Symmetries of bi-Cayley graphs

Jin-Xin Zhou
Beijing Jiaotong University, Beijing 100044, P.R. China

22/June/2021

Outline

(1) What are bi-Cayley graphs?
(2) Recognizing bi-Cayley graphs
(3) Normalizer of $\mathcal{R}(H)$

4 Normal bi-Cayley graphs

Bi-Cayley graph

Let H be a finite group.

Bi-Cayley graph

Let H be a finite group.
Let $R, L, S \subseteq H$ be s.t. $R=R^{-1}, L=L^{-1}$ and $1 \notin R \cup L$.

Bi-Cayley graph

Let H be a finite group.
Let $R, L, S \subseteq H$ be s.t. $R=R^{-1}, L=L^{-1}$ and $1 \notin R \cup L$.
The graph $\operatorname{BiCay}(H, R, L, S)$ is defined to have

Bi-Cayley graph

Let H be a finite group.
Let $R, L, S \subseteq H$ be s.t. $R=R^{-1}, L=L^{-1}$ and $1 \notin R \cup L$.
The graph $\operatorname{BiCay}(H, R, L, S)$ is defined to have

- vertex set: the union $H_{0} \cup H_{1}$ of two copies of H, and

Bi-Cayley graph

Let H be a finite group.
Let $R, L, S \subseteq H$ be s.t. $R=R^{-1}, L=L^{-1}$ and $1 \notin R \cup L$.
The graph $\operatorname{BiCay}(H, R, L, S)$ is defined to have

- vertex set: the union $H_{0} \cup H_{1}$ of two copies of H, and
- edges: of the form $\left\{h_{0},(x h)_{0}\right\},\left\{h_{1},(y h)_{1}\right\}$ and $\left\{h_{0},(z h)_{1}\right\}$ with $x \in R, y \in L$ and $z \in S$, and $h_{0} \in H_{0}, h_{1} \in H_{1}$ representing a given $h \in H$.

An example: Petersen graph

An example: Petersen graph

The Petersen graph $P(5,2)=\operatorname{BiCay}\left(\mathbb{Z}_{5},\{1,4\},\{2,3\},\{0\}\right)$ (under addition).

An example: Petersen graph

The Petersen graph $P(5,2)=\operatorname{BiCay}\left(\mathbb{Z}_{5},\{1,4\},\{2,3\},\{0\}\right)$ (under addition).

Figure: The Petersen graph

An example: Petersen graph

The Petersen graph $P(5,2)=\operatorname{BiCay}\left(\mathbb{Z}_{5},\{1,4\},\{2,3\},\{0\}\right)$ (under addition).

Figure: The Petersen graph

An example: Petersen graph

The Petersen graph $P(5,2)=\operatorname{BiCay}\left(\mathbb{Z}_{5},\{1,4\},\{2,3\},\{0\}\right)$ (under addition).

Figure: The Petersen graph

Basic properties

If $\operatorname{BiCay}(H, R, L, S)$ is connected, then the following hold:

Basic properties

If $\operatorname{BiCay}(H, R, L, S)$ is connected, then the following hold:

(a) H is generated by $R \cup L \cup S$;

Basic properties

If $\operatorname{BiCay}(H, R, L, S)$ is connected, then the following hold:

(a) H is generated by $R \cup L \cup S$;
(b) S can be chosen to contain the identity of H (up to graph isomorphism);

Basic properties

If $\operatorname{BiCay}(H, R, L, S)$ is connected, then the following hold:

(a) H is generated by $R \cup L \cup S$;
(b) S can be chosen to contain the identity of H (up to graph isomorphism);
(c) $\operatorname{BiCay}(H, R, L, S) \cong \operatorname{BiCay}\left(H, R^{\alpha}, L^{\alpha}, S^{\alpha}\right)$ for every automorphism α of H; and

Basic properties

If $\operatorname{BiCay}(H, R, L, S)$ is connected, then the following hold:

(a) H is generated by $R \cup L \cup S$;
(b) S can be chosen to contain the identity of H (up to graph isomorphism);
(c) $\operatorname{BiCay}(H, R, L, S) \cong \operatorname{BiCay}\left(H, R^{\alpha}, L^{\alpha}, S^{\alpha}\right)$ for every automorphism α of H; and
(d) $\operatorname{BiCay}(H, R, L, S) \cong \operatorname{BiCay}\left(H, L, R, S^{-1}\right)$.

Another example

Another example

Figure 2: Hoffman-Singleton graph.

A recognition problem

Hoffman-Singleton graph 「: 50 vertices, valency 7,
$\operatorname{Aut}(\Gamma) \cong P \Sigma U(3,5)$, vertex-stabilizer S_{7}

A recognition problem

Hoffman-Singleton graph Γ : 50 vertices, valency 7,
$\operatorname{Aut}(\Gamma) \cong P \Sigma U(3,5)$, vertex-stabilizer S_{7}
Found by Alan Hoffman and Robert Singleton (IBM J. Res.
Develop. 4 (1960) 497-504)

A recognition problem

Hoffman-Singleton graph Γ : 50 vertices, valency 7,
$\operatorname{Aut}(\Gamma) \cong P \Sigma U(3,5)$, vertex-stabilizer S_{7}
Found by Alan Hoffman and Robert Singleton (IBM J. Res.
Develop. 4 (1960) 497-504)
The highest order Moore graph (a graph of diameter d and girth $2 d+1$; such graphs have regular valency k, and if the diameter is 2 , then $k \in\{2,3,7,57\}$)

A recognition problem

Hoffman-Singleton graph Γ : 50 vertices, valency 7,
$\operatorname{Aut}(\Gamma) \cong P \Sigma U(3,5)$, vertex-stabilizer S_{7}
Found by Alan Hoffman and Robert Singleton (IBM J. Res.
Develop. 4 (1960) 497-504)
The highest order Moore graph (a graph of diameter d and girth $2 d+1$; such graphs have regular valency k, and if the diameter is 2 , then $k \in\{2,3,7,57\}$)
Not obvious:
$\Gamma=\operatorname{BiCay}\left(H,\left\{a b,(a b)^{-1}\right\},\left\{(a b)^{2},(a b)^{-2}\right\},\left\{1, a, a^{3} b, a b^{3}, b\right\}\right\}$, where $H=\langle a\rangle \times\langle b\rangle \cong \mathbb{Z}_{5} \times \mathbb{Z}_{5}$.

A recognition problem

Hoffman-Singleton graph 「: 50 vertices, valency 7,
$\operatorname{Aut}(\Gamma) \cong P \Sigma U(3,5)$, vertex-stabilizer S_{7}
Found by Alan Hoffman and Robert Singleton (IBM J. Res.
Develop. 4 (1960) 497-504)
The highest order Moore graph (a graph of diameter d and girth $2 d+1$; such graphs have regular valency k, and if the diameter is 2 , then $k \in\{2,3,7,57\}$)
Not obvious:
$\Gamma=\operatorname{BiCay}\left(H,\left\{a b,(a b)^{-1}\right\},\left\{(a b)^{2},(a b)^{-2}\right\},\left\{1, a, a^{3} b, a b^{3}, b\right\}\right\}$, where $H=\langle a\rangle \times\langle b\rangle \cong \mathbb{Z}_{5} \times \mathbb{Z}_{5}$.
Some construction may hide the fact that the graph is a bi-Cayley graph.

A recognition problem

Hoffman-Singleton graph Γ : 50 vertices, valency 7,
$\operatorname{Aut}(\Gamma) \cong P \Sigma U(3,5)$, vertex-stabilizer S_{7}
Found by Alan Hoffman and Robert Singleton (IBM J. Res.
Develop. 4 (1960) 497-504)
The highest order Moore graph (a graph of diameter d and girth $2 d+1$; such graphs have regular valency k, and if the diameter is 2 , then $k \in\{2,3,7,57\}$)
Not obvious:
$\Gamma=\operatorname{BiCay}\left(H,\left\{a b,(a b)^{-1}\right\},\left\{(a b)^{2},(a b)^{-2}\right\},\left\{1, a, a^{3} b, a b^{3}, b\right\}\right\}$, where $H=\langle a\rangle \times\langle b\rangle \cong \mathbb{Z}_{5} \times \mathbb{Z}_{5}$.
Some construction may hide the fact that the graph is a bi-Cayley graph.
How to decide if a given graph is a bi-Cayley graph?

Automorphisms of graphs

Let Γ be a connected simple graph with vertex set V and edge set E.

Automorphisms of graphs

Let Γ be a connected simple graph with vertex set V and edge set E.

An automorphism (or symmetry) of Γ is a permutation on V preserving the adjacency.

Automorphisms of graphs

Let Γ be a connected simple graph with vertex set V and edge set E.

An automorphism (or symmetry) of Γ is a permutation on V preserving the adjacency.

All automorphisms of Γ form a permutation group on V, called the full automorphism group of Γ, denoted by $\operatorname{Aut}(\Gamma)$.

Bi-regular representation

Let $\Gamma=\operatorname{BiCay}(H, R, L, S)$ be a bi-Cayley graph

- vertex set: the union $H_{0} \cup H_{1}$ of two copies of H, and
- edges: of the form $\left\{h_{0},(x h)_{0}\right\},\left\{h_{1},(y h)_{1}\right\}$ and $\left\{h_{0},(z h)_{1}\right\}$ with $x \in R, y \in L$ and $z \in S$, and $h_{0} \in H_{0}, h_{1} \in H_{1}$ representing a given $h \in H$.

Bi-regular representation

Let $\Gamma=\operatorname{BiCay}(H, R, L, S)$ be a bi-Cayley graph

- vertex set: the union $H_{0} \cup H_{1}$ of two copies of H, and
- edges: of the form $\left\{h_{0},(x h)_{0}\right\},\left\{h_{1},(y h)_{1}\right\}$ and $\left\{h_{0},(z h)_{1}\right\}$ with $x \in R, y \in L$ and $z \in S$, and $h_{0} \in H_{0}, h_{1} \in H_{1}$ representing a given $h \in H$.

For each $g \in H$, let

$$
\mathcal{R}(g): h_{i} \mapsto(h g)_{i}, \forall i \in \mathbb{Z}_{2}, h, g \in H
$$

Bi-regular representation

Let $\Gamma=\operatorname{BiCay}(H, R, L, S)$ be a bi-Cayley graph

- vertex set: the union $H_{0} \cup H_{1}$ of two copies of H, and
- edges: of the form $\left\{h_{0},(x h)_{0}\right\},\left\{h_{1},(y h)_{1}\right\}$ and $\left\{h_{0},(z h)_{1}\right\}$ with $x \in R, y \in L$ and $z \in S$, and $h_{0} \in H_{0}, h_{1} \in H_{1}$ representing a given $h \in H$.

For each $g \in H$, let

$$
\mathcal{R}(g): h_{i} \mapsto(h g)_{i}, \forall i \in \mathbb{Z}_{2}, h, g \in H
$$

Then

$$
\mathcal{R}(H)=\{\mathcal{R}(g) \mid g \in H\}
$$

is a group of automorphisms of $\operatorname{BiCay}(H, R, L, S)$ acting semiregularly on its vertices with two orbits.

Recognizing bi-Cayley graphs

Recognizing bi-Cayley graphs

If G is a group acting on a set Ω, then the stabilizer in G of a point $\alpha \in \Omega$ is the subgroup $\boldsymbol{G}_{\alpha}=\left\{\boldsymbol{g} \in \boldsymbol{G} \mid \alpha^{g}=\alpha\right\}$ of G.

Recognizing bi-Cayley graphs

If G is a group acting on a set Ω, then the stabilizer in G of a point $\alpha \in \Omega$ is the subgroup $\mathcal{G}_{\alpha}=\left\{\boldsymbol{g} \in \boldsymbol{G} \mid \alpha^{g}=\alpha\right\}$ of \boldsymbol{G}.

The group G is said to be semiregular on Ω if $G_{\alpha}=1$ for every $\alpha \in \Omega$, and regular on Ω if G is transitive and semiregular on Ω.

Recognizing bi-Cayley graphs

If G is a group acting on a set Ω, then the stabilizer in G of a point $\alpha \in \Omega$ is the subgroup $\mathcal{G}_{\alpha}=\left\{\boldsymbol{g} \in \boldsymbol{G} \mid \alpha^{g}=\alpha\right\}$ of \boldsymbol{G}.

The group G is said to be semiregular on Ω if $G_{\alpha}=1$ for every $\alpha \in \Omega$, and regular on Ω if G is transitive and semiregular on Ω.

Bi-Cayley graph test

A graph Γ is a bi-Cayley graph over a group H if and only if Aut(Γ) contains a semiregular subgroup isomorphic to H having 2 orbits on $V(\Gamma)$.

Cayley graph

Cayley graph

Given a finite group G and an inverse closed subset $S \subseteq G \backslash\{1\}$, the Cayley graph Cay (G, S) is a graph:

Cayley graph

Given a finite group G and an inverse closed subset $S \subseteq G \backslash\{1\}$, the Cayley graph Cay (G, S) is a graph:

- vertex set: G;

Cayley graph

Given a finite group G and an inverse closed subset $S \subseteq G \backslash\{1\}$, the Cayley graph $\operatorname{Cay}(G, S)$ is a graph:

- vertex set: G;
- edge set: $\{\{g, s g\} \mid g \in G, s \in S\}$.

Cayley graph

Given a finite group G and an inverse closed subset $S \subseteq G \backslash\{1\}$, the Cayley graph Cay (G, S) is a graph:

- vertex set: G;
- edge set: $\{\{g, s g\} \mid g \in G, s \in S\}$.

Cayley graph test

A graph Γ is a Cayley graph on a group G if and only if $\operatorname{Aut}(\Gamma)$ has a subgroup isomorphic to G and acting regularly on the vertices of Γ.

Godsil Theorem

Godsil Theorem

For any $g \in G$, let $R(g): x \mapsto x g$ for $x \in G$ be a permutation of G.

Godsil Theorem

For any $g \in G$, let $R(g): x \mapsto x g$ for $x \in G$ be a permutation of G.

Set $R(G):=\{R(g) \mid g \in G\}$. It is well-known that $R(G)$ is a subgroup of $\operatorname{Aut}(\operatorname{Cay}(G, S))$.

Godsil Theorem

For any $g \in G$, let $R(g): x \mapsto x g$ for $x \in G$ be a permutation of G.

Set $R(G):=\{R(g) \mid g \in G\}$. It is well-known that $R(G)$ is a subgroup of $\operatorname{Aut}(\operatorname{Cay}(G, S))$.

Godsil Theorem (Godsil, Combinatorica, 1981)

The normalizer of $R(G)$ in $\operatorname{Aut}(\operatorname{Cay}(G, S))$ is $R(G) \rtimes \operatorname{Aut}(G, S)$, where $\operatorname{Aut}(G, S)$ is the group of automorphisms of G fixing the set S set-wise.

Tow topics regarding Cayley graphs

Tow topics regarding Cayley graphs

Godsil's theorem has been successfully used in studying the symmetry of Cayley graphs.

Tow topics regarding Cayley graphs

Godsil's theorem has been successfully used in studying the symmetry of Cayley graphs.

Important topics: GRR (Graphical Regular Representation), Normal Cayley graphs ...

Tow topics regarding Cayley graphs

Godsil's theorem has been successfully used in studying the symmetry of Cayley graphs.

Important topics: GRR (Graphical Regular Representation), Normal Cayley graphs ...

- A Cayley graph Γ of a group G such that $\operatorname{Aut}(\Gamma)=R(G)$ is called a GRR.

Tow topics regarding Cayley graphs

Godsil's theorem has been successfully used in studying the symmetry of Cayley graphs.

Important topics: GRR (Graphical Regular Representation), Normal Cayley graphs ...

- A Cayley graph Γ of a group G such that $\operatorname{Aut}(\Gamma)=R(G)$ is called a GRR.
- A Cayley graph Γ is said to be normal if $R(G) \unlhd \operatorname{Aut}(\Gamma)$.

Tow topics regarding Cayley graphs

Godsil's theorem has been successfully used in studying the symmetry of Cayley graphs.

Important topics: GRR (Graphical Regular Representation), Normal Cayley graphs ...

- A Cayley graph Γ of a group G such that $\operatorname{Aut}(\Gamma)=R(G)$ is called a GRR.
- A Cayley graph Γ is said to be normal if $R(G) \unlhd \operatorname{Aut}(\Gamma)$.

A lot of people have been working on this area: L. Babai, S.F. Du, X.G. Fang, Y.-Q. Feng, C.D. Godsi, L.A. Nowitz, M.E. Watkins, C.H. Li, C.E. Praeger, M.Y. Xu, ...

How can we do on bi-Cayley graph?

The bi-Cayley graphs are quite analogous to Cayley graphs.

How can we do on bi-Cayley graph?

The bi-Cayley graphs are quite analogous to Cayley graphs.
Hopefully, we may develop some similar theory about the symmetry of bi-Cayley graphs.

How can we do on bi-Cayley graph?

The bi-Cayley graphs are quite analogous to Cayley graphs.
Hopefully, we may develop some similar theory about the symmetry of bi-Cayley graphs.

The first natural step is to determine the normalizer of the group $\mathcal{R}(H)$ in $\operatorname{Aut}(\Gamma)$, where Γ is a bi-Cayley graph of the group H.

Bi-regular representation

Let $\Gamma=\operatorname{BiCay}(H, R, L, S)$ be a bi-Cayley graph

- vertex set: the union $H_{0} \cup H_{1}$ of two copies of H, and
- edges: of the form $\left\{h_{0},(x h)_{0}\right\},\left\{h_{1},(y h)_{1}\right\}$ and $\left\{h_{0},(z h)_{1}\right\}$ with $x \in R, y \in L$ and $z \in S$, and $h_{0} \in H_{0}, h_{1} \in H_{1}$ representing a given $h \in H$.

For each $g \in H$, let

$$
\mathcal{R}(g): h_{i} \mapsto(h g)_{i}, \forall i \in \mathbb{Z}_{2}, h, g \in H
$$

Then

$$
\mathcal{R}(H)=\{\mathcal{R}(g) \mid g \in H\}
$$

is a group of automorphisms of $\operatorname{BiCay}(H, R, L, S)$ acting semiregularly on its vertices with two orbits.

Normalizer of $\mathcal{R}(H)$

Normalizer of $\mathcal{R}(H)$

A natural problem is: Determine the normalizer of $\mathcal{R}(H)$ in Aut(Г).

Normalizer of $\mathcal{R}(H)$

A natural problem is: Determine the normalizer of $\mathcal{R}(H)$ in Aut(Г).

In 2003, Lu dealt with the case when $R=L=\emptyset$ in the following paper:

Normalizer of $\mathcal{R}(H)$

A natural problem is: Determine the normalizer of $\mathcal{R}(H)$ in Aut(Г).

In 2003, Lu dealt with the case when $R=L=\emptyset$ in the following paper:
Z.P. Lu, On the automorphism groups of bi-Cayley graphs, Acta Scientiarum Naturalium, Universitatis Pekinesis 39 (2003) 1-5.

Normalizer of $\mathcal{R}(H)$

A natural problem is: Determine the normalizer of $\mathcal{R}(H)$ in Aut(Г).

In 2003, Lu dealt with the case when $R=L=\emptyset$ in the following paper:
Z.P. Lu, On the automorphism groups of bi-Cayley graphs, Acta Scientiarum Naturalium, Universitatis Pekinesis 39 (2003) 1-5.

We will give a solution of this problem.

Normalizer of $\mathcal{R}(H)$

For $\alpha \in \operatorname{Aut}(H)$ and $x, y, g \in H$, define two permutations of $V(\Gamma)=H_{0} \cup H_{1}$ as follows:

Normalizer of $\mathcal{R}(H)$

For $\alpha \in \operatorname{Aut}(H)$ and $x, y, g \in H$, define two permutations of $V(\Gamma)=H_{0} \cup H_{1}$ as follows:

$$
\begin{aligned}
\delta_{\alpha, x, y} & : h_{0} \mapsto\left(x h^{\alpha}\right)_{1}, h_{1} \mapsto\left(y h^{\alpha}\right)_{0}, \forall h \in H, \\
\sigma_{\alpha, g} & : h_{0} \mapsto\left(h^{\alpha}\right)_{0}, h_{1} \mapsto\left(g h^{\alpha}\right)_{1}, \forall h \in H .
\end{aligned}
$$

Normalizer of $\mathcal{R}(H)$

For $\alpha \in \operatorname{Aut}(H)$ and $x, y, g \in H$, define two permutations of $V(\Gamma)=H_{0} \cup H_{1}$ as follows:

$$
\begin{aligned}
\delta_{\alpha, x, y} & : h_{0} \mapsto\left(x h^{\alpha}\right)_{1}, h_{1} \mapsto\left(y h^{\alpha}\right)_{0}, \forall h \in H, \\
\sigma_{\alpha, g} & : h_{0} \mapsto\left(h^{\alpha}\right)_{0}, h_{1} \mapsto\left(g h^{\alpha}\right)_{1}, \forall h \in H .
\end{aligned}
$$

Set

Normalizer of $\mathcal{R}(H)$

For $\alpha \in \operatorname{Aut}(H)$ and $x, y, g \in H$, define two permutations of $V(\Gamma)=H_{0} \cup H_{1}$ as follows:

$$
\begin{aligned}
\delta_{\alpha, x, y} & : h_{0} \mapsto\left(x h^{\alpha}\right)_{1}, h_{1} \mapsto\left(y h^{\alpha}\right)_{0}, \forall h \in H, \\
\sigma_{\alpha, g} & : h_{0} \mapsto\left(h^{\alpha}\right)_{0}, h_{1} \mapsto\left(g h^{\alpha}\right)_{1}, \forall h \in H .
\end{aligned}
$$

Set

$$
\begin{aligned}
& I=\left\{\delta_{\alpha, x, y} \mid \alpha \in \operatorname{Aut}(H) \text { s.t. } \mathbf{R}^{\alpha}=\mathbf{x}^{-1} \mathbf{L x}, \mathbf{L}^{\alpha}=\mathbf{y}^{-1} \mathbf{R y}, \mathbf{S}^{\alpha}=\mathbf{y}^{-1} \mathbf{S}^{-1} \mathbf{x}\right\}, \\
& F=\left\{\sigma_{\alpha, g} \mid \alpha \in \operatorname{Aut}(H) \text { s.t. } \mathbf{R}^{\alpha}=\mathbf{R}, \mathbf{L}^{\alpha}=\mathbf{g}^{-1} \mathbf{L g}, \mathbf{S}^{\alpha}=\mathbf{g}^{-1} \mathbf{S}\right\} .
\end{aligned}
$$

Normalizer of $\mathcal{R}(H)$

Normalizer of $\mathcal{R}(H)$

Theorem 1 (Z. \& Feng, JCTB, 2016)

Let $\Gamma=\operatorname{BiCay}(H, R, L, S)$ be a connected bi-Cayley graph over the group H. Then

- $N_{\text {Aut(} \Gamma)}(\mathcal{R}(H))=\mathcal{R}(H) \rtimes F$ if $I=\emptyset$,
- $N_{\text {Aut(}(\Gamma)}(\mathcal{R}(H))=\mathcal{R}(H)\left\langle F, \delta_{\alpha, x, y}\right\rangle$ if $I \neq \emptyset$ and $\delta_{\alpha, x, y} \in I$.

Normalizer of $\mathcal{R}(H)$

Theorem 1 (Z. \& Feng, JCTB, 2016)

Let $\Gamma=\operatorname{BiCay}(H, R, L, S)$ be a connected bi-Cayley graph over the group H. Then

- $N_{\text {Aut(} \Gamma)}(\mathcal{R}(H))=\mathcal{R}(H) \rtimes F$ if $I=\emptyset$,
- $N_{\text {Aut(}(\Gamma)}(\mathcal{R}(H))=\mathcal{R}(H)\left\langle F, \delta_{\alpha, x, y}\right\rangle$ if $I \neq \emptyset$ and $\delta_{\alpha, x, y} \in I$.

If $N_{\text {Aut }(\Gamma)}(\mathcal{R}(H))=\operatorname{Aut}(\Gamma)$, then Γ is called a normal bi-Cayley graph over H.

Petersen graph has a solvable VT group of automorphisms

Petersen graph $P(5,2)=\operatorname{BiCay}\left(\mathbb{Z}_{5},\{1,4\},\{2,3\},\{0\}\right)$.

Petersen graph has a solvable VT group of automorphisms

Petersen graph $P(5,2)=\operatorname{BiCay}\left(\mathbb{Z}_{5},\{1,4\},\{2,3\},\{0\}\right)$.
Let $H=\mathbb{Z}_{5}$. Then $\mathcal{R}(1)=\left(0_{0}, 1_{0}, 2_{0}, 3_{0}, 4_{0}\right)\left(0_{1}, 1_{1}, 2_{1}, 3_{1}, 4_{1}\right)$, and so $\mathcal{R}(H)=\langle\mathcal{R}(1)\rangle$.

Petersen graph has a solvable VT group of automorphisms

Petersen graph $P(5,2)=\operatorname{BiCay}\left(\mathbb{Z}_{5},\{1,4\},\{2,3\},\{0\}\right)$.
Let $H=\mathbb{Z}_{5}$. Then $\mathcal{R}(1)=\left(0_{0}, 1_{0}, 2_{0}, 3_{0}, 4_{0}\right)\left(0_{1}, 1_{1}, 2_{1}, 3_{1}, 4_{1}\right)$, and so $\mathcal{R}(H)=\langle\mathcal{R}(1)\rangle$.

Let $\alpha \in \operatorname{Aut}(H)$ be such that $\alpha(1)=2$. Then α swaps $\{2,3\}$ and $\{1,4\}$. So $\delta_{\alpha, 1,1}$ is an automorphism of $P(5,2)$ which interchanges H_{0} and H_{1} and normalizes $\mathcal{R}(H)$.

Petersen graph has a solvable VT group of automorphisms

Petersen graph $P(5,2)=\operatorname{BiCay}\left(\mathbb{Z}_{5},\{1,4\},\{2,3\},\{0\}\right)$.
Let $H=\mathbb{Z}_{5}$. Then $\mathcal{R}(1)=\left(0_{0}, 1_{0}, 2_{0}, 3_{0}, 4_{0}\right)\left(0_{1}, 1_{1}, 2_{1}, 3_{1}, 4_{1}\right)$, and so $\mathcal{R}(H)=\langle\mathcal{R}(1)\rangle$.

Let $\alpha \in \operatorname{Aut}(H)$ be such that $\alpha(1)=2$. Then α swaps $\{2,3\}$ and $\{1,4\}$. So $\delta_{\alpha, 1,1}$ is an automorphism of $P(5,2)$ which interchanges H_{0} and H_{1} and normalizes $\mathcal{R}(H)$.

So $\mathcal{R}(H) \rtimes\left\langle\delta_{\alpha, 1,1}\right\rangle \cong \mathbb{Z}_{5} \rtimes \mathbb{Z}_{4}$ is vertex transitive on $P(5,2)$.

Basic properties of $N_{\text {Aut(Г) }}(\mathcal{R}(H))$

Let $X=N_{\text {Aut }(\Gamma)}(\mathcal{R}(H))$. Note that

$$
X_{1_{0} 1_{1}}=\left\langle\sigma_{\alpha, 1} \mid \alpha \in \operatorname{Aut}(H), S^{\alpha}=S\right\rangle .
$$

Basic properties of $N_{\text {Aut(r) }}(\mathcal{R}(H))$

Let $X=N_{\text {Aut(Г) }}(\mathcal{R}(H))$. Note that

$$
X_{1_{0} 1_{1}}=\left\langle\sigma_{\alpha, 1} \mid \alpha \in \operatorname{Aut}(H), S^{\alpha}=S\right\rangle .
$$

Lemma 2

Let $\Gamma=\operatorname{BiCay}(H, \emptyset, \emptyset, S)$ be a connected bi-Cayley graph over a group H, with $1_{H} \in S$. Let $X=N_{\text {Aut(}()}(\mathcal{R}(H))$. Then X_{v} acts faithfully on the neighborhood of v.

s-arc-transitive graphs

Let $\Gamma=(V, E)$ be a graph.

s-arc-transitive graphs

Let $\Gamma=(V, E)$ be a graph.
s-arc: a path $\left(v_{0}, v_{1}, \cdots, v_{s-1}, v_{s}\right)$ of length s s.t. $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s-1$

s-arc-transitive graphs

Let $\Gamma=(V, E)$ be a graph.
s-arc: a path $\left(v_{0}, v_{1}, \cdots, v_{s-1}, v_{s}\right)$ of length s s.t. $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s-1$
Γ is s-arc-transitive: $\operatorname{Aut}(\Gamma)$ is transitive on s-arcs.

Normal bi-Cayley graphs are at most 2-arc-transitive

Normal bi-Cayley graphs are at most 2-arc-transitive

Theorem 3 (Conder, Z., Feng \& Zhang, JCTB, 2020)

Let $\Gamma=\operatorname{BiCay}(H, \emptyset, \emptyset, S)$ be a connected bi-Cayley graph over a group H, with $1_{H} \in S$. Then $N_{\text {Aut(} \Gamma)}(\mathcal{R}(H))$ acts transitively on the 2 -arcs of Γ if and only if the following three conditions hold:
(a) there exists an automorphism α of H such that $S^{\alpha}=S^{-1}$,
(b) the setwise stabilizer of S in $\operatorname{Aut}(H)$ is transitive on $S \backslash\left\{1_{H}\right\}$, and
(c) there exists $s \in S \backslash\left\{1_{H}\right\}$ and an automorphism β of H such that $S^{\beta}=s^{-1} S$.

Furthermore, $N_{\text {Aut(Г) }}(\mathcal{R}(H))$ is not transitive on the $3-\operatorname{arcs}$ of Γ.

Normal bi-Cayley graphs are at most 2-arc-transitive

Theorem 3 (Conder, Z., Feng \& Zhang, JCTB, 2020)

Let $\Gamma=\operatorname{BiCay}(H, \emptyset, \emptyset, S)$ be a connected bi-Cayley graph over a group H, with $1_{H} \in S$. Then $N_{\text {Aut(} \Gamma)}(\mathcal{R}(H))$ acts transitively on the 2 -arcs of Γ if and only if the following three conditions hold:
(a) there exists an automorphism α of H such that $S^{\alpha}=S^{-1}$,
(b) the setwise stabilizer of S in $\operatorname{Aut}(H)$ is transitive on $S \backslash\left\{1_{H}\right\}$, and
(c) there exists $s \in S \backslash\left\{1_{H}\right\}$ and an automorphism β of H such that $S^{\beta}=s^{-1} S$.

Furthermore, $N_{\text {Aut(Г) }}(\mathcal{R}(H))$ is not transitive on the 3-arcs of Γ.

So, a normal bi-Cayley graph is at most 2-arc-transitive.

Normal bi-Cayley graphs are at most 2-arc-transitive

This gives a solution to the following problem raised by Cai Heng Li in 2005.

Normal bi-Cayley graphs are at most 2-arc-transitive

This gives a solution to the following problem raised by Cai Heng Li in 2005.

Let $\Gamma=\operatorname{Cay}(G, S)$ be a Cayley graph on a group G.

Normal bi-Cayley graphs are at most 2-arc-transitive

This gives a solution to the following problem raised by Cai Heng Li in 2005.

Let $\Gamma=\operatorname{Cay}(G, S)$ be a Cayley graph on a group G.
Then Γ is said to be bi-normal if the maximal normal subgroup $\bigcap_{x \in \operatorname{Aut}(\Gamma)} R(G)^{x}$ of $\operatorname{Aut}(\Gamma)$ contained in $R(G)$ has index 2 in $R(G)$.

Normal bi-Cayley graphs are at most 2-arc-transitive

This gives a solution to the following problem raised by Cai Heng Li in 2005.

Let $\Gamma=\operatorname{Cay}(G, S)$ be a Cayley graph on a group G.
Then Γ is said to be bi-normal if the maximal normal subgroup $\bigcap_{x \in \operatorname{Aut}(\Gamma)} R(G)^{x}$ of $\operatorname{Aut}(\Gamma)$ contained in $R(G)$ has index 2 in $R(G)$.

Problem A (C.H. Li, Proc. of AMC, 2005)

- Do there exist 3-arc-transitive bi-normal Cayley graphs?
- Give a good description of 2-arc-transitive bi-normal Cayley graphs.

Normal bi-Cayley graphs are at most 2-arc-transitive

This gives a solution to the following problem raised by Cai Heng Li in 2005.

Let $\Gamma=\operatorname{Cay}(G, S)$ be a Cayley graph on a group G.
Then Γ is said to be bi-normal if the maximal normal subgroup $\bigcap_{x \in \operatorname{Aut}(\Gamma)} R(G)^{x}$ of $\operatorname{Aut}(\Gamma)$ contained in $R(G)$ has index 2 in $R(G)$.

Problem A (C.H. Li, Proc. of AMC, 2005)

- Do there exist 3-arc-transitive bi-normal Cayley graphs?
- Give a good description of 2-arc-transitive bi-normal Cayley graphs.

Clearly, every bi-normal Cayley graph is a normal bi-Cayley graph.

A question

Both Petersen graph and Hoffman-Singleton graph:

A question

Both Petersen graph and Hoffman-Singleton graph:

- are not bipartite and

A question

Both Petersen graph and Hoffman-Singleton graph:

- are not bipartite and
- have a vertex-transitive group of automorphisms which is solvable.

A question

Both Petersen graph and Hoffman-Singleton graph:

- are not bipartite and
- have a vertex-transitive group of automorphisms which is solvable.

Problem A

What can we say about non-bipartite s-arc-transitive graphs which have a vertex-transitive solvable group of automorphisms?

A question

Both Petersen graph and Hoffman-Singleton graph:

- are not bipartite and
- have a vertex-transitive group of automorphisms which is solvable.

Problem A

What can we say about non-bipartite s-arc-transitive graphs which have a vertex-transitive solvable group of automorphisms?

Li and Xia (Mem. Amer. Math. Soc. 2021+) have made a significant progress towards this problem.

Let Γ be a (G, s)-arc-transitive graph with $G \leq \operatorname{Aut}(\Gamma)$ and $s \geq 2$, and let N be a normal subgroup of G.

Let Γ be a (G, s)-arc-transitive graph with $G \leq \operatorname{Aut}(\Gamma)$ and $s \geq 2$, and let N be a normal subgroup of G.

The quotient graph Γ_{N} of Γ relative to N is defined as the graph with vertices the orbits of N on $V(\Gamma)$ and with two different orbits adjacent if there exists an edge in Γ between the vertices lying in those two orbits.

Let Γ be a (G, s)-arc-transitive graph with $G \leq \operatorname{Aut}(\Gamma)$ and $s \geq 2$, and let N be a normal subgroup of G.

The quotient graph Γ_{N} of Γ relative to N is defined as the graph with vertices the orbits of N on $V(\Gamma)$ and with two different orbits adjacent if there exists an edge in Γ between the vertices lying in those two orbits.

If Γ_{N} and Γ have the same valency, then we say that Γ is a normal cover of Γ_{N}.

Let Γ be a (G, s)-arc-transitive graph with $G \leq \operatorname{Aut}(\Gamma)$ and $s \geq 2$, and let N be a normal subgroup of G.

The quotient graph Γ_{N} of Γ relative to N is defined as the graph with vertices the orbits of N on $V(\Gamma)$ and with two different orbits adjacent if there exists an edge in Γ between the vertices lying in those two orbits.

If Γ_{N} and Γ have the same valency, then we say that Γ is a normal cover of Γ_{N}.

Theorem 4 (Li \& Xia, Mem. Amer. Math. Soc. to appear)

A connected non-bipartite 3-arc-transitive Cayley graph on a solvable group of valency at least three is a normal cover of the Petersen graph or the Hoffman-Singleton graph.

No non-bipartite 3-arc-transitive solvable Cayley graph

No non-bipartite 3-arc-transitive solvable Cayley graph

Recall that both Petersen graph and Hoffman-Singleton graph are bi-Cayley graphs.

No non-bipartite 3-arc-transitive solvable Cayley graph

Recall that both Petersen graph and Hoffman-Singleton graph are bi-Cayley graphs.

Using this fact, together with some other methods, we prove the following:

No non-bipartite 3-arc-transitive solvable Cayley graph

Recall that both Petersen graph and Hoffman-Singleton graph are bi-Cayley graphs.

Using this fact, together with some other methods, we prove the following:

Theorem 5 (Z. JCTB, 2021)

Every connected non-bipartite Cayley graph on a solvable group of valency at least three is at most 2-arc-transitive.

When is a bi-Cayley graph normal?

When is a bi-Cayley graph normal?

Empirical evidence: Normal cases seem 'common' among edge-transitive bi-Cayley graphs.

When is a bi-Cayley graph normal?

Empirical evidence: Normal cases seem 'common’ among edge-transitive bi-Cayley graphs.

Let p be a prime and let Γ be a connected bi-Cayley graph over a non-abelian metacyclic p-group H.

When is a bi-Cayley graph normal?

Empirical evidence: Normal cases seem 'common' among edge-transitive bi-Cayley graphs.

Let p be a prime and let Γ be a connected bi-Cayley graph over a non-abelian metacyclic p-group H.

If Γ is cubic edge-transitive, then $p=3$ and Γ is either the Gray graph or a normal bi-Cayley graph over H (Qin., Z., EleJC, 2018).

When is a bi-Cayley graph normal?

Empirical evidence: Normal cases seem 'common’ among edge-transitive bi-Cayley graphs.

Let p be a prime and let Γ be a connected bi-Cayley graph over a non-abelian metacyclic p-group H.

If Γ is cubic edge-transitive, then $p=3$ and Γ is either the Gray graph or a normal bi-Cayley graph over H (Qin., Z., EleJC, 2018).

If $p>3$ and Γ is tetravalent, vertex- and edge-transitive, then Γ is a normal bi-Cayley graph over H (Conder, Z., Feng, Zhang, JCTB, 2020).

When is a bi-Cayley graph normal?

Empirical evidence: Normal cases seem 'common’ among edge-transitive bi-Cayley graphs.

Let p be a prime and let Γ be a connected bi-Cayley graph over a non-abelian metacyclic p-group H.

If Γ is cubic edge-transitive, then $p=3$ and Γ is either the Gray graph or a normal bi-Cayley graph over H (Qin., Z., EleJC, 2018).

If $p>3$ and Γ is tetravalent, vertex- and edge-transitive, then Γ is a normal bi-Cayley graph over H (Conder, Z., Feng, Zhang, JCTB, 2020).

If Γ is bipartite and $\mathcal{R}(H)$ is a Sylow p-subgroup of $\operatorname{Aut}(\Gamma)$, then Γ is a normal bi-Cayley graph over H (Feng, Wang, ARS Math. Contemp. 2019).

When is a bi-Cayley graph normal?

When is a bi-Cayley graph normal?

Every connected cubic edge-transitive graph of order a 2-power is a normal bi-Cayley graph of a 2-group H (Z., Feng, JCTB, 2016).

When is a bi-Cayley graph normal?

Every connected cubic edge-transitive graph of order a 2-power is a normal bi-Cayley graph of a 2-group H (Z., Feng, JCTB, 2016).

Let p be a prime. Every cubic edge-transitive bi-Cayley graph over an inner-abelian p-group H is normal (Qin., Z, Comm. Algebra, 2019).

When is a bi-Cayley graph normal?

Every connected cubic edge-transitive graph of order a 2-power is a normal bi-Cayley graph of a 2-group H (Z., Feng, JCTB, 2016).

Let p be a prime. Every cubic edge-transitive bi-Cayley graph over an inner-abelian p-group H is normal (Qin., Z, Comm. Algebra, 2019).

Recently, Li, Zhang, Z. investigated the bi-primitive s-arc-transitive bi-partite bi-Cayley graphs, and obtain the following:

When is a bi-Cayley graph normal?

When is a bi-Cayley graph normal?

Theorem 6 (Li, Zhang, Z., 2021+)

Let Γ be a bi-primitive s-arc-transitive bi-partite bi-Cayley graph over a group H with $s \geq 2$. Then either $\operatorname{Aut}(\Gamma)^{+}$is of PA-type, or one of the following holds:
(1) Γ is a normal bi-Cayley graph;
(2) $\Gamma \cong K_{n, n}$;
(3) Γ is the standard double cover of K_{n} or a vertex-primitive s-arc-transitive graph [1];
(4) $\Gamma \cong H P(n-1, q), \overline{H P(n-1, q)}(n \geq 3), G(22,5)$ or $B^{\prime}(H(11))$ (see [2]);
(5) Γ is one of the six sporadic graphs.

When is a bi-Cayley graph normal?

Theorem 6 (Li, Zhang, Z., 2021+)

Let Γ be a bi-primitive s-arc-transitive bi-partite bi-Cayley graph over a group H with $s \geq 2$. Then either $\operatorname{Aut}(\Gamma)^{+}$is of PA-type, or one of the following holds:
(1) Γ is a normal bi-Cayley graph;
(2) $\Gamma \cong K_{n, n}$;
(3) Γ is the standard double cover of K_{n} or a vertex-primitive s-arc-transitive graph [1];
(4) $\Gamma \cong H P(n-1, q), \overline{H P(n-1, q)}(n \geq 3), G(22,5)$ or $B^{\prime}(H(11))$ (see [2]);
(5) Γ is one of the six sporadic graphs.

1. J.J. Li, J. Yang, W.Y. Zhu, Vertex primitive s-transitive Cayley graphs, Discrete Math. 343 (2020) 1-6.

When is a bi-Cayley graph normal?

Theorem 6 (Li, Zhang, Z., 2021+)

Let Γ be a bi-primitive s-arc-transitive bi-partite bi-Cayley graph over a group H with $s \geq 2$. Then either $\operatorname{Aut}(\Gamma)^{+}$is of PA-type, or one of the following holds:
(1) Γ is a normal bi-Cayley graph;
(2) $\Gamma \cong K_{n, n}$;
(3) Γ is the standard double cover of K_{n} or a vertex-primitive s-arc-transitive graph [1];
(4) $\Gamma \cong H P(n-1, q), \overline{H P(n-1, q)}(n \geq 3), G(22,5)$ or $B^{\prime}(H(11))$ (see [2]);
(5) Γ is one of the six sporadic graphs.

1. J.J. Li, J. Yang, W.Y. Zhu, Vertex primitive s-transitive Cayley graphs, Discrete Math. 343 (2020) 1-6.
2. Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Comb. Theory, Ser. B 42 (1987) 196-211.

Led to construction and classification of graphs

As applications of the above results, we obtain that

Led to construction and classification of graphs

As applications of the above results, we obtain that
Classification of cubic edge-transitive bi-Cayley graphs over a metacyclic p-group H (Qin., Z., Ars Math. Contemp. 2019)

Led to construction and classification of graphs

As applications of the above results, we obtain that
Classification of cubic edge-transitive bi-Cayley graphs over a metacyclic p-group H (Qin., Z., Ars Math. Contemp. 2019)

Classification of tetravalent half-arc-transitive bi-Cayley graphs over a metacyclic p-group H with $p>2$ (Zhang, Z., J. Graph Theory 2019)

Led to construction and classification of graphs

As applications of the above results, we obtain that
Classification of cubic edge-transitive bi-Cayley graphs over a metacyclic p-group H (Qin., Z., Ars Math. Contemp. 2019)

Classification of tetravalent half-arc-transitive bi-Cayley graphs over a metacyclic p-group H with p>2 (Zhang, Z., J. Graph Theory 2019)

Classification of cubic edge-transitive bi-Cayley graphs over inner-abelian p-groups with $p>2$ (Qin., Z, Comm. Algebra, 2019)

Led to construction and classification of graphs

As applications of the above results, we obtain that
Classification of cubic edge-transitive bi-Cayley graphs over a metacyclic p-group H (Qin., Z., Ars Math. Contemp. 2019)

Classification of tetravalent half-arc-transitive bi-Cayley graphs over a metacyclic p-group H with p>2 (Zhang, Z., J. Graph Theory 2019)

Classification of cubic edge-transitive bi-Cayley graphs over inner-abelian p-groups with $p>2$ (Qin., Z, Comm. Algebra, 2019)

Construction of cubic 1-arc-regular non-normal Cayley graph of order a 2-power (Z., Feng, JCTB, 2016)

Led to construction and classification of graphs

As applications of the above results, we obtain that
Classification of cubic edge-transitive bi-Cayley graphs over a metacyclic p-group H (Qin., Z., Ars Math. Contemp. 2019)

Classification of tetravalent half-arc-transitive bi-Cayley graphs over a metacyclic p-group H with p>2 (Zhang, Z., J. Graph Theory 2019)

Classification of cubic edge-transitive bi-Cayley graphs over inner-abelian p-groups with $p>2$ (Qin., Z, Comm. Algebra, 2019)

Construction of cubic 1-arc-regular non-normal Cayley graph of order a 2-power (Z., Feng, JCTB, 2016)

Normal-edge-transitive bi-Cayley graph

Normal-edge-transitive bi-Cayley graph

In 1999, Praeger [Bull. Austral. Math. Soc. 60 (1999) 207-220] introduced the concept of normal-edge-transitive Cayley graph.

Normal-edge-transitive bi-Cayley graph

In 1999, Praeger [Bull. Austral. Math. Soc. 60 (1999) 207-220] introduced the concept of normal-edge-transitive Cayley graph.

Follow on this, we say that $\Gamma=\operatorname{BiCay}(H, R, L, S)$ is normal-edge-transitive if $N_{\text {Aut(Г) }}(\mathcal{R}(H))$ is transitive on the edges of Γ.

Normal-edge-transitive bi-Cayley graph

In 1999, Praeger [Bull. Austral. Math. Soc. 60 (1999) 207-220] introduced the concept of normal-edge-transitive Cayley graph.

Follow on this, we say that $\Gamma=\operatorname{BiCay}(H, R, L, S)$ is normal-edge-transitive if $N_{\text {Aut(Г) }}(\mathcal{R}(H))$ is transitive on the edges of Γ.

Theorem 7 [Z. \& Feng, 2016]

Let Γ be a connected cubic edge-transitive bi-Cayley graph $\operatorname{BiCay}(H, \emptyset, \emptyset, S)$ over a 2-group H. Then Γ is normal if and only if Γ is normal-edge-transitive.

A class of cubic edge-transitive graphs

Let $n \geq 2$ be a positive integer, and let $\mathcal{G}(n)=\langle a, b, c, d, e, x, y\rangle$ with the following relations:

$$
\begin{array}{r}
a^{2^{n}}=b^{2^{n}}=c^{4}=d^{2}=e^{2}=x^{2}=y^{2}=1, \\
c=[a, b], d=[a, c], e=[b, c], x=[c, d], y=[c, e], \\
{[e, d]=[x, a]=[x, b]=[y, a]=[y, b]=1,} \tag{1}\\
d^{a}=y d, e^{a}=c^{2} e, d^{b}=x y c^{2} d, e^{b}=x y e
\end{array}
$$

A class of cubic edge-transitive graphs

Let $n \geq 2$ be a positive integer, and let $\mathcal{G}(n)=\langle a, b, c, d, e, x, y\rangle$ with the following relations:

$$
\begin{array}{r}
a^{2^{n}}=b^{2^{n}}=c^{4}=d^{2}=e^{2}=x^{2}=y^{2}=1, \\
c=[a, b], d=[a, c], e=[b, c], x=[c, d], y=[c, e], \\
{[e, d]=[x, a]=[x, b]=[y, a]=[y, b]=1,} \tag{1}\\
d^{a}=y d, e^{a}=c^{2} e, d^{b}=x y c^{2} d, e^{b}=x y e .
\end{array}
$$

Theorem 8 (Z. \& Feng, JCTB, 2016)

Let $\Gamma=\operatorname{BiCay}(\mathcal{G}(n), \emptyset, \emptyset,\{1, a, b\})$. Then Γ is a connected cubic 1 -arc-regular normal bi-Cayley graph over $\mathcal{G}(n)$. Furthermore, there exists $\delta \in \operatorname{Aut}(\mathcal{G}(n))$ such that $a^{\delta}=b^{-1}$ and $b^{\delta}=a^{-1}$, and $\Gamma \cong \operatorname{Cay}(G, T)$ is a non-normal Cayley graph on G, where $G=\mathcal{G}(n) \rtimes\langle\delta\rangle$ and $T=\{\delta, \delta a, \delta b\}$.

Led to solution of Godsil's problem

Led to solution of Godsil's problem

Problem B (Godsil, EJC, 1983)

Suppose that $\Gamma=\operatorname{Cay}(G, S)$ is a cubic Cayley graph for the 2 -group G and let $A=\operatorname{Aut}(\Gamma)$. Is it true that if $\left|A_{1}\right| \neq 1$ then $\operatorname{Aut}(G, S)$ is non-trivial?

Led to solution of Godsil's problem

Problem B (Godsil, EJC, 1983)

Suppose that $\Gamma=\operatorname{Cay}(G, S)$ is a cubic Cayley graph for the 2 -group G and let $A=\operatorname{Aut}(\Gamma)$. Is it true that if $\left|A_{1}\right| \neq 1$ then $\operatorname{Aut}(G, S)$ is non-trivial?

The answer is 'yes' if $2\left|\left|A_{1}\right|\right.$.

Led to solution of Godsil's problem

Problem B (Godsil, EJC, 1983)

Suppose that $\Gamma=\operatorname{Cay}(G, S)$ is a cubic Cayley graph for the 2 -group G and let $A=\operatorname{Aut}(\Gamma)$. Is it true that if $\left|A_{1}\right| \neq 1$ then $\operatorname{Aut}(G, S)$ is non-trivial?

The answer is 'yes' if $2\left|\left|A_{1}\right|\right.$.
However, if $2 \nmid\left|A_{1}\right|$, then there exist 1-arc-regular normal bi-Cayley graphs over 2-groups which are non-normal Cayley graphs.

Normal-edge-transitive bi-dihedrants

Let n and k be integers with $n \geq 5$ and $k \geq 2$, such that there exists an element λ of order $2 k$ in \mathbb{Z}_{n}^{*} such that

$$
1+\lambda^{2}+\lambda^{4}+\cdots+\lambda^{2(k-2)}+\lambda^{2(k-1)} \equiv 0 \bmod n .
$$

Now let $H=D_{2 n}=\left\langle a, b \mid a^{n}=b^{2}=(a b)^{2}=1\right\rangle$, and for each $i \in \mathbb{Z}_{k}$, let

$$
\begin{aligned}
c_{i} & =1+\lambda^{2}+\lambda^{4}+\cdots+\lambda^{2(i-1)}+\lambda^{2 i} \\
d_{i} & =\lambda c_{i}=\lambda+\lambda^{3}+\lambda^{5}+\cdots+\lambda^{2 i-1}+\lambda^{2 i+1}
\end{aligned}
$$

and then define $\Gamma(n, \lambda, 2 k)$ as the $2 k$-valent bi-Cayley graph $\operatorname{BiCay}(H, \emptyset, \emptyset, S)$ over H, where

$$
S=S(n, \lambda, 2 k)=\left\{a^{c_{i}}: i \in \mathbb{Z}_{k}\right\} \cup\left\{b a^{d_{i}}: i \in \mathbb{Z}_{k}\right\} .
$$

Normal-edge-transitive bi-dihedrants

Let α be the automorphism of H that takes (a, b) to $\left(a^{\lambda}, b a\right)$.

Normal-edge-transitive bi-dihedrants

Let α be the automorphism of H that takes (a, b) to $\left(a^{\lambda}, b a\right)$.
Then $\sigma_{\alpha, b}$ is an automorphism of $\Gamma(n, \lambda, 2 k)$ that fixes the vertex 1_{0} and cyclically permutes the $2 k$ neighbours of 1_{0}.

Normal-edge-transitive bi-dihedrants

Let α be the automorphism of H that takes (a, b) to ($a^{\lambda}, b a$).
Then $\sigma_{\alpha, b}$ is an automorphism of $\Gamma(n, \lambda, 2 k)$ that fixes the vertex 1_{0} and cyclically permutes the $2 k$ neighbours of 1_{0}.
$\Gamma(n, \lambda, 2 k)$ is normal-edge-transitive.

Normal-edge-transitive bi-dihedrants

Problem C(Conder, Z., Feng \& Zhang, 2020)

Determine which of the graphs $\Gamma(n, \lambda, 2 k)$ are semisymmetric.

Normal-edge-transitive bi-dihedrants

Problem C(Conder, Z., Feng \& Zhang, 2020)

Determine which of the graphs $\Gamma(n, \lambda, 2 k)$ are semisymmetric.

Proposition 9(Conder, Z., Feng \& Zhang, 2020)

If k is even and $\lambda^{k} \equiv-1 \bmod n$, then $\Gamma(n, \lambda, 2 k)$ is arc-transitive.

Normal-edge-transitive bi-dihedrants

Problem C(Conder, Z., Feng \& Zhang, 2020)

Determine which of the graphs $\Gamma(n, \lambda, 2 k)$ are semisymmetric.

Proposition 9(Conder, Z., Feng \& Zhang, 2020)

If k is even and $\lambda^{k} \equiv-1 \bmod n$, then $\Gamma(n, \lambda, 2 k)$ is arc-transitive.

Proposition 10(Conder, Z., Feng \& Zhang, 2020)

If k is odd and $\lambda^{k} \equiv-1 \bmod n$, then $\Gamma(n, \lambda, 2 k)$ is semisymmetric.

Normal-edge-transitive bi-dihedrants

Theorem 11(Conder, Z., Feng \& Zhang, 2020)

The graph $\Gamma(n, \lambda, 2 k)$ is semisymmetric whenever $k=3$, and moreover, if $k=3$ and $\lambda^{3} \not \equiv-1 \bmod n$, then $\Gamma(n, \lambda, 2 k)$ is edge-regular, with cyclic vertex-stabilizer.

Normal-edge-transitive bi-dihedrants

Theorem 11(Conder, Z., Feng \& Zhang, 2020)

The graph $\Gamma(n, \lambda, 2 k)$ is semisymmetric whenever $k=3$, and moreover, if $k=3$ and $\lambda^{3} \not \equiv-1 \bmod n$, then $\Gamma(n, \lambda, 2 k)$ is edge-regular, with cyclic vertex-stabilizer.

Conjecture D(Conder, Z., Feng \& Zhang, 2020)

$\Gamma(n, \lambda, 2 k)$ is arc-transitive if and only if k is even and $\lambda^{k} \equiv-1$ $\bmod n$.

Thanks!

