as follows:

50&,X,y : hO = (Xha)17 hy (yha)07 Vh e Ha
Oa,g - hy — (ha)o, hy — (gha)1, Vh e H.

Set

I = {0axy | a€Aut(H)s.t. R* =x'Lx, L* =y 'Ry, S =y 'S 'x},
F={0ag|acAu(H)s.t. R”* =R, L =g 'Lg, S* =g 'S}.
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Let ' =BiCay(H, R, L, S) be a connected bi-Cayley graph
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Normalizer of R(H)

Theorem 1 (Z. & Feng, JCTB, 2016)

Let ' =BiCay(H, R, L, S) be a connected bi-Cayley graph
over the group H. Then

® Npuyr)(R(H)) = R(H) » Fif I =0,
® Nayyr)(R(H)) = R(H)(F, baxy) if I # 0 and daxy € I

If NAut(r)(R(H)) = Aut(I"), then I' is called a normal bi-Cayley
graph over H.
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Petersen graph has a solvable VT group of automorphisms

Petersen graph P(5,2) =BiCay(Zs, {1,4},{2,3}, {0}).

Let H = Zs. Then R(1) = (0o, 10,20, 30,40)(04, 11,21, 31, 41),
and so R(H) = (R(1)).

Let o € Aut(H) be such that a(1) = 2. Then « swaps {2,3} and
{1,4}. So 4,11 is an automorphism of P(5,2) which
interchanges Hyp and Hy and normalizes R(H).

So R(H) x (da.1.1) = Zs x Zy4 is vertex transitive on P(5,2).
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Basic properties of NAut(r)(R(H))

Let X = Npygry(R(H)). Note that

)(1011 = <O’a’1 ‘ o€ Aut(H), S* = S>

Let I = BiCay(H, 0, (), S) be a connected bi-Cayley graph over
agroup H,with1y € S. Let X = NAut(r)(R(H))- Then X, acts
faithfully on the neighborhood of v.
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s-arc-transitive graphs

Let = (V, E) be a graph.

s-arc: a path (vo, vq,- -+, Vs_1, Vs) Of length s s.t. v;_4 # v; 4 for
1<i<s—1

I is s-arc-transitive: Aut(l') is transitive on s-arcs.
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Theorem 3 (Conder, Z., Feng & Zhang, JCTB, 2020)

Let I' = BiCay(H, 0, ?, S) be a connected bi-Cayley graph over a group H,
with 14 € S. Then Ny ) (R(H)) acts transitively on the 2-arcs of I" if and

only if the following three conditions hold :
(a) there exists an automorphism « of H such that S* = S~ 1,
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(c) tt;ere exists s € S\ {14} and an automorphism 3 of H such that
S°=s"'S.

Furthermore, Np ¢ (R(H)) is not transitive on the 3-arcs of T
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Normal bi-Cayley graphs are at most 2-arc-transitive

Theorem 3 (Conder, Z., Feng & Zhang, JCTB, 2020)

Let I' = BiCay(H, 0, ?, S) be a connected bi-Cayley graph over a group H,
with 14 € S. Then Ny ) (R(H)) acts transitively on the 2-arcs of I" if and
only if the following three conditions hold :
(a) there exists an automorphism « of H such that S* = S~ 1,
(b) the setwise stabilizer of S in Aut(H) is transitive on S\ {14}, and
(c) tt;ere exists s € S\ {14} and an automorphism 3 of H such that
S°=s"'S.

Furthermore, Np ¢ (R(H)) is not transitive on the 3-arcs of T

So, a normal bi-Cayley graph is at most 2-arc-transitive.
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Normalizer of R(H)

Normal bi-Cayley graphs are at most 2-arc-transitive

This gives a solution to the following problem raised by Cai
Heng Li in 2005.

Let ' = Cay(G, S) be a Cayley graph on a group G.

Then I is said to be bi-normal if the maximal normal subgroup
mxeAut(r) R(G)* of Aut(I') contained in R(G) has index 2 in
R(G).

Problem A (C.H. Li, Proc. of AMC, 2005)

@ Do there exist 3-arc-transitive bi-normal Cayley graphs?

@ Give a good description of 2-arc-transitive bi-normal
Cayley graphs.

Clearly, every bi-normal Cayley graph is a normal bi-Cayley
graph.
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Normalizer of R(H)

A question

Both Petersen graph and Hoffman-Singleton graph:
@ are not bipartite and

@ have a vertex-transitive group of automorphisms
which is solvable.

Problem A

What can we say about non-bipartite s-arc-transitive graphs
which have a vertex-transitive solvable group of
automorphisms?

Li and Xia (Mem. Amer. Math. Soc. 2021+) have made a
significant progress towards this problem.
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Let I be a (G, s)-arc-transitive graph with G < Aut(I') and
s > 2, and let N be a normal subgroup of G.

The quotient graph 'y of I relative to N is defined as the
graph with vertices the orbits of N on V(I') and with two
different orbits adjacent if there exists an edge in I between the
vertices lying in those two orbits.

If Iy and I have the same valency, then we say that I is a
normal cover of I'y.

Theorem 4 (Li & Xia, Mem. Amer. Math. Soc. to appear)

A connected non-bipartite 3-arc-transitive Cayley graph on a
solvable group of valency at least three is a normal cover of the
Petersen graph or the Hoffman-Singleton graph.
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No non-bipartite 3-arc-transitive solvable Cayley graph

Recall that both Petersen graph and Hoffman-Singleton graph
are bi-Cayley graphs.

Using this fact, together with some other methods, we prove the
following:

Theorem 5 (Z. JCTB, 2021)

Every connected non-bipartite Cayley graph on a solvable
group of valency at least three is at most 2-arc-transitive.
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When is a bi-Cayley graph normal?

Empirical evidence: Normal cases seem ‘common’ among
edge-transitive bi-Cayley graphs.

Let p be a prime and let ' be a connected bi-Cayley graph over
a non-abelian metacyclic p-group H.

If I is cubic edge-transitive, then p = 3 and I is either the Gray
graph or a normal bi-Cayley graph over H (Qin., Z., EleJC,
2018).

If p > 3 and T is tetravalent, vertex- and edge-transitive, then I’
is a normal bi-Cayley graph over H (Conder, Z., Feng, Zhang,
JCTB, 2020).

If I" is bipartite and R(H) is a Sylow p-subgroup of Aut(I"), then
I is a normal bi-Cayley graph over H (Feng, Wang, ARS Math.
Contemp. 2019).
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When is a bi-Cayley graph normal?

Every connected cubic edge-transitive graph of order a 2-power
is a normal bi-Cayley graph of a 2-group H (Z., Feng, JCTB,
2016).

Let p be a prime. Every cubic edge-transitive bi-Cayley graph
over an inner-abelian p-group H is normal (Qin., Z, Comm.
Algebra, 2019).

Recently, Li, Zhang, Z. investigated the bi-primitive
s-arc-transitive bi-partite bi-Cayley graphs, and obtain the
following:
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Theorem 6 (Li, Zhang, Z., 2021+)

Let I' be a bi-primitive s-arc-transitive bi-partite bi-Cayley graph over a group
H with s > 2. Then either Aut(I")" is of PA-type, or one of the following holds:

(1) T is a normal bi-Cayley graph;

() T = Knn;

(3) T is the standard double cover of K, or a vertex-primitive
s-arc-transitive graph [1];

4) T=HP(n-—1,q9), HP(n—1,q) (n > 3), G(22,5) or B'(H(11)) (see
[20);

(5) T is one of the six sporadic graphs.
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When is a bi-Cayley graph normal?

Theorem 6 (Li, Zhang, Z., 2021+)

Let I' be a bi-primitive s-arc-transitive bi-partite bi-Cayley graph over a group
H with s > 2. Then either Aut(I")" is of PA-type, or one of the following holds:

(1) T is a normal bi-Cayley graph;

(@) T = Knn;

(3) T is the standard double cover of K, or a vertex-primitive
s-arc-transitive graph [1];

4) T=HP(n-—1,q9), HP(n—1,q) (n > 3), G(22,5) or B'(H(11)) (see
[2]);

(5) T is one of the six sporadic graphs.

1. J.J. Li, J. Yang, W.Y. Zhu, Vertex primitive s-transitive Cayley graphs,
Discrete Math. 343 (2020) 1-6.

2. Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a
prime, J. Comb. Theory, Ser. B 42 (1987) 196-211.
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Normal-edge-transitive bi-Cayley graph

In 1999, Praeger [Bull. Austral. Math. Soc. 60 (1999) 207-220]
introduced the concept of normal-edge-transitive Cayley graph.

Follow on this, we say that I' = BiCay(H, R, L, S) is
normal-edge-transitive if NAut(r)(R(H)) is transitive on the
edges of T'.

Theorem 7 [Z. & Feng, 2016]

Let I' be a connected cubic edge-transitive bi-Cayley graph
BiCay(H, 0,0, S) over a 2-group H. Then T is normal if and only
if I is normal-edge-transitive.
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A class of cubic edge-transitive graphs

Let n > 2 be a positive integer, and let G(n) = (a, b, c,d, e, x, y)
with the following relations:

2 = =t == =x2=y2 =1,
c=labl,d=]acl,e=[b,cl,x=][c,d],y =]c el (1)
[e,d] =[x,al = [x,b] =[y,a] = [y,b] =1,

d? = yd, e? = c?e, d? = xyc?d, e = xye.

Theorem 8 (Z. & Feng, JCTB, 2016)

Let I = BiCay(G(n),0,0,{1,a,b}). Then I is a connected cubic
1-arc-regular normal bi-Cayley graph over G(n). Furthermore,
there exists § € Aut(G(n)) suchthat 2’ = b~"and b’ = a ',
and I = Cay(G, T) is a non-normal Cayley graph on G, where
G=G(n)x (0)and T = {4,0a,0b}.
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Led to solution of Godsil’s problem

Problem B (Godsil, EJC, 1983)

Suppose that ' = Cay(G, S) is a cubic Cayley graph for the
2-group G and let A = Aut(I). Is it true that if |[A{| # 1 then
Aut(G, S) is non-trivial?

The answer is ‘yes’ if 2 | |Aq].

However, if 2 1 |A¢], then there exist 1-arc-regular normal
bi-Cayley graphs over 2-groups which are non-normal Cayley
graphs.
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Normal-edge-transitive bi-dihedrants

Let nand k be integers with n > 5 and k > 2, such that there
exists an element \ of order 2k in Z;; such that

142240 4. 4 22(2) 4 y2(k=1) = 0 mod n.

Now let H = D>, = (a,b | a" = b®> = (ab)® = 1), and for each
I € Z, let

Gi=1+MA 424 422070 432
di=2c = A+ X3+ 254+ 4 N2 4 2

and then define I'(n, \, 2k) as the 2k-valent bi-Cayley graph
BiCay(H, 0,0, S) over H, where

S=38(n\2k)={a%:ieZ} U {ba% :iecZ}.
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Normal-edge-transitive bi-dihedrants

Let o be the automorphism of H that takes (a, b) to (a*, ba).

Then o, p is an automorphism of I'(n, A, 2k) that fixes the vertex
1o and cyclically permutes the 2k neighbours of 1j.

I'(n, A, 2k) is normal-edge-transitive.
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Normal-edge-transitive bi-dihedrants

Problem C(Conder, Z., Feng & Zhang, 2020)
Determine which of the graphs I'(n, A, 2k) are semisymmetric.

Proposition 9(Conder, Z., Feng & Zhang, 2020)

If k is even and A = —1 mod n, then T'(n, \, 2k) is
arc-transitive.

| A

Proposition 10(Conder, Z., Feng & Zhang, 2020)

If k is odd and Ak = —1 mod n, then T'(n, \, 2k) is
semisymmetric.
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Theorem 11(Conder, Z., Feng & Zhang, 2020)

The graph T'(n, A, 2k) is semisymmetric whenever k = 3, and
moreover, if k =3 and A3 # —1 mod n, then '(n, ), 2k) is
edge-regular, with cyclic vertex-stabilizer.
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Normal-edge-transitive bi-dihedrants

Theorem 11(Conder, Z., Feng & Zhang, 2020)

The graph T'(n, A, 2k) is semisymmetric whenever k = 3, and
moreover, if k =3 and A3 # —1 mod n, then '(n, ), 2k) is
edge-regular, with cyclic vertex-stabilizer.

| A

Conjecture D(Conder, Z., Feng & Zhang, 2020)

r(n, \, 2k) is arc-transitive if and only if k is even and \¥ = —1
mod n.




Thanks!
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