Convexity properties of the total isoperimetric profile

Giorgio Saracco

Scuola Internazionale Superiore di Studi Avanzati

gsaracco@sissa.it

June 22nd, 2021

8th European Congress of Mathematics, MS58

The isoperimetric profile

Given an open, bounded set $\Omega \subset \mathbb{R}^n$, the isoperimetric profile \mathcal{J} is

```
\mathcal{J}: V \mapsto \inf\{P(E) : E \subset \Omega, |E| = V\}
```

where $|\cdot|$ is the usual *n*-dimensional Lebesgue measure $\mathcal{L}^{n}(\cdot)$ and $P(\cdot)$ the variational perimeter (also known as Caccioppoli/De Giorgi perimeter).

```
Theorem (Leonardi, S. - forthcoming)
Let \Omega \subset \mathbb{R}^2 be in the class \mathcal{A} (\supset \mathcal{K}^2), and let R := inr(\Omega). Then,
\mathcal{J}(V) is concave on [0, \pi R^2],
\mathcal{J}(V) is convex on [\pi R^2, |\Omega|].
```

Moreover, $\mathcal{J}^2(V)$ is globally convex.

The isoperimetric profile

Given an open, bounded set $\Omega \subset \mathbb{R}^n,$ the isoperimetric profile $\mathcal J$ is

```
\mathcal{J}: V \mapsto \inf\{P(E) : E \subset \Omega, |E| = V\}
```

where $|\cdot|$ is the usual *n*-dimensional Lebesgue measure $\mathcal{L}^n(\cdot)$ and $P(\cdot)$ the variational perimeter (also known as Caccioppoli/De Giorgi perimeter).

Theorem (Leonardi, S. - forthcoming) Let $\Omega \subset \mathbb{R}^2$ be in the class $\mathcal{A} (\supset \mathcal{K}^2)$, and let $R := inr(\Omega)$. Then, $\mathcal{J}(V)$ is concave on $[0, \pi R^2]$, $\mathcal{J}(V)$ is convex on $[\pi R^2, |\Omega|]$.

Moreover, $\mathcal{J}^2(V)$ is globally convex.

Total and relative isoperimetric profiles

An important result [Kuwert (2003)] states that the square of the isoperimetric profile is concave (for $\Omega \in \mathcal{K}^2$). We claim it is convex.

What's the deal? Fact is, there are two different isoperimetric profiles.

The relative one

$$\mathcal{J}_{\mathsf{rel}}(V) = \inf_{\substack{E \subset \Omega \\ |E| = V}} \left\{ \begin{array}{c} P(E;\Omega) \end{array} \right\}$$

- $\mathcal{J}^2_{\mathrm{rel}}$ is concave;
- ∂E_m touches $\partial \Omega$ orthogonally;

The total one

$$\mathcal{J}_{\text{tot}}(V) = \inf_{\substack{E \subset \Omega \\ |E| = V}} \{ \begin{array}{c} P(E) \end{array} \}$$

• \mathcal{J}_{tot}^2 is convex;

• ∂E_m touches $\partial \Omega$ tangentially.

Total and relative isoperimetric profiles

An important result [Kuwert (2003)] states that the square of the isoperimetric profile is concave (for $\Omega \in \mathcal{K}^2$). We claim it is convex.

What's the deal? Fact is, there are two different isoperimetric profiles.

The relative one

$$\mathcal{J}_{\mathsf{rel}}(V) = \inf_{\substack{E \subset \Omega \\ |E| = V}} \left\{ \begin{array}{c} P(E;\Omega) \end{array} \right\}$$

- $\mathcal{J}^2_{\mathsf{rel}}$ is concave;
- ∂E_m touches $\partial \Omega$ orthogonally;

The total one

$$\mathcal{J}_{tot}(V) = \inf_{\substack{E \subset \Omega \\ |E| = V}} \{ P(E) \}$$

•
$$\mathcal{J}^2_{\text{tot}}$$
 is convex;

• ∂E_m touches $\partial \Omega$ tangentially.

Total and relative isoperimetric profiles

An important result [Kuwert (2003)] states that the square of the isoperimetric profile is concave (for $\Omega \in \mathcal{K}^2$). We claim it is convex.

What's the deal? Fact is, there are two different isoperimetric profiles.

The relative one

- $\mathcal{J}_{\mathsf{rel}}(V) = \inf_{\substack{E \subset \Omega \\ |E| = V}} \{ \begin{array}{c} P(E; \Omega) \end{array} \}$
- $\mathcal{J}^2_{\mathsf{rel}}$ is concave;
- ∂E_m touches $\partial \Omega$ orthogonally;

The total one

$$\mathcal{J}_{tot}(V) = \inf_{\substack{E \subset \Omega \\ |E| = V}} \{ \begin{array}{c} P(E) \end{array} \}$$

- \mathcal{J}^2_{tot} is convex;
- ∂E_m touches $\partial \Omega$ tangentially.

- for $V \leq \pi R^2$ isoperimetrics set are balls;
- for $V \in (\pi R^2, |\cup B_R|]$ isoperimetric sets are the suitable union of balls of radius R;
- for $V \in (|\cup B_R|, |\Omega|]$ there exists r < R s.t. the (unique) isoperimetric set is the union of all balls of radius r;

- for $V \leq \pi R^2$ isoperimetrics set are balls;
- for $V \in (\pi R^2, |\cup B_R|]$ isoperimetric sets are the suitable union of balls of radius R;
- for $V \in (|\cup B_R|, |\Omega|]$ there exists r < R s.t. the (unique) isoperimetric set is the union of all balls of radius r;

- for $V \leq \pi R^2$ isoperimetrics set are balls;
- for $V \in (\pi R^2, |\cup B_R|]$ isoperimetric sets are the suitable union of balls of radius R;
- for V ∈ (|∪B_R|, |Ω|] there exists r < R s.t. the (unique) isoperimetric set is the union of all balls of radius r;

- for $V \leq \pi R^2$ isoperimetrics set are balls;
- for $V \in (\pi R^2, |\cup B_R|]$ isoperimetric sets are the suitable union of balls of radius R;
- for $V \in (|\cup B_R|, |\Omega|]$ there exists r < R s.t. the (unique) isoperimetric set is the union of all balls of radius r;

- for $V \leq \pi R^2$ isoperimetrics set are balls;
- for $V \in (\pi R^2, |\cup B_R|]$ isoperimetric sets are the suitable union of balls of radius R;
- for V ∈ (|∪B_R|, |Ω|] there exists r < R s.t. the (unique) isoperimetric set is the union of all balls of radius r;

- for $V \leq \pi R^2$ isoperimetrics set are balls;
- for $V \in (\pi R^2, |\cup B_R|]$ isoperimetric sets are the suitable union of balls of radius R;
- for V ∈ (|∪B_R|, |Ω|] there exists r < R s.t. the (unique) isoperimetric set is the union of all balls of radius r;

- for $V \leq \pi R^2$ isoperimetrics set are balls;
- for $V \in (\pi R^2, |\cup B_R|]$ isoperimetric sets are the suitable union of balls of radius R;
- for V ∈ (|∪B_R|, |Ω|] there exists r < R s.t. the (unique) isoperimetric set is the union of all balls of radius r;

The class ${\cal A}$

We prove a similar structure for sets satisfying weaker hypotheses. We say that Ω belongs to the class ${\cal A}$ if it

- is a Jordan domain and $\partial \Omega$ has zero 2-Lebesgue measure;
- has no necks of radius r for all $r \leq R$.

Let $\Omega \in \mathcal{A}$. By [Leonardi, S. - forthcoming]

- for $V \leq \pi R^2$ isoperimetric sets are balls;
- for $V > \pi R^2$ there exists $r \le R$ s.t. isoperimetric sets are a suitable union of balls of radius r;
- what can happen at scale R for convex sets, now can happen at any scale $r \leq R$.

This happens for those r < R such that

Let $\Omega \in \mathcal{A}$. By [Leonardi, S. - forthcoming]

- for $V \leq \pi R^2$ isoperimetric sets are balls;
- for $V > \pi R^2$ there exists $r \le R$ s.t. isoperimetric sets are a suitable union of balls of radius r;
- what can happen at scale R for convex sets, now can happen at any scale $r \leq R$.

This happens for those r < R such that

Let $\Omega \in \mathcal{A}$. By [Leonardi, S. - forthcoming]

- for $V \leq \pi R^2$ isoperimetric sets are balls;
- for $V > \pi R^2$ there exists $r \le R$ s.t. isoperimetric sets are a suitable union of balls of radius r;
- what can happen at scale R for convex sets, now can happen at any scale $r \leq R$.

This happens for those r < R such that

Let $\Omega \in \mathcal{A}$. By [Leonardi, S. - forthcoming]

- for $V \leq \pi R^2$ isoperimetric sets are balls;
- for $V > \pi R^2$ there exists $r \le R$ s.t. isoperimetric sets are a suitable union of balls of radius r;
- what can happen at scale R for convex sets, now can happen at any scale $r \leq R$.

This happens for those r < R such that

Let $\Omega \in \mathcal{A}$. By [Leonardi, S. - forthcoming]

- for $V \leq \pi R^2$ isoperimetric sets are balls;
- for $V > \pi R^2$ there exists $r \le R$ s.t. isoperimetric sets are a suitable union of balls of radius r;
- what can happen at scale R for convex sets, now can happen at any scale $r \leq R$.

This happens for those r < R such that

Let $\Omega \in \mathcal{A}$. By [Leonardi, S. - forthcoming]

- for $V \leq \pi R^2$ isoperimetric sets are balls;
- for $V > \pi R^2$ there exists $r \le R$ s.t. isoperimetric sets are a suitable union of balls of radius r;
- what can happen at scale R for convex sets, now can happen at any scale $r \leq R$.

This happens for those r < R such that

Let $\Omega \in \mathcal{A}$. By [Leonardi, S. - forthcoming]

- for $V \leq \pi R^2$ isoperimetric sets are balls;
- for $V > \pi R^2$ there exists $r \le R$ s.t. isoperimetric sets are a suitable union of balls of radius r;
- what can happen at scale R for convex sets, now can happen at any scale $r \leq R$.

This happens for those r < R such that

Let $\Omega \in \mathcal{A}$. By [Leonardi, S. - forthcoming]

- for $V \leq \pi R^2$ isoperimetric sets are balls;
- for $V > \pi R^2$ there exists $r \le R$ s.t. isoperimetric sets are a suitable union of balls of radius r;
- what can happen at scale R for convex sets, now can happen at any scale $r \leq R$.

This happens for those r < R such that

Let $\Omega \in \mathcal{A}$. By [Leonardi, S. - forthcoming]

- for $V \leq \pi R^2$ isoperimetric sets are balls;
- for $V > \pi R^2$ there exists $r \le R$ s.t. isoperimetric sets are a suitable union of balls of radius r;
- what can happen at scale R for convex sets, now can happen at any scale $r \leq R.$

This happens for those r < R such that

$$\{x \in \Omega : \operatorname{dist}(x, \partial \Omega) \ge r\} \neq \overline{\operatorname{int}(\{x \in \Omega : \operatorname{dist}(x, \partial \Omega) \ge r\})}$$

Uniqueness

One can easily state a uniqueness condition in terms of the sets

 $\Omega_r := \{ x \in \Omega : \operatorname{dist}(x, \partial \Omega) \ge r \}.$

Theorem (Leonardi, S. - 2020)

Let $\Omega \in \mathcal{A}$, and r < R. The set difference $\Omega_r \setminus \operatorname{int}(\Omega_r)$ consists of a finite collection Γ_r of $C^{1,1}$ curves.

Uniqueness of isoperimetric sets

Let $\Omega \in \mathcal{A}$ be such that

- Ω_R is a singleton,
- for all r < R, there is at most 1 curve in Γ_r .

Then for all $V \ge \pi R^2$, there exists a unique isoperimetric set.

How do we prove it: the PMC functional

Isoperimetric sets for $V \leq \pi R^2$ are trivial. For greater volumes, we consider the auxiliary functional

$$\mathcal{F}_r[E] := P(E) - \frac{1}{r}|E|.$$

It is immediate to prove that if \overline{E} minimizes \mathcal{F}_r in a class large enough of subsets of Ω , then \overline{E} is isoperimetric in Ω .

$\min \mathcal{F}_r$	competitors	isoperimetric sets
$h^{-1}(\Omega) > r$ $h^{-1}(\Omega) \le r \le R$	$\{E \subset \Omega\} \\ \{E \subset \Omega : E \ge \pi r^2\}$	$ C^{M}(\Omega) < V \le \Omega \pi R^{2} \le V \le C^{M}(\Omega) $

where $C^{M}(\Omega)$ is the Cheeger set of Ω with greatest volume.

How do we prove it: the PMC functional

Isoperimetric sets for $V \leq \pi R^2$ are trivial. For greater volumes, we consider the auxiliary functional

$$\mathcal{F}_r[E] := P(E) - \frac{1}{r}|E|.$$

It is immediate to prove that if \overline{E} minimizes \mathcal{F}_r in a class large enough of subsets of Ω , then \overline{E} is isoperimetric in Ω .

$\min \mathcal{F}_r$	competitors	isoperimetric sets
$h^{-1}(\Omega) > r$	$\{E \subset \Omega\}$	$ C^{M}(\Omega) < V \le \Omega $
$h^{-1}(\Omega) \le r \le R$	$\{E \subset \Omega \ : \ E \ge \pi r^2\}$	$\pi R^{2} \le V \le C^{M}(\Omega) $

where $C^{M}(\Omega)$ is the Cheeger set of Ω with greatest volume.

How do we prove it: the PMC functional

Isoperimetric sets for $V \leq \pi R^2$ are trivial. For greater volumes, we consider the auxiliary functional

$$\mathcal{F}_r[E] := P(E) - \frac{1}{r}|E|.$$

It is immediate to prove that if \overline{E} minimizes \mathcal{F}_r in a class large enough of subsets of Ω , then \overline{E} is isoperimetric in Ω .

$\min \mathcal{F}_r$	competitors	isoperimetric sets
$h^{-1}(\Omega) > r$	$\{E\subset \Omega\}$	$ C^M(\Omega) < V \le \Omega $
$h^{-1}(\Omega) \le r \le R$	$ \{ E \subset \Omega : E \ge \pi r^2 \}$	$\pi R^2 \le V \le C^M(\Omega) $

where $C^{M}(\Omega)$ is the Cheeger set of Ω with greatest volume.

The duality

Theorem (Leonardi, S. - forthcoming)

Let $\Omega \in \mathcal{A}$, and let $V \ge \pi R^2$. A set E is isoperimetric for volume V if and only if there exists $r \le R$ such that E minimizes \mathcal{F}_r in the appropriate class.

This is a duality in the sense of the Legendre transform. Convexity follows.

- \mathcal{J} is convex on $V \ge \pi R^2$;
- \mathcal{J}^2 is globally convex;
- when Ω_R is a singleton and $\Omega_r = \operatorname{int}(\Omega_r)$ for all r < R
 - \mathcal{J} is strictly convex on $V \ge \pi R^2$;
 - the map $V \mapsto r^{-1}$ is a bijection.

Higher dimension

Theorem (Alter, Caselles, Chambolle - 2005)

Let $\Omega \subset \mathbb{R}^n$ be convex, and of class $\mathbb{C}^{1,1}$, and let $V \geq |C(\Omega)|$. A set E is isoperimetric for volume V if and only if there exists $r \leq h(\Omega)^{-1}$ such that E minimizes \mathcal{F}_r . Moreover, this set is unique and convex.

Extend to \mathcal{F}_r for $h(\Omega)^{-1} \leq r \leq R$ within the adjusted class of competitors.

Possible outcomes

- completely fill the gap of volumes between $\omega_n R^n$ and $|C(\Omega)|$;
- if there is continuity in the volume of minimizers (wrt r), duality still works and yields convexity properties;
- proving minimizers are convex, settling a conjecture standing from 25 years.

Let $\Omega \in \mathcal{K}^2$, be k-rotationally symmetric wrt p (+ more). Consider $\{E_V\}_V$

 $E_V := \begin{cases} \text{the unique isoperimetric set centered on } p \,, & \text{if } V < \pi R^2 \,, \\ \text{the unique isoperimetric set } k \text{-rot. sym. wrt } p \,, & \text{if } V \geq \pi R^2 \,. \end{cases}$

Is there a geometric evolution describing this family?

Conjecture: given $S \in \{E_V\}$, if we let it evolve through

$$v_t(x) := \begin{cases} -\kappa(x) \,, & x \in \Omega \,, \\ 0 \,, & x \in \partial\Omega \,, \end{cases}$$

Let $\Omega \in \mathcal{K}^2$, be k-rotationally symmetric wrt p (+ more). Consider $\{E_V\}_V$

 $E_V := \begin{cases} \text{the unique isoperimetric set centered on } p \,, & \text{if } V < \pi R^2 \,, \\ \text{the unique isoperimetric set } k \text{-rot. sym. wrt } p \,, & \text{if } V \geq \pi R^2 \,. \end{cases}$

Is there a geometric evolution describing this family?

Conjecture: given $S \in \{E_V\}$, if we let it evolve through

$$v_t(x) := \begin{cases} -\kappa(x) \,, & x \in \Omega \,, \\ 0 \,, & x \in \partial\Omega \,, \end{cases}$$

Let $\Omega \in \mathcal{K}^2$, be k-rotationally symmetric wrt p (+ more). Consider $\{E_V\}_V$

 $E_V := \begin{cases} \text{the unique isoperimetric set centered on } p \,, & \text{if } V < \pi R^2 \,, \\ \text{the unique isoperimetric set } k \text{-rot. sym. wrt } p \,, & \text{if } V \geq \pi R^2 \,. \end{cases}$

Is there a geometric evolution describing this family?

Conjecture: given $S \in \{E_V\}$, if we let it evolve through

$$v_t(x) := \begin{cases} -\kappa(x) \,, & x \in \Omega \,, \\ 0 \,, & x \in \partial\Omega \,, \end{cases}$$

Let $\Omega \in \mathcal{K}^2$, be k-rotationally symmetric wrt p (+ more). Consider $\{E_V\}_V$

 $E_V := \begin{cases} \text{the unique isoperimetric set centered on } p \,, & \text{if } V < \pi R^2 \,, \\ \text{the unique isoperimetric set } k \text{-rot. sym. wrt } p \,, & \text{if } V \geq \pi R^2 \,. \end{cases}$

Is there a geometric evolution describing this family?

Conjecture: given $S \in \{E_V\}$, if we let it evolve through

$$v_t(x) := \begin{cases} -\kappa(x) \,, & x \in \Omega \,, \\ 0 \,, & x \in \partial\Omega \,, \end{cases}$$

Let $\Omega \in \mathcal{K}^2$, be k-rotationally symmetric wrt p (+ more). Consider $\{E_V\}_V$

 $E_V := \begin{cases} \text{the unique isoperimetric set centered on } p \,, & \text{if } V < \pi R^2 \,, \\ \text{the unique isoperimetric set } k \text{-rot. sym. wrt } p \,, & \text{if } V \geq \pi R^2 \,. \end{cases}$

Is there a geometric evolution describing this family?

Conjecture: given $S \in \{E_V\}$, if we let it evolve through

$$v_t(x) := \begin{cases} -\kappa(x) \,, & x \in \Omega \,, \\ 0 \,, & x \in \partial\Omega \,, \end{cases}$$

Let $\Omega \in \mathcal{K}^2$, be k-rotationally symmetric wrt p (+ more). Consider $\{E_V\}_V$

 $E_V := \begin{cases} \text{the unique isoperimetric set centered on } p \,, & \text{if } V < \pi R^2 \,, \\ \text{the unique isoperimetric set } k \text{-rot. sym. wrt } p \,, & \text{if } V \geq \pi R^2 \,. \end{cases}$

Is there a geometric evolution describing this family?

Conjecture: given $S \in \{E_V\}$, if we let it evolve through

$$v_t(x) := \begin{cases} -\kappa(x) \,, & x \in \Omega \,, \\ 0 \,, & x \in \partial\Omega \,, \end{cases}$$

Let $\Omega \in \mathcal{K}^2$, be k-rotationally symmetric wrt p (+ more). Consider $\{E_V\}_V$

 $E_V := \begin{cases} \text{the unique isoperimetric set centered on } p \,, & \text{if } V < \pi R^2 \,, \\ \text{the unique isoperimetric set } k \text{-rot. sym. wrt } p \,, & \text{if } V \geq \pi R^2 \,. \end{cases}$

Is there a geometric evolution describing this family?

Conjecture: given $S \in \{E_V\}$, if we let it evolve through

$$v_t(x) := \begin{cases} -\kappa(x) \,, & x \in \Omega \,, \\ 0 \,, & x \in \partial\Omega \,, \end{cases}$$

Let $\Omega \in \mathcal{K}^2$, be k-rotationally symmetric wrt p (+ more). Consider $\{E_V\}_V$

 $E_V := \begin{cases} \text{the unique isoperimetric set centered on } p \,, & \text{if } V < \pi R^2 \,, \\ \text{the unique isoperimetric set } k \text{-rot. sym. wrt } p \,, & \text{if } V \geq \pi R^2 \,. \end{cases}$

Is there a geometric evolution describing this family?

Conjecture: given $S \in \{E_V\}$, if we let it evolve through

$$v_t(x) := \begin{cases} -\kappa(x) \,, & x \in \Omega \,, \\ 0 \,, & x \in \partial\Omega \,, \end{cases}$$

Let $\Omega \in \mathcal{K}^2$, be k-rotationally symmetric wrt p (+ more). Consider $\{E_V\}_V$

 $E_V := \begin{cases} \text{the unique isoperimetric set centered on } p \,, & \text{if } V < \pi R^2 \,, \\ \text{the unique isoperimetric set } k \text{-rot. sym. wrt } p \,, & \text{if } V \geq \pi R^2 \,. \end{cases}$

Is there a geometric evolution describing this family?

Conjecture: given $S \in \{E_V\}$, if we let it evolve through

$$v_t(x) := \begin{cases} -\kappa(x) \,, & x \in \Omega \,, \\ 0 \,, & x \in \partial\Omega \,, \end{cases}$$

Let $\Omega \in \mathcal{K}^2$, be k-rotationally symmetric wrt p (+ more). Consider $\{E_V\}_V$

 $E_V := \begin{cases} \text{the unique isoperimetric set centered on } p \,, & \text{if } V < \pi R^2 \,, \\ \text{the unique isoperimetric set } k \text{-rot. sym. wrt } p \,, & \text{if } V \geq \pi R^2 \,. \end{cases}$

Is there a geometric evolution describing this family?

Conjecture: given $S \in \{E_V\}$, if we let it evolve through

$$v_t(x) := \begin{cases} -\kappa(x) \,, & x \in \Omega \,, \\ 0 \,, & x \in \partial\Omega \,, \end{cases}$$

